

ANNA UNIVERSITY, CHENNAI NON AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021

B. E. CIVIL ENGINEERING

CHOICE BASED CREDIT SYSTEM

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

Graduates of the programme B E Civil Engineering will

- I. Gain knowledge and skills in Civil engineering which will enable them to have a careerand professional accomplishment in the public or private sector organizations
- II. Become consultants on complex real life Civil Engineering problems related to Infrastructure development especially housing, construction, water supply, sewerage, transport, spatial planning.
- III. Become entrepreneurs and develop processes and technologies to meet desiredinfrastructure needs of society and formulate solutions that are technically sound, Economically feasible, and socially acceptable.
- IV. Perform investigation for solving Civil Engineering problems by conducting researchusing modern equipment and software tools.
- V. Function in multi-disciplinary teams and advocate policies, systems, processes and equipment to support civil engineering

PROGRAM OUTCOMES (POs)

PO# Graduate Attribute

- 1 **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2 **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of Mathematics, natural sciences, and engineering sciences.
- 3 **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4 **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 7 **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the Civil Engineering Degree programme, the Graduates shall exhibit the following:

- **PSO1** Knowledge of CivilEngineering discipline

 Demonstrate in-depth knowledge of Civil Engineering discipline, with an ability to evaluate, analyze and synthesize existing and newknowledge.
- PSO2 Critical analysis of Civil Engineering problems and innovation
 Critically analyze complex Civil Engineering problems, apply independent judgment for synthesizing information and make innovative advances in a theoretical, practical and policy context.
- **PSO3** Conceptualization and evaluation of engineering solutions to Civil Engineering Issues Conceptualize and solve Civil Engineering problems, evaluate potential solutions and arrive at technically feasible, economically viable and environmentally sound solutions with due consideration of health, safety, and socio cultural factors

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS AFFILIATED COLLEGES

REGULATIONS 2021

CHOICE BASED CREDIT SYSTEM B. E. CIVIL ENGINEERING

CURRICULUM FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS III AND IV SEMESTER I

S. NO.	COURSE	COURSE TITLE	CATE- GORY		R WE	EK	TOTAL CONTACT	CREDITS
				L	ı	Р	PERIODS	_
1.	IP3151	Induction Programme	-	-	-	-	-	0
THE	ORY							
2.	HS3151	Professional English - I	HSMC	3	0	0	3	3
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3
7.	GE3152	அறிவியல் தமிழ் /Scientific Thoughts in Tamil	HSMC	1	0	0	1	1
PRA	CTICALS							
8.	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2
9.	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
10.	GE3172	English Laboratory ^{\$}	EEC	0	0	2	2	1
			TOTAL	16	1	10	27	22

^{\$} Skill Based Course

SEMESTER II

SLIVIEST EIX II										
S. NO.	COURSE	COURSE TITLE	CATE- GORY		PERIODS PER WEEK		TOTAL CONTACT	CREDITS		
INO.	CODL	1 1 2 2	GOKT	L	T	Р	PERIODS			
THE	ORY	/ 113			7					
1.	HS3251	Professional English - II	HSMC	2	0	0	2	2		
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4		
3.	PH3201	Physics for Civil Engineering	BSC	3	0	0	3	3		
4.	BE3252	Basic Electrical, Electronics and Instrumentation Engineering	ESC	3	0	0	GE ₃	3		
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4		
6.		NCC Credit Course Level 1#	-	2	0	0	2	2#		
7.	GE3252	தமிழர் மரபு /Heritage of Tamils	HSMC	1	0	0	1	1		
PRA	CTICALS		•		•					
8.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2		
9.	BE3272	Basic Electrical, Electronics and Instrumentation Engineering Laboratory	ESC	0	0	4	4	2		
10.	GE3272	Communication Laboratory / Foreign Language \$	EEC	0	0	4	4	2		
	TOTAL 14 1 16 31 23									

^{*} NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

\$ Skill Based Course

SEMESTER III

S.	COURSE	COURSE TITLE	CATE		PERIODS PER WEEK		TOTAL CONTACT	CREDITS	
NO.	CODE		GORY	Г	Т	Р	PERIODS		
THEC	RY								
1.	MA3351	Transforms and Partial Differential Equations	BSC	3	1	0	4	4	
2.	ME3351	Engineering Mechanics	ESC	3	0	0	3	3	
3.	CE3301	Fluid Mechanics	PCC	3	0	0	3	3	
4.	CE3302	Construction Materials and Technology	PCC	З	0	0	3	3	
5.	CE3303	Water Supply and Wastewater Engineering	PCC	4	0	0	4	4	
6.	CE3351	Surveying and Levelling	PCC	3	0	0	3	3	
PRAC	CTICALS								
7.	CE3361	Surveying and Levelling Laboratory	PCC	0	0	3	3	1.5	
8.	CE3311	Water and Wastewater Analysis Laboratory	PCC	0	0	3	3	1.5	
9.	GE3361	Professional Development \$	EEC	0	0	2	2	1	
	TOTAL 19 1 8 28 24								

^{\$} Skill Based Course

SEMESTER IV

S. NO.	COURSE	COURSE TITLE	CATE		PERIODS PER WEEK		TOTAL CONTACT	CREDITS			
				L	Т	Р	PERIODS				
THE	THEORY										
1.	CE3401	Applied Hydraulics Engineering	PCC	3	1	0	4	4			
2.	CE3402	Strength of Materials	PCC	3	0	0	3	3			
3.	CE3403	Concrete Technology	PCC	3	0	0	3	3			
4.	CE3404	Soil Mechanics	PCC	3	0	0	3	3			
5.	CE3405	Highway and Railway Engineering	PCC	3	0	0	3	3			
6.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2			
7.		NCC Credit Course Level 2#		3	0	0	3	3 #			
PRAC	CTICALS										
8.	CE3411	Hydraulic Engineering Laboratory	PCC	0	0	3	3	1.5			
9.	CE3412	Materials Testing Laboratory	PCC	0	0	4	4	2			
10.	CE3413	Soil Mechanics Laboratory	PCC	0	0	3	3	1.5			
	•		TOTAL	17	1	10	28	23			

^{*}NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER V

S.	COURSE	COURSE TITLE	CATE	PFR WFFK		TOTAL CONTACT	CREDITS	
NO.	CODE	COOKSE TITLE	GORY	r Lr	VVL			CKEDIIS
				L	ı	Р	PERIODS	
THE	DRY							
1.	CE3501	Design of Reinforced						
		Concrete Structural	PCC	3	0	0	3	3
		Elements						
2.	CE3502	Structural Analysis I	PCC	3	0	0	3	3
3.	CE3503	Foundation Engineering	PCC	3	0	0	3	3
4.		Professional Elective I	PEC	3	0	0	3	3
5.		Professional Elective II	PEC	3	0	0	3	3
6.		Professional Elective III	PEC	3	0	0	3	3
7.		Mandatory Course-I&	MC	3	0	0	3	0
PRAC	CTICALS							
8.	CE3511	Highway Engineering	PCC	0	0	4	4	2
		Laboratory						
9.	CE3512	Survey Camp (2 weeks)	EEC	0	0	0	0	1
) Un	TOTAL	21	0	4	25	21

[&]amp; Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

SEMESTER VI

S.	COURSE	SCURSE TITLE	CALE PER WEEK CONT		TOTAL	ODEDITO					
NO.	CODE	COURSE TITLE	GORY	L	T	P	CONTACT PERIODS	CREDITS			
THEO	RY										
1.	CE3601	Design of Steel Structural Elements	PCC	3	0	0	3	3			
2.	CE3602	Structural Analysis II	PCC	3	0	0	3	3			
3.	CE3691	Hydrology and Water Resources Engineering	PCC	3	0	0	3	3			
4.		Professional Elective IV	PEC	3	0	0	3	3			
5.		Professional Elective V	PEC	3	0	0	3	3			
6.		Professional Elective VI	PEC	3	0	0	3	3			
7.		Open Elective – I*	OEC	3	0	0	3	3			
8.		Mandatory Course-II&	MC	3	0	0	3	0			
9.		NCC Credit Course Level 3#		3	0	0	3	3 #			
PRAC	PRACTICALS										
10.	CE3611	Building Drawing and Detailing Laboratory	PCC	0	0	4	4	2			
			TOTAL	24	0	4	28	23			

^{*}Open Elective - I shall be chosen from the emerging technologies

[&] Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC-II)

^{*} NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VII/VIII*

S. NO.	COURSE	COURSE TITLE	CATE GORY		RIO R WE		TOTAL CONTACT	CREDITS
140.	CODE		GOKT	L	Т	Ρ	PERIODS	
THEO	RY							
1.	CE3701	Estimation, Costing and Valuation Engineering	PCC	3	0	0	3	3
2.	CE3702	Irrigation Engineering and Drawing	PCC	2	0	2	4	3
3.	GE3791	Human Values and Ethics	HSMC	2	0	0	2	2
4.	GE3752	Total Quality Management	HSMC	3	0	0	3	3
5.		Open Elective – II**	OEC	3	0	0	3	3
6.		Open Elective – III***	OEC	3	0	0	3	3
7.		Open Elective – IV***	OEC	3	0	0	3	3
		TOTAL	19	0	2	21	20	

