

Castigliano's theorems

MOHAMED SATHAK A J COLLEGE OF ENGINEERING Chennai 603103

Format no. TLP 06

LESSON PLAN - THEORY

Rev. No.

L3

NPTEL

CO1

Rev.Date

0

15/03/20

			Departmen	nt of Civil	Engineering				
Nan	ne of the Subject	Strength of materials	II		ame of the ng Faculty	R.	EMII	LREYAN	
Subj	ect Code	CE8402		Ŋ	Tear / Sem	II / IV			
			Cou	ırse Obje	ective				
To kno	w the me	thod of finding slope and deflection of	beams and trusse	es using ene	rgy theorems and	to know the conce	pt of a	ınalysing	
To estin	mate the l	oad carrying capacity of columns, stre	sses due to unsyn	nmetrical be	ending and various	theories for failur	e of n	naterial.	
			Cor	urse Outo	come				
Determi	ine the str	ain energy and compute the deflection	of determinate b	eams, frame	es and trusses using	g energy principles	S.		
Analyze	propped	cantilever, fixed beams and continuou	us beams using the	eorem of th	ree moment equat	ion for external lo	ading	s and supp	
Analyze	the load	carrying capacity of columns and stres	sses induced in co	olumns and	cylinders.				
Analyze	the princ	cipal stresses and planes for an elemen	t in three dimensi	onal state o	f stress and study	various theories of	`failuı	re.	
Determi	ine the str	esses due to Unsymmetrical bending o	of beams, locate the	he shear cer	nter, and find the st	resses in curved b	eams.		
				Lesson Pla	n				
Cl. No.		Taria(a)	T / R*	Periods	Mode of Teachin (BB / PPT / NPTI		(L1-	CO	
Sl. No.		Topic(s)	Book	Required	/ MOOC / etc)	L6)			
			UNIT I EN	ERGY P	RINCIPLES	•			
1	Strain e	nergy and strain energy density	T2	1	ВВ	L1		CO1	
2	sudden	nergy due to axial load (gradual, and impact loadings), shear, and torsion	Т1	2	BB	L2		CO1	
_) IDEEL				

T1

4	Maxwell's reciprocal theorem	Т1	1	BB	L3	CO1
1 5	Principle of virtual work -unit load method	T2	1	BB	L5	CO1
6	Application of energy theorems for computing deflections in determinate beams	Т1	1	BB	L3	CO1
1 7	Plane frames and plane trusses – lack of fit and temperature effects	Т1	1	BB	L5	CO1
8	Williot Mohr's Diagram	Т2	1	PPT	L3	CO1

Suggested Activity: Case Study - Application of energy theorems for computing deflections in determinate beams

Evaluation method: Paper base evaluation

UNIT II INDETERMINATE BEAMS

	·	1			1	
9	Concept of Analysis	Т1	1	ВВ	L4	CO2
10	Propped cantilever and fixed beams	Т1	1	ВВ	L4	CO2
11	Fixed end moments and reactions	Т2	2	ВВ	L4	CO2
12	Shear force and bending	T1	3	BB	L4	CO2
13	Theorem of three moments	T1	1	PPT	L3	CO2
14	Analysis of continuous beams, shear force and bending moment diagrams.	T2	1	PPT	L4	CO2

Suggested Activity: Assignment -1) Problems on propped cantilever 2) Problems on fixed beam

Evaluation method: Paper base evaluation

UNIT III COLUMNS AND CYLINDER

15	Euler's theory of long columns	Т1	1	PPT	L3	СОЗ
16	critical loads for prismatic columns with different end conditions	Т1	2	BB	L4	CO3
17	Rankine-Gordon formula - Eccentrically loaded columns	Т2	2	BB	L3	CO3
18	Eccentrically loaded short columns - middle third rule	R4	2	BB	L4	CO3
19	Core section – Thick cylinders – Compound cylinders	R4	2	BB	L3	CO3

Suggested Activity: Assignment -Core section problems

Evaluation method :Paper base evaluation

UNIT IV STATE OF STRESS IN THREE DIMENSIONS

20	Stress tensor at a point – Stress invariants	R2	1	PPT	L3	CO4
21	Determination of principal stresses and principal planes and Volumetric strain	R3	1	PPT	L5	CO1
22	Theories of failure: Maximum Principal stress theory	T2	2	PPT	L4	CO4
23	Maximum Principal strain theory	Т1	1	PPT	L2	CO4
24	Maximum shear stress theory	Т2	1	PPT	L3	CO4
25	Total Strain energy theory	Т2	1	PPT	L3	CO4
26	Maximum distortion energy theory	Т1	1	PPT	L3	CO4
27	Application problems.	Т2	1	PPT	L3	CO4

Suggested Activity: Tutorial

Problems on Stress invariants & Volumetric strain

Problems on principal stress & strain theory

Total strain energy theory

Evaluation method: Powerpoint presentation base evaluation

UNIT V ADVANCED TOPICS Unsymmetrical bending of beams of 28 T1 2 PPT L3 CO5 symmetrical Unsymmetrical bending of beams of PPT 29 T2 2 L5 CO5 unsymmetrical sections Shear Centre 2 PPT L5 CO₅ 30 T1 PPT Curved beams T2 2 L5 CO₅ 31

T1

1

PPT

L4

CO5

Suggested Activity: Tutorial

hooks.