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII

SEMESTER VIII/VII*

S. NO.	COURSE	COURSE TITLE	CATE GORY	PERIODS PER WEEK		EEK	TOTAL CONTACT PERIODS	CREDITS
				L	I	Р	PERIODS	
PRAC	TICALS							
1.	CE3811	Project Work/Internship	EEC	0	0	20	20	10
		1 1 1 2 2	TOTAL	0	0	20	20	10

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII

TOTAL CREDITS: 166

MANDATORY COURSES I

S. NO.	COURSE	COURSE TITLE	CATE		PERIODS PER WEEK		TOTAL CONTACT	CREDITS
NO.	CODE		GOKT	L T P		Р	PERIODS	
1.	MX3081	Introduction to Women	MC	3	0	0	3	0
		and Gender Studies						
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Management	MC	3	0	0	3	0

^{**}Open Elective – II shall be chosen from the emerging technologies
***Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes

MANDATORY COURSES II

S. NO.	COURSE COURSE TITLE CATE GORY		_		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
140.	O		GOIL	L	T	Р	PERIODS	
1.	MX3085	Well Being with Traditional Practices (Yoga, Ayurveda and Siddha)	MC	3	0	0	3	0
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX3088	State, Nation Building and Politics in India	MC	3	0	0	3	0
5.	MX3089	Industrial Safety	MC	3	0	0	3	0

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I (Structures)	VERTICAL II (Construction techniques and Practices)	VERTICAL III (Geotechnical)	VERTICAL IV (Geo- Informatics)	VERTICAL V (Transportation infrastructure)	VERTICAL VI (Environment)	VERTICAL VII (Water Resources)	VERTICAL VIII (Ocean Engineering)	VERTICAL IX (Diversified Course)
Concrete Structures	Formwork Engineering	Geo- Environmental Engineering	Total Station and GPS Surveying	Airports and Harbours	Climate Change Adaptation and Mitigation	Participatory Water Resources Management	Ocean Wave Dynamics	Steel Concrete Composite Structures
Steel Structures	Construction Equipment and Machinery	Ground Improvement Techniques	Remote Sensing Concepts	Traffic Engineering and Management	Air and Noise Pollution Control Engineering	Groundwater Engineering	Marine Geotechnical Engineering	Finance For Engineers
Prefabricated Structures	Sustainable Construction and Lean Construction	Soil Dynamics and Machine Foundations	Satellite Image Processing	Urban Planning and Development	Environmental Impact Assessment	Water Resources Systems Engineering	Coastal Engineering	Earth and Rockfill Dams
Prestressed Concrete Structures	Digitalized Construction Lab	Rock Mechanics	Cartography and GIS	Smart cities	Industrial Wastewater Management	Watershed Conservation and Management	Off shore Structures	Computational Fluid Dynamics
Rehabilitation/ Heritage Restoration	Construction Management and Safety	Earth and Earth Retaining Structures	Photogrammetry	Intelligent Transport Systems	Solid and Hazardous Waste Management	Integrated Water Resources Management	Port and Harbour Engineering	Rainwater Harvesting
Dynamics and Earthquake Resistant Structures	Advanced Construction Techniques	Pile Foundation	Airborne and Terrestrial laser mapping	Pavement Engineering	Environmental Policy and Legislations	Urban Water Infrastructure	Coastal Hazards and Mitigation	Transport and Environment
Introduction to Finite Element Method	Energy Efficient Buildings	Tunneling Engineering	Hydrographic Surveying	Transportation planning Process	Environment, Health and Safety	Water Quality and Management	Coastal Zone Management and Remote Sensing	Environmental quality Monitoring

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to the Regulations 2021, Clause 4.10.

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I: STRUCTURES

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		RIO R WE		TOTAL CONTACT	3 3 3 3 3 3 3
NO.			GOKT	L	Т	Р	PERIODS	
1.	CE3001	Concrete Structures	PEC	3	0	0	3	3
2.	CE3002	Steel Structures	PEC	3	0	0	3	3
3.	CE3003	Prefabricated Structures	PEC	3	0	0	3	3
4.	CE3004	Prestressed Concrete Structures	PEC	3	0	0	3	3
5.	CE3005	Rehabilitation/Heritage Restoration	PEC	3	0	0	3	3
6.	CE3006	Dynamics and Earthquake Resistant Structures	PEC	3	0	0	3	3
7.	CE3007	Introduction to Finite Element Method	PEC	3	0	0	3	3

VERTICAL II: CONSTRUCTION TECHNIQUES AND PRACTICES

S. NO.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GOKT	٦	Т	Р	PERIODS	
1.	CE3008	Formwork Engineering	PEC	3	0	0	3	3
2.	CE3009	Construction Equipment and Machinery	PEC	3	0	0	3	3
3.	CE3010	Sustainable Construction And Lean Construction	PEC	3	0	0	3	3
4.	CE3011	Digitalized Construction Lab	PEC	0	0	6	6	3
5.	CE3012	Construction Management and Safety	PEC	2	0	2	4	3
6.	CE3013	Advanced Construction Techniques	PEC	3	0	0		3
7.	CE3014	Energy Efficient Buildings	PEC	3	0	0	3	3

VERTICAL III: GEOTECHNICAL

S. NO.	COURSE CODE	COURSE TITLE	CATE	ORY PER WEEK		TOTAL CONTACT	CREDITS	
NO.			GORT	L	Т	Р	PERIODS	
1.	CE3015	Geoenvironmental Engineering	PEC	3	0	0	3	3
2.	CE3016	Ground Improvement Techniques	PEC	3	0	0	3	3
3.	CE3017	Soil Dynamics and Machine Foundations	PEC	3	0	0	3	3
4.	CE3018	Rock Mechanics	PEC	3	0	0	3	3
5.	CE3019	Earth and Earth Retaining Structures	PEC	3	0	0	3	3
6.	CE3020	Pile Foundation	PEC	3	0	0	3	3
7.	CE3021	Tunneling Engineering	PEC	3	0	0	3	3

VERTICAL IV: GEO-INFORMATICS

S.	S. COURSE COURSE TITLE		CATE		RIOI R WE		TOTAL CONTACT	CREDITS
NO.			GORY	L	T	Р	PERIODS	
1.	GI3492	Total Station and GPS	PEC	3	0	0	3	3
		Surveying				1		
2.	CE3022	Remote Sensing Concepts	PEC	3	0	0	3	3
3.	CE3023	Satellite Image Processing	PEC	3	0	0	3	3
4.	GI3491	Cartography and GIS	PEC	3	0	0	3	3
5.	Gl3391	Photogrammetry	PEC	3	0	0	3	3
6.	GI3691	Airborne and Terrestrial	PEC	3	0	0	3	3
		Laser Mapping						
7.	CE3024	Hydrographic Surveying	PEC	3	0	0	3	3

VERTICAL V: TRANSPORTATION INFRASTRUCTURE

S. NO.	COURSE CODE	COURSE TITLE	CATE		PERIODS PER WEEK		TOTAL CONTACT	CREDITS
NO.		-	GORT	L	Т	Р	PERIODS	
1.	CE3025	Airports and Harbours	PEC	3	0	0	3	3
2.	CE3026	Traffic Engineering and	PEC	3	0	0	3	3
		Management						
3.	CE3027	Urban Planning and	PEC	3	0	0	3	3
		Development						
4.	CE3028	Smart Cities	PEC	3	0	0	3	3
5.	CE3029	Intelligent Transport	PEC	3	0	0	3	3
		Systems						
6.	CE3030	Pavement Engineering	PEC	3	0	0	3	3
7.	CE3031	Transportation Planning	PEC	3	0	0	3	3
		Process						

VERTICAL VI: ENVIRONMENT

S. NO.	COURSE CODE	COURSE TITLE	CATE	GORY PER WEEK		TOTAL CONTACT	CREDITS	
NO.			GORT	L	T	Р	PERIODS	
1.	CE3032	Climate Change Adaptation and Mitigation	PEC	3	0	0	3	3
2.	CCE331	Air and Noise Pollution Control Engineering	PEC	3	0	0	3	3
3.	CCE333	Environmental Impact Assessment	PEC	3	0	0	3	3
4.	CCE334	Industrial Wastewater Management	PEC	3	0	0	3	3
5.	CE3033	Solid and Hazardous Waste Management	PEC	3	0	0	3	3
6.	CE3034	Environmental Policy and Legislations	PEC	3	0	0	3	3
7.	CCE332	Environment, Health and Safety	PEC	3	0	0	3	3

VERTICAL VII: WATER RESOURCES

S. NO.	CODE COURSETTIE				RIO R WE		TOTAL CONTACT	CREDITS
140.		('. ~ /	GOKT	L	T	Р	PERIODS	
1.	CE3035	Participatory Water	PEC	3	0	0	3	3
		Resources Management	- 4					
2.	CE3036	Ground Water Engineering	PEC	3	0	0	3	3
3.	CE3037	Water Resources Systems	PEC	3	0	0	3	3
		Engineering						
4.	CE3038	Watershed Conservation	PEC	3	0	0	3	3
		and Management						
5.	CE3039	Integrated Water	PEC	3	0	0	3	3
		Resources Management						
6.	CE3040	Urban Water Infrastructure	PEC	3	0	0	3	3
7.	CE3041	Water Quality and	PEC	3	0	0	3	3
		Management						