32

Problems on symmetrical & unsymmetrical sections

Winkler Bach formula and stresses in

Problems on shearcentre Problems on curved beams

Evaluation method: Powerpoint presentation base evaluation

Content Beyond the Syllabus Planned

1	Stabilit	y of column									
2	Basics (of fatigue									
					ŗ	Гехt Bool	ks				
1	Rajput Delhi, 2	R.K. "Strength of Mater 010.	ials (Mecha	nics of S	solids)",	S.Chand &	k company	y Ltd., Ne	w		
2	Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2012										
					Ref	ference B	ooks				
1	Kazimi	S.M.A, "Solid Mechanics	s", Tata Mc	Graw-H	ill Publi	shing Co.,	New Delh	i, 2003			
2		n A .Nash, "Theory and P cGraw Hill Publishing co		_	of Mate	erials", Scl	haum's Oı	ıtline Seri	es,		
	Rattan 2011.	.S.S., "Strength of Mater	ials", Tata	McGrav	v Hill Ed	ucation P	vt. Ltd., N	ew Delhi,			
3	Punmia 2004.	B.C."Theory of Structur	es" (SMTS) Vol 18	kII, Laxr	ni Publishi	ing Pvt Lt	d, New De	elhi		
				•	Website	/URL R	deference:	S			
1	http://w	www.nptelvideos.in/2012	2/12/strengt	th-of-ma	iterials.h	<u>ıtml</u>					
					В	looms Le	vel				
Level	1 (L1):	Remembering	T	E: 1	Level 4	(L4) : A	nalysing				
Level	2 (L2):	Understanding	Lower Order Thinking		Hour Level 5 (L5): Evaluating						Higher Order Thinking
Level	3 (L3):	Applying	s			(L6) : C	reating				
		Mapping syllabus	with Bloc	m's Ta	axonom	y LOT a	ınd HOT				
Un	it No	Unit Name		L1	L2	L3	L4	L5	L6	LOT	НОТ
U	nit 1	ENERGY PRINCIP	LES	1	1	4	0	2	0	5	3
U	Unit 2 INDETERMINATE BEAMS		0	0	1	5	2	0	6	0	
U	Unit 3 COLUMNS AND CYLINDERS		0	1	5	2	0	0	3	2	
U	nit 4	STATE OF STRESS THREE DIMENSIC		0	1	5	1	5	0	6	2
U	nit 5	ADVANCED TOPIO	CS	0	0	1	1	3	0	3	2

		Т	otal			1	3	16	9	12	0	23	9
		Total P	Percent	age		3.125	9.375	50	28.125	37.5	0	71.875	28.125
						•	CO	PO Map	ping		•		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1
CO1	3	2	1	1	0	0	0	0	0	0	0	0	1
CO2	3	2	2	1	0	0	0	0	0	0	0	0	1
CO3	3	2	2	1	0	0	0	0	0	0	0	0	1
CO4	3	2	2	1	0	0	0	0	0	0	0	0	1
CO5	3	2	2	1	0	0	0	0	0	0	0	0	1
Avg	3	2	1.8	1	0	0	0	0	0	0	0	0	1
	'					Ju	stificatio	n for CO-	PO mappi	ng			
CO1	stresses with ap	, PO2 : I	Problem is to bear	analysis ms frame	athematics in stress a es and truss eepts and in	nd strain ses . PSO	, princip 1 namely	oal stresses y ability to	and princ design an	ipal plane	es,PO4: 1	ags in inv	estigation
CO2	over oth	ner meth	ods. This	s will hel	of load tra p in proble nd lags in i	m solvin	g over di	ifferent loa	ad transfe	r mechani	sm on diff	ferent bea	ms (PO2)
CO3	PO2 : F	ind the l ssion me	oad carr	ying cap	ne deflection pacity of correstigation of	lumns an	d stresse	es induced	in column	s and cyli	nders . PO	03 : develo	opment of
CO4	of failui	re, PO2	: Proble	m in det	principal s ermine pri gation of co	ncipal st	resses an						
CO5	for com develop	plex pro ment of	blems . I solution,	PO2 : Th PO4: inv	o unsymme is will help vestigation tructural co	in probl of compl	em solvi ex probl	ng and in	designing	and analy	zing of cu	ırved bear	ns helps in
	3]	High leve	el	2		N	Ioderate l	evel		1		Low
												•	

^{*}Kindly sign with date

Name & Sign of Faculty Incharge:

Name & Sign of Subject Expert	:
Head of the Department	:

Format No:231

	i
22	
	ı
ndeterminate beam	
ort settlements.	
PO	
PO1-PO4	
PO1-PO4	
PO1-PO4	

PO1-PO4
PO1-PO4
PO1-PO4
PO1-PO4
PO1-PO4
PO1-PO4
PO1-PO4

	_
PO1-PO4	
	1
PO1-PO4	
	1
	1
	_

Projects / Mini	
Projects	
Total	
8	
6	
5	
8	
°	
5	
	•

	32						
	100						
PSO2							
	2						
	2						
	2						
	2						
	2						
	2						
of c	ferent types of omplex problem ieved by making						
of c ach	omplex problem						
and and solu	omplex problem ieved by making						
and pe o solually:	omplex problem ieved by making d fundamental design and r deflection, ation for						
and and solutions and and and and and and always and always and and always and and always and and always always and always always and always always and always al	omplex problem ieved by making d fundamental design and r deflection, attion for zing structural						
and and solutions and and solutions and and solutions are solutions and solutions and solutions and solutions are solutions and solutions and solutions are solutions and solutions and solutions are solutions.	omplex problem ieved by making a fundamental design and a reflection, ation for zing structural arious theories study various aring solutions sign . PO3: amentals to						
and and pe o solually:	omplex problem ieved by making a fundamental design and a reflection, ation for zing structural arious theories study various aring solutions sign . PO3: amentals to						