VERTICAL VIII: OCEAN ENGINEERING

S. NO.	COURSE CODE	COURSE TITLE	CATE	Y PER WEEK		EEK	TOTAL CONTACT	CREDITS
			O O I C I	L	Т	Р	PERIODS	
1.	CE3042	Ocean Wave Dynamics	PEC	3	0	0	3	3
2.	CE3043	Marine Geotechnical Engineering	PEC	3	0	0	3	3
3.	CE3044	Coastal Engineering	PEC	3	0	0	3	3
4	CE3045	Off shore Structures	PEC	3	0	0	3	3
5	CE3046	Port and Harbour Engineering	PEC	3	0	0	3	3
6	CE3047	Coastal Hazards and Mitigation	PEC	3	0	0	3	3
7	CE3048	Coastal Zone Management and Remote Sensing	PEC	3	0	0	3	3

VERTICAL IX: DIVERSIFIED COURSES

S. NO.	COURSE CODE	COURSE TITLE	CATE		PERIODS ER WEEK		TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Р	PERIODS	
1.	CE3049	Steel Concrete Composite Structures	PEC	3	0	0	3	3
2.	CE3050	Finance for Engineers	PEC	3	0	0	3	3
3.	CE3051	Earth and Rockfill Dams	PEC	3	0	0	3	3
4	CE3052	Computational Fluid Dynamics	PEC	3	0	0	3	3
5	CE3053	Rainwater Harvesting	PEC	3	0	0	3	3
6	CE3054	Transport and Environment	PEC	3	0	0	3	3
7	CE3055	Environmental Quality Monitoring	PEC	3	0	0	3	3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories)

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
140.			GOIXT	L	Т	Р	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	loT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	OCS354	Augmented and Virtual Reality	OEC	2	0	2	4	3

OPEN ELECTIVES - III

SL.	SL. COURSE COURSE TITLE		CATE		RIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GURT	L	Т	Р	PERIODS	
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
3.	OMG353	Democracy and Good Governance	OEC	3	0	0	3	3
4.	OME353	Renewable Energy Technologies	OEC	3	0	0	3	3
5.	OME354	Applied Design Thinking	OEC	2	0	2	4	3
6.	OMF351	Reverse Engineering	OEC	3	0	0	3	3

7.	OMF353	Sustainable Manufacturing	OEC	3	0	0	3	3
8.	OAU351	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
9.	OAS352	Space Engineering	OEC	3	0	0	3	3
10.	OIM351	Industrial Management	OEC	3	0	0	3	3
11.	OIE354	Quality Engineering	OEC	3	0	0	3	3
12.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
13.	OML351	Introduction to non- destructive testing	OEC	3	0	0	3	3
14.	OMR351	Mechatronics	OEC	3	0	0	3	3
15.	ORA351	Foundation of Robotics	OEC	3	0	0	3	3
16.	OAE352	Fundamentals of Aeronautical engineering	OEC	3	0	0	3	3
17.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
18.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
19.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3
20.	OEE352	Electric Vehicle technology	OEC	3	0	0	3	3
21.	OEI353	Introduction to PLC Programming	OEC	3	0	0	3	3
22.	OCH351	Nano Technology	OEC	3	0	0	3	3
23.	OCH352	Functional Materials	OEC	3	0	0	3	3
24.	OBT352	Biomedical Instrumentation	OEC	3	0	0	3	3
25.	OFD352	Traditional Indian Foods	OEC	3	0	0	3	3
26.	OFD353	Introduction to food processing	OEC	3	0	0	3	3
27.	OPY352	IPR for Pharma Industry	OEC	3	0	0	3	3
28.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
29.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
30.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
31.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
32.	OPE352	Energy Conservation and Management	OEC	3	0	0	IGE ³	3
33.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3	3
34.	OEC351	Signals and Systems	OEC	3	0	0	3	3
35.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
36.	OBM351	Foundation Skills in integrated product Development	OEC	3	0	0	3	3
37.	OBM352	Assistive Technology	OEC	3	0	0	3	3
38.	OMA352	Operations Research	OEC	3	0	0	3	3
39.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
40.	OMA354	Linear Algebra	OEC	3	0	0	3	3

OPEN ELECTIVES - IV

SL.	COURSE CODE	COURSE TITLE	CATE		ERIO R WE		TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	OHS352	Project Report Writing	OEC	3	0	0	3	3
2.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3
3.	OMA356	Random Processes	OEC	3	0	0	3	3
4.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
5.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3
6.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
7.	OME352	Additive Manufacturing	OEC	3	0	0	3	3
8.	OME353	New Product Development	OEC	3	0	0	3	3
9.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	2	0	2	4	3
10.	OMF352	Micro and Precision Engineering	OEC	3	0	0	3	3
11.	OMF354	Cost Management of Engineering Projects	OEC	3	0	0	3	3
12.	OAU352	Batteries and Management system	OEC	3	0	0	3	3
13.	OAU353	Sensors and Actuators	OEC	3	0	0	3	3
14.	OAS353	Space Vehicles	OEC	3	0	0	3	3
15.	OIM352	Management Science	OEC	3	0	0	3	3
16.	OIM353	Production Planning and Control	OEC	3	0	0	3	3
17.	OIE353	Operations Management	OEC	3	0	0	3	3
18.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
19.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
20.	OML352	Electrical, Electronic and Magnetic materials	OEC	3	0	0	3	3
21.	OML353	Nanomaterials and applications	OEC	3	0	0	DGE ³	3
22.	OMR352	Hydraulics and Pneumatics	OEC	3	0	0	3	3
23.	OMR353	Sensors	OEC	3	0	0	3	3
24.	ORA352	Foundation of Automation	OEC	3	0	0	3	3
25.	ORA353	Concepts in Mobile Robotics	OEC	3	0	0	3	3
26.	OMV351	Marine Propulsion	OEC	3	0	0	3	3
27.	OMV352	Marine Merchant Vehicles	OEC	3	0	0	3	3
28.	OMV353	Elements of Marine Engineering	OEC	3	0	0	3	3
29.	OAE353	Drone Technologies	OEC	3	0	0	3	3

30.	OGI352	Geographical Information System	OEC	3	0	0	3	3
31.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
32.	OEN352	Biodiversity Conservation	OEC	3	0	0	3	3
33.	OEE353	Introduction to control systems	OEC	3	0	0	3	3
34.	OEI354	Introduction to Industrial Automation Systems	OEC	3	0	0	3	3
35.	OCH353	Energy Technology	OEC	3	0	0	3	3
36.	OCH354	Surface Science	OEC	3	0	0	3	3 3
37.	OBT353	Environment and Agriculture	OEC	3	0	0	3	3
38.	OFD354	Fundamentals of Food Engineering	OEC	3	0	0	3	3
39.	OFD355	Food safety and Quality Regulations	OEC	3	0	0	3	3
40.	OPY353	Nutraceuticals	OEC	3	0	0	3	3
41.	OTT354	Basics of Dyeing and Printing	OEC	3	0	0	3	3
42.	OTT355	Fibre Science	OEC	3	0	0	3	3
43.	OTT356	Garment Manufacturing Technology	OEC	3	0	0	3	3
44.	OPE353	Industrial safety	OEC	3	0	0	3	3
45.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3
46.	OPT352	Plastic Materials for Engineers	OEC	3	0	0	3	3
47.	OPT353	Properties and Testing of Plastics	OEC	3	0	0	3	3
48.	OEC353	VLSI Design	OEC	3	0	0	3	3
49.	OEC354	Industrial IoT and Industry 4.0	OEC	2	0	2	4	3
50.	OBM353	Wearable devices	OEC	3	0	0	3	3
51.	OBM354	Medical Informatics	OEC	3	0	0	3	3

PROGRESS THROUGH KNOWLEDGE

SUMMARY

S.No.	Subject	CREDITS PER SEMESTER								CREDITS TOTAL
	Area	I	II	III	IV	V	VI	VII/VIII	VIII/VII	
1.	HSMC	4	3					5		12
2.	BSC	12	7	4	2					25
3.	ESC	5	11	3						19
4.	PCC			16	21	11	11	6		65
5.	PEC					9	9			18
6.	OEC						3	9		12
7.	EEC	1	2	1		1			10	15
	Total	22	23	24	23	21	23	20	10	166
8.	Mandatory Course (Non credit)	are		U	NI	Vx	✓	2		

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2021.

VERTICALS FOR MINOR DEGREE (In addition to all the verticals of other programmes)

VERTICAL I	VERTICAL II	VERTICAL III	VERTICAL IV	VERTICAL V
Fintech and Block Chain	Entrepreneurship	Public Administration	Business Data Analytics	Environment and Sustainability
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building and Leadership Management for Business	Constitution of India	Datamining for Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity and Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurship	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	-	-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable Development

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

SL. NO.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GOKT	┙	T	Р	PERIODS	
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 2: ENTREPRENEURSHIP

SL. NO.	COURSE CODE	COURSE TITLE	CATE		RIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GOKT	L	Т	Р	PERIODS	
1.	CMG337	Foundations of Entrepreneurship	PEC	3	0	0	3	3
2.	CMG338	Leadership Management for Business	PEC	3	0	0	3	3
3.	CMG339	Creativity and Innovation in Entrepreneurship	PEC	3	0	0	3	3
4.	CMG340	Principles of Marketing Management for Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurship	PEC	3	0	0	3	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3

VERTICAL 3: PUBLIC ADMINISTRATION

SL. NO.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3
2.	CMG344	Constitution of India	PEC	3	0	0	3	3
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3

VERTICAL 4: BUSINESS DATA ANALYTICS

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK L T P		EEK	TOTAL CONTACT PERIODS	CREDITS
1.	CMG349	Statistics for Management	PEC	3	0	0	3	3
2.	CMG350	Datamining for Business Intelligence	PEC	3	0	0	3	3
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3
4.	CMG352	Marketing and Social Media Web Analytics	PEC	3	0	0	3	3
5.	CMG353	Operation and Supply Chain Analytics	PEC	3	0	0	3	3
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

SL. NO.	COURSE CODE	COURSE TITLE	CATE			DDS EEK	TOTAL CONTACT	CREDIT
1101				L	Т	Р	PERIODS	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	06.3	3
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3
5.	CES335	Green Technology	PEC	3	0	0	3	3
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3

OBJECTIVES

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9 + 1

Formation of partial differential equations –Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types- Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9 + 3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

9 + 3

Classification of PDE – Method of separation of variables - Fourier series solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (Cartesian coordinates only).

UNIT IV FOURIER TRANSFORMS

9 + 3

Statement of Fourier integral theorem— Fourier transform pair — Fourier sine and cosine transforms — Properties — Transforms of simple functions — Convolution theorem — Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

9 + 3

TOTAL: 60 PERIODS

Z-transforms - Elementary properties - Convergence of Z-transforms - - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z - transforms.

OUTCOMES

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics" 44th Edition, Khanna Publishers, New Delhi, 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, New Delhi, India, 2016.

REFERENCES:

- 1. Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10th Edition, Laxmi Publications Pvt. Ltd, 2015.
- 3. James. G., "Advanced Modern Engineering Mathematics", 4thEdition, Pearson Education, New Delhi, 2016.
- 4. Narayanan. S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.
- 6. Wylie. R.C. and Barrett . L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

ME3351

ENGINEERING MECHANICS

LTPC 3 0 0 3

COURSE OBJECTIVES

- To Learn the use scalar and vector analytical techniques for analyzing forces in Statically determinate structures
- To introduce the equilibrium of rigid bodies
- To study and understand the distributed forces, surface, loading on beam and intensity.
- To learn the principles of friction, forces and to determine the apply the concepts of frictional forces at the contact surfaces of various engineering systems.
- To develop basic dynamics concepts force, momentum, work and energy;

UNIT I STATICS OF PARTICLES

9

Fundamental Concepts and Principles, Systems of Units, Method of Problem Solutions, Statics of Particles -Forces in a Plane, Resultant of Forces, Resolution of a Force into Components, Rectangular Components of a Force, Unit Vectors. Equilibrium of a Particle- Newton's First Law of Motion, Space and Free-Body Diagrams, Forces in Space, Equilibrium of a Particle in Space.

UNIT II EQUILIBRIUM OF RIGID BODIES

9

Principle of Transmissibility, Equivalent Forces, Vector Product of Two Vectors, Moment of a Force about a Point, Varignon's Theorem, Rectangular Components of the Moment of a Force, Scalar Product of Two Vectors, Mixed Triple Product of Three Vectors, Moment of a Force about an Axis, Couple - Moment of a Couple, Equivalent Couples, Addition of Couples, Resolution of a Given Force into a Force -Couple system, Further Reduction of a System of Forces, Equilibrium in Two and Three Dimensions - Reactions at Supports and Connections.

UNIT III DISTRIBUTED FORCES

9

Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration , Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies , Determination of Centroids of Volumes by Integration. Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration, Polar Moment of Inertia , Radius of Gyration of an Area , Parallel-Axis Theorem , Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates , Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV FRICTION

The Laws of Dry Friction, Coefficients of Friction, Angles of Friction, Wedge friction, Wheel Friction,

Rolling Resistance, Ladder friction.

UNIT V DYNAMICS OF PARTICLES

Kinematics - Rectilinear Motion and Curvilinear Motion of Particles. Kinetics- Newton's Second Law of Motion -Equations of Motions, Dynamic Equilibrium, Energy and Momentum Methods - Work of a Force, Kinetic Energy of a Particle, Principle of Work and Energy, Principle of Impulse and Momentum, Impact of bodies.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- Illustrate the vectorial and scalar representation of forces and moments
- Analyse the rigid body in equilibrium
- Evaluate the properties of distributed forces
- Determine the friction and the effects by the laws of friction
- Calculate dynamic forces exerted in rigid body

TEXTBOOKS:

- 1. Beer Ferdinand P, Russel Johnston Jr., David F Mazurek, Philip J Cornwell, SanjeevSanghi, Vector Mechanics for Engineers: Statics and Dynamics, McGraw Higher Education., 11thEdition, 2017.
- 2. Vela Murali, "Engineering Mechanics-Statics and Dynamics", Oxford University Press, 2018.

References:

- 1. Boresi P and Schmidt J, Engineering Mechanics: Statics and Dynamics, 1/e, Cengage learning, 2008.
- 2. Hibbeller, R.C., Engineering Mechanics: Statics, and Engineering Mechanics: Dynamics, 13th edition, Prentice Hall, 2013.
- 3. Irving H. Shames, Krishna Mohana Rao G, Engineering Mechanics Statics and Dynamics, 4thEdition, Pearson Education Asia Pvt. Ltd., 2005.
- 4. Meriam J L and Kraige L G, Engineering Mechanics: Statics and Engineering Mechanics: Dynamics, 7th edition, Wiley student edition, 2013.
- 5. Timoshenko S, Young D H, Rao J V and SukumarPati, Engineering Mechanics, 5thEdition, McGraw Hill Higher Education, 2013.

CE3301 **FLUID MECHANICS** LTPC 3 0 0 3

OBJECTIVES:

To introduce the students about properties and behaviour of the fluids under static conditions and to impart basic knowledge of the dynamics of fluids through the control volume approach and to expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on pipe bends with an exposure to the significance of boundary layer theory and its applications.

UNIT I FLUIDS PROPERTIES AND FLUID STATICS

10

Scope of fluid mechanics – Definitions of a fluid – Methods of analysis – Continuum hypothesis – System and Control volume approach – Reynold's transportation theorem – Fluid properties – Fluid statics - Manometry - Forces on plane and curved surfaces - Buoyancy and floatation - Stability of floating bodies.

UNIT II BASIC CONCEPTS OF FLUID FLOW

Kinematics: Classification of flows – Streamline, streak-line and path-lines – Stream function and velocity potentials – Flow nets;

Dynamics: Application of control volume to continuity, energy and momentum – Euler's equation of motion along a stream line – Bernoulli's equation – Applications to velocity and discharge measurements – Linear momentum equation – Application to Pipe bends – Moment of momentum equation.

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES

7

10

Fundamental dimensions – Dimensional homogeneity – Rayleigh's method and Buckingham Pi theorem – Dimensionless parameters – Similitude and model studies – Distorted and undistorted models.

UNIT IV INCOMPRESSIBLE VISCOUS FLOW

10

Reynolds experiment – Laminar flow in pipes and between parallel plates – Development of laminar and turbulent flows in pipes – Darcy-Weisbach equation – Moody diagram – Major and minor losses of flow in pipes – Total energy line – Hydraulic grade line – Siphon – Pipes in series and parallel – Equivalent pipes.

UNIT V BOUNDARY LAYERS

8

TOTAL: 45 PERIODS

Definition of boundary layers – Laminar and turbulent boundary layers – Displacement, momentum and energy thickness – Momentum integral equation – Applications – Separation of boundary layer – Drag and Lift forces.

OUTCOMES:

- On completion of the course, the student is expected to
- CO1 Demonstrate the difference between solid and fluid, its properties and behaviour in static conditions.
- CO2 Apply the conservation laws applicable to fluids and its application through fluid kinematics and dynamics.
- CO3 Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performance of prototypes by model studies.
- CO4 Estimate the losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel.
- CO5 Explain the concept of boundary layer and its application to find the drag force excreted by the fluid on the flat solid surface.

TEXTBOOKS:

- 1. Modi P.N and Seth Hydraulics and Fluid Mechanics including Hydraulic Machines Standard Book House New Delhi. 2015.
- Streeter, V.L. Wylie, E. B. and Bedford K.W, Fluid Mechanics. (9th Ed.) Tata McGraw Hill, New Delhi, 1998.

REFERENCES:

- 1. S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012.
- 2. Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016.
- 3. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014.
- 4. Narayana Pillai N. Principles of Fluid Mechanics and Fluid Machines, (3rd Ed.) University Press (India) Pvt. Ltd. 2009.

LT P C 3 0 0 3

OBJECTIVES:

• To introduce students to various construction materials and the techniques that are commonly used in civil engineering construction.

UNIT I STONES - BRICKS - CONCRETE BLOCKS - LIME

g

Stone as building material – Criteria for selection – Tests on stones – Bricks – Classification – Manufacturing of clay bricks – Tests on bricks – Compressive strength – Water Absorption – Efflorescence – Lime – Preparation of lime mortar – Concrete hollow blocks – Lightweight concrete blocks.

UNIT II OTHER MATERIALS

9

Timber – Market forms – Plywood – Veneer – False ceiling materials – Steel – Mechanical treatment – Aluminum – Uses – Market forms – Glass – Ceramics – Refractories – Composite Materials – Types and applications – FRP – Fibre textiles – Geomembranes and Geotextiles for earth reinforcement.

UNIT III CONSTRUCTION PRACTICES & SERVICE REQUIREMENTS

9

Types of Foundations – Shallow and Deep Foundations – Stone Masonry – Brick Masonry – Plastering and Pointing – Cavity Walls – Diaphragm Walls – Formwork – Centering and Shuttering – Shoring – Scaffolding – Underpinning – Roofing – Flooring – Joints in concrete – Contraction/Construction/Expansion joints – Fire Protection – Thermal Insulation – Ventilation and Air conditioning – Acoustics and Sound Insulation – Damp Proofing.

UNIT IV CONSTRUCTION EQUIPMENTS

9

Selection of equipment for earthwork excavation, concreting, material handling and erection of structures – Dewatering and pumping equipment.

UNIT V CONSTRUCTION PLANNING

g

Introduction to construction planning – Scheduling for activities – Critical path method (CPM) and PERT network modelling and time analysis – Case illustrations.

TOTAL: 45 PERIODS

OUTCOMES

Students will be able to

- CO1 Identify the good quality brick, stone and blocks for construction.
- CO2 Recognize the market forms of timber, steel, aluminum and applications of various composite materials.
- CO3 Identify the best construction and service practices such as thermal insulations and air conditioning of the building
- CO4 Select various equipments for construction works conditioning of building
- CO5 Understand the construction planning and scheduling techniques

TEXTBOOKS

- 1. Varghese.P.C, Building Materials, Second Edition PHI Learning Ltd., 2015.
- 2. Arora S.P and Bindra S.P Building construction, Dhanpat Rai and sons, 2013.

REFERENCES:

- Varghese.P.C, Building Construction, Second Edition PHI Learning Itd., 2016.
- 2. Punmia ,B.C Building construction , Laxmi publication (p)ltd..,2008.
- 3. Peurifoy R.L., Schexnayder, C.J., Shapira A., Schmitt.R., Construction Planning Equipment and Methods, Tata McGraw-hill, 2011.
- 4. Srinath L.S., PERT and CPM Principles and applications, Affliated East West Press 2001

CE3303 WATER SUPPLY AND WASTE WATER ENGINEERING

LTPC 4 0 0 4

OBJECTIVES:

 To introduce students to various components and design of water supply scheme, water treatment methods, water storage distribution system, sewage treatment and disposal and deign of intake structures and sewerage system.

UNIT I WATER SUPPLY

12

Estimation of surface and subsurface water resources - Predicting demand for water- Impurities of water and their significance - Physical, chemical and bacteriological analysis - Waterborne diseases - Standards for potable water. Intake of water: Pumping and gravity schemes.

UNIT II WATER TREATMENT

12

Objectives - Unit operations and processes - Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation – Clarifloccuator - Plate and tube settlers - Pulsator clarifier - sand filters - Disinfection - softening, removal of iron and manganese - Defluoridation - Softening - Desalination process - Residue Management - Construction, Operation and Maintenance aspects

UNIT III WATER STORAGE AND DISTRIBUTION

12

Storage and balancing reservoirs - types, location and capacity. Distribution system: layout, hydraulics of pipe lines, pipe fittings, valves including check and pressure reducing valves, meters, analysis of distribution systems, leak detection, maintenance of distribution systems, pumping stations and their operations - House service connections.

UNIT IV PLANNING AND DESIGN OF SEWERAGE SYSTEM

12

Characteristics and composition of sewage - Population equivalent - Sanitary sewage flow estimation - Sewer materials - Hydraulics of flow in sanitary sewers - Sewer design - Storm drainage-Storm runoff estimation - Sewer appurtenances - Corrosion in sewers - Prevention and control - Sewage pumping-drainage in buildings - Plumbing systems for drainage

UNIT V SEWAGE TREATMENT AND DISPOSAL

12

Objectives - Selection of Treatment Methods - Principles, Functions, - Activated Sludge Process and Extended aeration systems - Trickling filters - Sequencing Batch Reactor(SBR) - UASB - Waste Stabilization Ponds - Other treatment methods - Reclamation and Reuse of sewage - Recent Advances in Sewage Treatment - Construction, Operation and Maintenance aspects. - Discharge standards-sludge treatment - Disposal of sludge

TOTAL: 60 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- CO1 Understand the various components of water supply scheme and design of intake structure and conveyance system for water transmission
- CO2 Understand on the characteristics and composition of sewage, ability to estimate sewage generation and design sewer system including sewage pumping stations
- CO3 Understand the process of conventional treatment and design of water and wastewater treatment system and gain knowledge of selection of treatment process and biological treatment process
- CO4 Ability to design and evaluate water distribution system and water supply in buildings and understand the self-purification of streams and sludge and septage disposal methods.
- CO5 Able to understand and design the various advanced treatment system and knowledge about the recent advances in water and wastewater treatment process and reuse of sewage

TEXTBOOKS:

- 1. Garg, S.K. Environmental Engineering, Vol.I Khanna Publishers, New Delhi, 2010.
- 2. Modi, P.N., Water Supply Engineering, Vol.I Standard Book House, New Delhi, 2016.
- 3. Garg, S.K., Environmental Engineering Vol.II, Khanna Publishers, New Delhi, 2015.
- 4. Duggal K.N., "Elements of Environmental Engineering" S. Chand and Co. Ltd., New Delhi, 2014.
- 5. Punmia, B.C., Jain, A.K., and Jain.A.K.., Environmental Engineering, Vol.II, Laxmi Publications, 2010.

REFERENCES:

- 1. Punmia B.C, Ashok Jain and Arun Jain, Water Supply Engineering, Laxmi Publications (P) Ltd., New Delhi 2010.
- 2. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- 3. Syed R. Qasimand Edward M. Motley Guang Zhu, Water Works Engineering Planning, Design and Operation, Prentice Hall of India Learning Private Limited, New Delhi, 2009.
- 4. Of Urban Development, Government of India, New Delhi, 2013.
- 5. Metcalf and Eddy Waste water Engineering Treatment and Reuse, Tata Mc. Graw Hill Company, New Delhi, 2010.
- 6. Syed R.Qasim "Waste water Treatment Plants", CRCPress, Washington D.C., 2010
- 7. Gray N.F, "Water Technology", Elsevier India Pvt.Ltd. New Delhi, 2006.

CE3351

SURVEYING AND LEVELLING

LTPC 3 0 0 3

OBJECTIVES:

 To introduce the rudiments of plane surveying and geodetic principles to Civil Engineers and to learn the various methods of plane and geodetic surveying to solve the real world problems. To introduce the concepts of Control Surveying. To introduce the basics of Astronomical Surveying

UNIT I FUNDAMENTALS OF CONVENTIONAL SURVEYING

(

Definition – Classifications – Basic principles – Equipment and accessories for ranging and chaining – Methods of ranging – Well conditioned triangles – Chain traversing – Compass – Basic principles – Types – Bearing – System and conversions – Sources of errors and Local attraction – Magnetic declination – Dip – compass traversing – Plane table and its accessories – Merits and demerits – Radiation – Intersection – Resection – Plane table traversing.

UNIT II LEVELLING 9

Level line – Horizontal line – Datum – Benchmarks – Levels and staves – Temporary and permanent adjustments – Methods of leveling – Fly leveling – Check leveling – Procedure in leveling – Booking – Reduction – Curvature and refraction – Reciprocal leveling – Precise leveling - Contouring.

UNIT III THEODOLITE SURVEYING

9

Horizontal and vertical angle measurements – Temporary and permanent adjustments – Heights and distances – Tacheometric surveying – Stadia Tacheometry – Tangential Tacheometry – Trigonometric leveling – Single Plane method – Double Plane method.

UNIT IV CONTROL SURVEYING AND ADJUSTMENT

g

Horizontal and vertical control – Methods – Triangulation – Traversing – Gale's table – Trilateration – Concepts of measurements and errors – Error propagation and Linearization – Adjustment methods - Least square methods – Angles, lengths and levelling network.

UNIT V MODERN SURVEYING

9

Total Station: Digital Theodolite, EDM, Electronic field book – Advantages – Parts and accessories – Working principle – Observables – Errors - COGO functions – Field procedure and applications.GPS: Advantages – System components – Signal structure – Selective availability and antispoofing receiver components and antenna – Planning and data acquisition – Data processing – Errors inGPS – Field procedure and applications.

TOTAL 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- CO1 Introduce the rudiments of various surveying and its principles.
- CO2 Imparts knowledge in computation of levels of terrain and ground features
- CO3 Imparts concepts of Theodolite Surveying for complex surveying operations
- CO4 Understand the procedure for establishing horizontal and vertical control
- CO5 Imparts the knowledge on modern surveying instruments

TEXTBOOKS:

- 1. Dr. B. C. Punmia, Ashok K. Jain and Arun K Jain, Surveying Vol. I & II, Lakshmi Publications Pvt Ltd, New Delhi, Sixteenth Edition, 2016.
- 2. T. P. Kanetkarand S. V. Kulkarni, Surveying and Levelling, Parts 1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008.

REFERENCES:

- 1. R. Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.
- 2. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, Seventh Edition, Mc Graw Hill 2001.
- 3. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004.
- 4. S. K. Roy, Fundamentals of Surveying, Second Edition, Prentice Hall of India2010.
- 5. K. R. Arora, Surveying Vol I & II, Standard Book house, Twelfth Edition 2013.
- 6. C. Venkatramaiah, Textbook of Surveying, Universities Press, Second Edition, 2011.

CE3311

WATER AND WASTEWATER ANALYSIS LABORATORY

L T P C 0 0 3 1.5

OBJECTIVES:

 This subject includes the list of experiments to be conducted for characterization of water and municipal sewage. At the end of the course, the student is expected to be aware of the procedure for quantifying quality parameters for water and sewage.

LIST OF EXPERIMENTS: ANALYSIS OF WATER SAMPLE

- 1. Sampling and preservation methods for water and wastewater (Demonstration only)
- 2. Measurement of Electrical conductivity and turbidity
- 3. Determination of fluoride in water by spectrophotometric method /ISE
- 4. Determination of iron in water (Demo)
- 5. Determination of Sulphate in water
- 6. Determination of Optimum Coagulant Dosage by Jar test apparatus
- 7. Determination of available Chlorine in Bleaching powder and residual chlorine in water

ANALYSIS OF WASTEWATER SAMPLE

- 8. Estimation of suspended, volatile and fixed solids
- 9. Determination of Sludge Volume Index in waste water
- 10. Determination of Dissolved Oxygen
- 11. Estimation of B.O.D.

- 12. Estimation of C.O.D.
- 13. Determination of TKN and Ammonia Nitrogen in wastewater
- 14. Determination of total and faecal coliform (Demonstration only)

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

CO1 Calibrate and standardize the equipment

CO2 Collect proper sample for analysis

CO3To know the sample preservation methods

CO4To perform field oriented testing of water, wastewater

CO5To perform coliform analysis

REFERENCES:

- 1. APHA, "Standard Methods for the Examination of Water and Waste water", 22nd Ed. Washington, 2012.
- 2. "Laboratory Manual for the Examination of water, wastewater soil Rump", H.H. and Krist,H. Second Edition, VCH, Germany, 3rd Edition, 1999.
- 3. "Methods of air sampling & analysis", James P.Lodge Jr(Editor) 3rd Edition, Lewis publishers, Inc, USA, 1989.

CE3361

SURVEYING AND LEVELLING LABORATORY

L T P C 0 0 3 1.5

OBJECTIVES:

• At the end of the course the student will possess knowledge about survey field techniques

LIST OF EXPERIMENTS:

Chain Survey

- 1. Study of chains and its accessories, Aligning, Ranging, Chaining and Marking Perpendicular offset
- 2. Setting out works Foundation marking using tapes single Room and Double Room Compass Survey
- 3. Compass Traversing Measuring Bearings & arriving included angles

Levelling - Study of levels and levelling staff

- 4. Fly levelling using Dumpy level &Tilting level
- 5. Check levelling

Theodolite - Study of Theodolite

- 6. Measurements of horizontal angles by reiteration and repetition and vertical angles
- 7. Determination of elevation of an object using single plane method when base is Accessible/inaccessible.

Tacheometry - Tangential system - Stadia system

- 8. Determination of Tacheometric Constants
- 9. Heights and distances by stadia Tacheometry
- 10. Heights and distances by Tangential Tacheometry

Total Station - Study of Total Station, Measuring Horizontal and vertical angles

- 11. Traverse using Total station and Area of Traverse
- 12. Determination of distance and difference in elevation between two inaccessible points using Total station

TOTAL: 45 PERIODS

COURSE OUTCOMES

On completion of the course, the student is expected to

- CO1 Impart knowledge on the usage of basic surveying instruments like chain/tape, compass and levelling instruments
- **CO2** Able to use levelling instrument for surveying operations
- **CO3** Able to use theodolite for various surveying operations
- **CO4** Able to carry out necessary surveys for social infrastructures
- **CO5** Able to prepare planimetric maps

REFERENCES:

- 1. T. P. Kanetkarand S. V. Kulkarni, Surveying and Levelling, Parts 1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 24th Reprint, 2015.
- 2. Dr. B. C. Punmia, Ashok K. Jainand Arun K Jain, Surveying Vol. I & II, Lakshmi Publications Pvt Ltd, New Delhi, 17th Edition, 2016.
- 3. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, Seventh Edition, McGraw Hill 2001
- Bannisterand S. Raymond, Surveying, Seventh Edition, Longman 2004 a. David Clark, Plane and Geodetic Surveying for Engineers, Volume I, Constable and Company Ltd, London, CBS, 6th Edition, 2004.
- 5. David Clark and James Clendinning, Plane and Geodetic Surveying for Engineers, VolumeII, Constable and Company Ltd, London, CBS, 6th Edition, 2004.
- 6. S. K. Roy, Fundamentals of Surveying, Second Edition, Prentice 'Hall of India 2004
- 7. K. R. Arora, Surveying Vol. I & II, Standard Book house, Eleventh Edition, 2013.

CE3401

APPLIED HYDRAULICS ENGINEERING

LTPC 3 104

OBJECTIVES:

 To impart basic knowledge to the students about the open channel flows with analysis of uniform flow, gradually varied flow and rapidly varied flow and to expose them to basic principles of working of hydraulic machineries and to design Pelton wheel, Francis and Kaplan turbine, Centrifugal and Reciprocating pumps.

UNIT I UNIFORM FLOW

10+3

Definition and differences between pipe flow and open channel flow - Types of Flow - Properties of open channel - Fundamental equations - Sub-critical, Super-critical and Critical flow - Velocity distribution in open channel - Steady uniform flow: Chezy's equation, Manning equation - Best hydraulic sections for uniform flow - Computation in Uniform Flow - Specific energy and specific force.

UNIT II VARIED FLOWS

9+3

Dynamic equations of gradually varied - Water surface flow profile classifications: Hydraulic Slope, Hydraulic Curve - Profile determination by Numerical method: Direct step method and Standard step method – Change in Grades.

UNIT III RAPIDLY VARIED FLOWS

8+3

Application of the momentum equation for RVF - Hydraulic jumps - Types - Energy dissipation – Positive and Negative surges.

UNIT IV TURBINES

9+3

Turbines - Classification - Impulse turbine - Pelton wheel - Reaction turbines - Francis turbine - Kaplan turbine - Draft tube - Cavitation - Performance of turbine - Specific speed - Runaway speed - Minimum Speed to start the pump.

UNIT V PUMPS 9+3

Centrifugal pumps - Minimum speed to start the pump - NPSH - Cavitation's in pumps - Operating characteristics - Multistage pumps - Reciprocating pumps - Negative slip - Indicator diagrams and its variations - Air vessels - Savings in workdone.

TOTAL: (L: 45+ T: 15) 60 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

CO1 Describe the basics of open channel flow, its classification and analysis of uniform flow in steady state conditions with specific energy concept and its application

- CO2 Analyse steady gradually varied flow, water surface profiles and its length calculation using direct and standard step methods with change in water surface profiles due to change in grades.
- CO3 Derive the relationship among the sequent depths of steady rapidly varied flow and estimating energy loss in hydraulic jump with exposure to positive and negative surges.
- CO4 Design turbines and explain the working principle
- CO5 Differentiate pumps and explain the working principle with characteristic curves and design centrifugal and reciprocating pumps.

TEXT BOOKS:

- 1. Jain. A.K., Fluid Mechanics, Khanna Publishers, Delhi, 2010.
- 2. Chandramouli P N, Applied Hydraulic Engineering, Yes Dee Publisher, 2017

REFERENCES:

- 1. Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York, 2009.
- 2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 19th edition, 2013.
- 3. Mays L. W., Water Resources Engineering, John Wiley and Sons (WSE), New York, 2019
- 4. Subramanya K., Flow in open channels, Tata McGraw Hill, New Delhi, 2019.

CE3402

STRENGTH OF MATERIALS

LTPC 3003

OBJECTIVES:

To learn the fundamental concepts of Stress in simple and complex states and to know the
mechanism of load transfer in beams and the induced stresses due to simple bending and
unsymmetrical bending and to determine the deformation in determinate beams and to know
the basic concepts of analysis of indeterminate beams.

UNIT I SIMPLE AND COMPOUND STRESSES

9

Stresses in simple and compound bars – Thermal stresses – Elastic constants - Thin cylindrical and spherical shells – Biaxial state of stress – Principal stresses and principal planes – Mohr's circle of stresses - Torsion on circular shafts.

UNIT II BENDING OF BEAMS

9

Types of beams and transverse loadings— Shear force and bending moment for simply supported, cantilever and over-hanging beams - Theory of simple bending — Bending stress distribution — Shear stress distribution.

UNIT III DEFLECTION OF BEAMS

9

Double Integration method – Macaulay's method – Area moment method – Conjugate beam method - Strain energy method for determinate beams.

UNIT IV INDETERMINATE BEAMS

Propped Cantilever and Fixed Beams – Fixed end moments reactions, slope and deflection for standard cases of loading — Continuous beams – support reactions and moments – Theorem of three moments – Shear Force and Bending Moment Diagrams.

UNIT V ADVANCED TOPICS

9

Unsymmetrical bending of beams - shear centerapplied - Thick cylinders - Theories of failure - Principal stress, principal strain, shear stress, strain energy and distortion energy theories - application problems.

TOTAL: 45 PERIODS

OUTCOMES:

Students will be able to

CO1 Understand the concepts of stress and strain, principal stresses and principal planes.

- CO2 Determine Shear force and bending moment in beams and understand concept of theory of simple bending.
- CO3 Calculate the deflection of beams by different methods and selection of method for determining slope or deflection.
- CO4 Analyze propped cantilever, fixed beams and continuous beams for external loadings and support settlements.
- CO5 Determine the stresses due to Unsymmetrical bending of beams, locate the shear center, and study the various theories of failure

TEXTBOOKS

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 2018.
- 2. Rattan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2017.
- 3. Punmia B.C., Ashok Kumar Jain and Arun Kumar Jain, "Theory of Structures" (SMTS) Vol -II, Laxmi Publishing Pvt Ltd, New Delhi 2017.
- 4. Basavarajiah and Mahadevapa, Strength of Materials, University press, Hyderabad, 2016
- 5. Vazirani.V.N, Ratwani.M.M, Duggal .S.K Analysis of Structures: Analysis, Design and Detailing of Structures-Vol.1, Khanna Publishers, New Delhi 2014.

REFERENCES:

- 1. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 2017
- 2. William A .Nash, "Theory and Problems of Strength of Materials", Schaum's Outline Series, Tata McGraw Hill Publishing company, 2017.
- 3. Singh. D.K., "Strength of Materials", Ane Books Pvt. Ltd., New Delhi, 2021
- 4. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., NewDelhi, 2015
- 5. Irwing H.Shames, James M.Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, New Delhi, 2002
- 6. Beer. F.P. &Johnston.E.R. "Mechanics of Materials", Tata McGraw Hill, Sixth Edition, New Delhi 2010.
- 7. James M.Gere., Mechanics of Materials, Thomas Canada Ltd., Canada, 2006.
- 8. Egor. P.Popov, Engineering Mechanics of Solids, Prentice Hall of India, Second Edition New Delhi 2015.

CE3403

CONCRETE TECHNOLOGY

L T P C 3 0 0 3

OBJECTIVES:

- To study the properties of concrete making materials.
- To have better knowledge about the chemical and mineral admixtures in concrete.
- To familiarize with the IS method of mix design as per the latest code .
- To understand the fresh and hardened properties of concrete. To know the importance and applications of special concretes

UNIT I CONSTITUENT ATERIALS

9

Cement-Different types-Chemical composition and Properties -Tests on cement-IS Specifications- Aggregates-Classification-Mechanical properties and tests as per BIS Grading requirements-Water- Quality of water for use in concrete.

UNIT II CHEMICAL AND MINERAL ADMIXTURES

9

Accelerators-Retarders- Plasticisers- Super plasticizers- Water proofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline - Their effects on concrete properties

UNIT III PROPORTIONING OF CONCRETE MIX

9

Principles of Mix Proportioning-Properties of concrete related to Mix Design-Physical properties of materials required for Mix Design - Design Mix and Nominal Mix-BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE

a

Workability-Tests for workability of concrete-Slump Test and Compacting factor Test-Segregation and Bleeding-Determination of Compressive and Flexural strength as per BIS - Properties of Hardened concrete-Stress-strain curve for concrete-Determination of Modulus of elasticity.

UNIT V SPECIAL CONCRETES

9

TOTAL: 45 PERIODS

Light weight concretes - High strength concrete - Fibre reinforced concrete - Ferrocement - Ready mix concrete - SIFCON - Shotcrete - Polymer concrete - High performance concrete- self compacting concrete - Geopolymer Concrete.

OUTCOMES:

At the end of the course the student will be able to

- CO1 Understand the requirements of cement, aggregates and water for concrete
- CO2 Select suitable admixtures for enhancing the properties of concrete
- CO3 Design concrete mixes as per IS method of mix design
- CO4 Determine the properties of concrete at fresh and hardened state.
- CO5 Know the importance of special concretes for specific requirements.

TEXTBOOKS:

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003

REFERENCES:

- 1. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London, 1995
- 2. Gambhir.M.L.Concrete Technology, Fifth Edition, McGraw Hill Education, 2017.
- 3. Job Thomas., Concrete Technology, Cencage learning India Private Ltd, New Delhi, 2015.
- 4. IS10262-2019 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhii.

CE3404 SOIL MECHANICS

1 T P C 3 0 0 3

OBJECTIVES

To impart knowledge to classify the soil based on index properties and to assess their
engineering properties based on the classification. To familiarize the students about the
fundamental concepts of compaction, flow through soil, stress transformation, stress
distribution, consolidation and shear strength of soils. To impart knowledge of design of both
finite and infinite slopes.

UNIT I SOIL CLASSIFICATION AND COMPACTION

g

Formation of soil - Soil description – Particle – Size shape and colour – Composition of gravel, sand, silt, clay particles – Particle behaviour – Soil structure – Phase relationship – Index properties – Significance – BIS classification system – Unified classification system – Compaction of soils – Theory, Laboratory and field tests – Field Compaction methods – Factors influencing compaction of soils.

UNIT II EFFECTIVE STRESS AND PERMEABILITY

g

Soil - water - Static pressure in water - Effective stress concepts in soils - Capillary phenomena-Permeability interaction - Hydraulic conductivity - Darcy's law - Determination of Hydraulic Conductivity - Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer - Factors influencing permeability of soils - Seepage - Two dimensional flow - Laplace's equation - Introduction to flow nets - Simple problems. (Sheet pile and weir).

UNIT III STRESS DISTRIBUTION AND SETTLEMENT

9

Stress distribution in homogeneous and isotropic medium – Boussinesq theory – (Point land, Line land and udl) Use of New marks influence chart –Components of settlement — Immediate and consolidation settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. - \sqrt{t} and log t methods– e-log p relationship.

UNIT IV SHEAR STRENGTH

9

Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – Measurement of shear strength - Direct shear, Triaxial compression, UCC and Vane shear tests – Pore pressure parameters – Cyclic mobility – Liquefaction.

UNIT V SLOPE STABILITY

9

TOTAL: 45 PERIODS

Stability Analysis - Infinite slopes and finite slopes – Total stress analysis for saturated clay – Friction circle method – Use of stability number – Method of slices – Fellenious and Bishop's method - Slope protection measures.

OUTCOME:

On completion of the course, the student is expected to be able to

- CO1 Demonstrate an ability to identify various types of soils and its properties, formulate and solve engineering Problems
- CO2 Show the basic understanding of flow through soil medium and its impact of engineering solution
- CO3 Understand the basic concept of stress distribution in loaded soil medium and soil settlement due to consolidation
- CO4 Show the understanding of shear strength of soils and its impact of engineering solutions to the loaded soil medium and also will be aware of contemporary issues on shear strength of soils.
- CO5 Demonstrate an ability to design both finite and infinite slopes, component and process as per needs and specifications.

TEXTBOOKS:

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi, 2015
- 2. Gopal Ranjan and Rao, A.S.R., "Basic and Applied Soil Mechanics", New Age Ltd. International Publisher New Delhi (India) 2006.

REFERENCES:

- 1. McCarthy, D.F., "Essentials of Soil Mechanics and Foundations". Prentice-Hall, 2006.
- 2. Coduto, D.P., "Geotechnical Engineering Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2010.
- 3. Das, B.M., "Principles of Geotechnical Engineering". Brooks / Coles / Thompson Learning Singapore, 8th Edition, 2013.
- 4. Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 2005.

CE3405

HIGHWAY AND RAILWAY ENGINEERING

LTPC

3 0 0 3

OBJECTIVES:

• To give an overview about the highway and railway engineering with respect to, planning, design, construction and maintenance as per IRC standards, specifications and methods.

UNIT I HIGHWAY ENGINEERING

9

Classification of highways – Institutions for Highway planning, design and construction at different levels – factors influencing highway alignment –Typical cross sections of Urban and Rural roads – Engineering surveys for alignment- Conventional and Modern method

UNITII DESIGN OF HIGHWAY ELEMENTS

9

Cross sectional elements – Horizontal curves, super elevation, transition curves, widening of curves – Sight distances – Vertical curves, gradients– pavement components and their role - Design practice for flexible and rigid pavements (IRC methods only).

UNIT III HIGHWAY CONSTRUCTION AND MAINTENANCE

9

Highway construction materials, properties, testing methods – Construction practice of flexible and concrete pavement- Highway drainage – Evaluation and Maintenance of pavements.

UNIT IV RAILWAY PLANNING AND CONSTRUCTION

9

TOTAL: 45 PERIODS

Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, Selection of gauges - Track Stress, coning of wheels, creep in rails, defects in rails – Route alignment surveys, conventional and modern methods-Geometric design of railway, gradient, super elevation, widening of gauge on curves (Problems)-Railway drainage- Level Crossings-Signalling.

UNIT V RAILWAY TRACK CONSTRUCTION MAINTENANCE AND OPERATION 9

Points and Crossings - Design of Turnouts, Working Principle-Track Circuiting - Construction & Maintenance - Conventional, Modern methods and Materials, Lay outs of Railway Stations and Yards, Rolling Stock, Tractive Power, Track Resistance - Role of Indian Railways in National Development - Railways for Urban Transportation - LRT & MRTS Feasibility study, Planning and construction.

COURSE OUTCOMES

On completion of the course, the student is expected to

- CO1 Plan a highway according to the principles and standards adopted in various institutions in India.
- CO2 Design the geometric features of road network and components of pavement.

- CO3 Test the highway materials and construction practice methods and know its properties and able to perform pavement evaluation and management.
- CO4 Understand the methods of route alignment and design elements in railway planning and constructions.
- CO5 Understand the construction techniques and maintenance of track laying and railway stations

TEXTBOOKS:

- 1. Khanna.S. K., Justo.C.E.G and Veeraragavan A. "Highway Engineering", Nemchand Publishers, 2014.
- 2. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010
- 3. Kadiyali.L.R. "Principles and Practice of Highway Engineering", Khanna Technical Publications, 6th edition Delhi,2015.
- 4. C.Venkatramaiah., Transportation Engineering-Vol.2 Railways, Airports, Docks and Harbours, Bridges and Tunnels., Universities Press (India) Private Limited, Hyderabad, 2015.

REFERENCES:

- Indian Road Congress (IRC), Guidelines for the Design of Flexible Pavements, (Third Revision), IRC:37-2012
- 2. Indian Road Congress (IRC), Guidelines for the Design of Plain Jointed Rigid Pavements for Highways, (Third Revision), IRC:58-2012
- 3. Yang H. Huang, "Pavement Analysis and Design", Pearson Education Inc, Nineth Impression, South Asia, 2012
- Ian D. Walsh, "ICE manual of highway design and management", ICE Publishers, Ist Edition, USA,2011
- 5. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, "Principles of Highway Engineering and Traffic Analysis", Wiley India Pvt. Ltd., New Delhi, 2011
- 6. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 7. O'Flaherty.C.A "Highways, Butterworth Heinemann, Oxford,2006
- 8. IRC-37–2012, The Indian roads Congress, Guidelines for the Design of Flexible Pavements, NewDelhi
- 9. IRC 58-2012. The Indian Road Congress, Guideline for the Design of RigidPavements for Highways, NewDelhi
- 10. Saxena Subhash, C.and Satyapal Arora, A Course in Railway Engineering, Dhanapat Rai and Sons, Delhi, 1998.

GE3451

ENVIRONMENTAL SCIENCES AND SUSTAINABILITY

LT PC 2 0 0 2

UNIT I ENVIRONMENT AND BIODIVERSITY

6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

UNIT II ENVIRONMENTAL POLLUTION

6

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

UNIT III RENEWABLE SOURCES OF ENERGY

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT

6

6

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES

6

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cyclescarbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socioeconomical and technological change.

TOTAL: 30 PERIODS

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCES:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38. Edition 2010.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, Third Edition, 2015.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

CE3411

HYDRAULIC ENGINEERING LABORATORY

L T P C 0 0 3 1.5

OBJECTIVES:

• To provide hands on experience in calibration of flow meters, performance characteristics of pumps and turbines.

LIST OF EXPERIMENTS (Any 10 of the following)

A. FLOW MEASUREMENT

- 1. Calibration of Rotameter
- 2. Flow through Orifice meter/mouthpiece, Venturimeter and Notches
- 3. Bernoulli's Experiment

B. LOSSES IN PIPES

- 4. Determination of friction factor in pipes.
- 5. Determination of minor losses

C. PUMPS

- 6. Characteristics of Centrifugal pumps
- 7. Characteristics of Gear pump
- 8. Characteristics of Submersible pump
- 9. Characteristics of Reciprocating pump

D. TURBINES

- 10. Characteristics of Pelton wheel turbine
- 11. Characteristics of Francis turbine

E. DETERMINATION OF METACENTRIC HEIGHT

12. Determination of metacentric height of floating bodies.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- CO1 Apply Bernoulli equation for calibration of flow measuring devices.
- CO2 Measure friction factor in pipes and compare with Moody diagram
- CO3 Determine the performance characteristics of rotodynamic pumps.
- CO4 Determine the performance characteristics of positive displacement pumps.
- CO5 Determine the performance characteristics of turbines.

REFERENCES:

- 1. Hydraulic Laboratory Manual, Centre for Water Resources, Anna University, 2015.
- 2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics. Standard Book House. New Delhi, 2017
- 3. Subramanya K, Fluid Mechanics and Hydraulic Machines, Tata McGraw Hill Edu. Pvt. Ltd. 2011

CE3412

MATERIALS TESTING LABORATORY

LTPC 0 042

OBJECTIVES:

To develop skills to test various construction materials.

- I. TESTS ON METALS
- Tension test on steel rod.
- b. Torsion test on mild steel rod
- c. Deflection test on metal beam
- d. Double shear test on metal
- e. Impact test on metal specimen (Izod and Charpy)

- f. Hardness test on metals (Rockwell and Brinell Hardness Tests)
- g. Compression test on helical spring
- h. Deflection test on carriage spring

II. TESTS ON CEMENT

- a. Determination of fineness of cement
- b. Determination of consistency of cement
- c. Determination of specific gravity of cement
- d. Determination of initial and final setting time of cement

III. TESTS ON FINE AGGREGATE

- a. Determination of specific gravity and water absorption of fine aggregate
- b. Determination of grading of fine aggregate
- c. Determination of water absorption for fine aggregate

IV. TESTS ON COARSE AGGREGATE

- a. Determination of compacted and loose bulk density of coarse aggregate
- b. Determination of impact value of coarse aggregate
- c. Determination of elongation index of coarse aggregate
- d. Determination of flakiness index of coarse aggregate
- e. Determination of aggregate crushing value of coarse aggregate
- f. Determination of specific gravity and water absorption of coarse aggregate

V. TESTS ON BRICKS

- a. Determination of compressive strength of bricks
- b. Determination of water absorption of bricks
- c. Determination of efflorescence of bricks

VI. TESTS ON CONCRETE

- a. Determination of slump of concrete
- b. Determination of compressive strength of concrete
- c. Determination of flowability of self-compacting concrete (Demo only)

VII. TEST ON WOOD

a. Determination of Compression test on wood

TOTAL: 60 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- CO1 Determine the mechanical properties of steel.
- CO2 Determine the physical properties of cement
- CO3 Determine the physical properties of fine and coarse aggregate.
- CO4 Determine the workability and compressive strength of concrete.
- CO5 Determine the strength of brick and wood.

CE3413 SOIL MECHANICS LABORATORY L T P C 0 0 3 1.5

OBJECTIVES:

 To develop skills to test the soils for their index and engineering properties and to characterize the soil based on their properties.

EXERCISES:

1. DETERMINATION OF INDEX PROPERTIES

Specific gravity of soil solids

a. Grain size distribution – Sieve analysis

- b. Grain size distribution Hydrometer analysis
- c. Liquid limit and Plastic limit tests
- d. Shrinkage limit and Differential free swell tests

2. DETERMINATION OF INSITU DENSITY AND COMPACTION CHARACTERISTICS

- a. Field density Test (Sand replacement method)
- b. Determination of moisture density relationship using standard proctor compaction test.
- 3. DETERMINATION OF ENGINEERING PROPERTIES
- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- c. Direct shear test in cohesion less soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane shear test in cohesive soil
- f. Tri-axial compression test in cohesion less soil (Demonstration only)
- g. California Bearing Ratio Test

4. TEST ON GEOSYNTHETICS (Demonstration only)

Determination of tensile strength and interfacial friction angle.

a. Determination of apparent opening sizes and permeability.

TOTAL: 45 PERIODS

OUTCOME:

- On completion of the course, the student is expected to
- CO1 Conduct tests to determine the index properties of soils
- CO2 Determine the insitu density and compaction characteristics.
- CO3 Conduct tests to determine the compressibility, permeability and shear strength of soils.
- CO4 Understand the various tests on Geosynthetics.

REFERENCES:

- 1. Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 2010.
- 2. "Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) limited publishers, New Delhi, 2008.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1951. Digitized 2008.
- 4. IS Code of Practice (2720) Relevant Parts, as amended from time to time, Bureau of Indian Standards, New Delhi.
- 5. G.Venkatappa Rao and Goutham .K. Potable, "Geosynthetics Testing A laboratory Manual", Sai Master Geoenvironmental Services Pvt. Ltd., 1st Edition 2008.
- 6. Braja M.Das., "Soil Mechanics: Laboratory Manual", Oxford University Press, eighth edition, 2012.