
CS8251 Programming in C – UNIT I

csenotescorner.blogspot.com Page 1

UNIT I BASICS OF C PROGRAMMING

Introduction to programming paradigms - Structure of C program - C programming: Data Types

– Storage classes - Constants – Enumeration Constants - Keywords – Operators: Precedence and

Associativity - Expressions - Input/Output statements, Assignment statements – Decision making

statements - Switch statement - Looping statements – Pre-processor directives - Compilation

process

Introduction to programming paradigms

The programming language „C‟ was developed in the early 1970s by Dennis Ritchie at Bell

Laboratories. Although C was initially developed for writing system software, today it has

become such a popular language that a variety of software programs are written using this

language. The greatest advantage of using C for programming is that it can be easily used on

different types of computers. Many other programming languages such as C++ and Java are also

based on C which means that you will be able to learn them easily in the future. Today, C is

widely used with the UNIX operating system.

Programming Languages

The purpose of using computers is to solve problems, which are difficult to solve manually. So

the computer user must concentrate on the development of good algorithms for solving

problems. After preparing the algorithms, the programmer or user has to concentrate the

programming language which is understandable by the computer.

Computer programming languages are developed with the primary objectives of facilitating a

large number of people to use computer without the need to know the details of internal structure

of the computer.

Structure of C program

A C program contains one or more functions, where a function is defined as a group of

statements that perform a well-defined task. Figure 1.1 shows the structure of a C program. The

statements in a function are written in a logical sequence to perform a specific task. The main()

CS8251 Programming in C – UNIT I

Page 2

 csenotescorner.blogspot.com

function is the most important function and is a part of every C program. Rather, the execution of

a C program begins with this function.

From the structure given in Fig. 1.1, we can conclude that a C program can have any number of

functions depending on the tasks that have to be performed, and each function can have any

number of statements arranged according to specific meaningful sequence. Note that

programmers can choose any name for functions. It is not mandatory to write Function1,

Function2, etc., with an exception that every program must contain one function that has its

name as main().

Fig 1.1 Structure of C program

CS8251 Programming in C – UNIT I

Page 3

 csenotescorner.blogspot.com

 C Programming : Data Types

Data type determines the set of values that a data item can take and the operations that can

beperformed on the item. C language provides four basic data types. Table 1.2 lists the data

types, their size, range, and usage for a C programmer.

Basic Data Types in C

Basic data types and their variants

 Storage classes

Storage classes of a variable determine:

1. Storage area of the variable

2. Initial value of variable if not initialized

3. Lifetime of the variable

CS8251 Programming in C – UNIT I

Page 4

 csenotescorner.blogspot.com

4. Linkage of a function or variable

C language provides 4 storage class specifiers:

1. auto

2. register

3. static

4. extern

Syntax:

storageclassspecifier datatype variable name;

1. The auto storage class

 Automatic variables are also called as auto variables, which are defined inside a function.

 Auto variables are stored in main memory.

 Variables has automatic (local) lifetime.

 Auto variables are not implicitly initialized.

 Auto variables have no linkage.

 It is a default storage class if the variable is declared inside the block.

Example:

#include<stdio.h>

void main()

{

auto int a=10;

printf(“a=%d”,a);

{

int b=20;

printf(“b=%d”,b);

}

printf(“Here b is not visible\n”);

printf(“a=%d”,a);

}

CS8251 Programming in C – UNIT I

Page 5

 csenotescorner.blogspot.com

Output

a=10

b=20

Here b is not visible

a=10

2. The register storage class

 Register variables can be accessed faster than others

 Variables are stored in CPU.

 Variables have automatic (local) lifetime.

 Register variables are not implicitly initialized.

 Register variables have no linkage.

 Register variables are used for loop counter to improve the performance of a program.

Example:

include<stdio.h>

void main()

{

register int a=200;

printf(“a=%d”,a);

}

Output:

a=200

3. The static storage class

 Static variables have static (global) lifetime.

 Static variables are stored in the main memory.

 Static variables can be declared in local scope as well as in the global scope.

 Static variables are implicitly initialized.

 The value of static variables persists between the function calls. Last change made in the

value of static variable remains throughout the program execution.

CS8251 Programming in C – UNIT I

Page 6

 csenotescorner.blogspot.com

 Static variables will have internal linkage.

Ex:

include<stdio.h>

void fun(int);

void main()

{

int i=0;

for(i=0;i<5;i++)

{

fun(i);

}

}

void fun(int i)

{

static int a=10;

a++;

printf(“%d”,a);

}

Output:

11 12 13 14 15

4. The extern storage class

 Variables that are available to all functions are called external or global variables.

 External variables are stored in main memory.

 External variables have static (global) lifetime.

 External variables have external linkage.

 External variables are implicitly initialized to 0.

Example:

extern int v=10;

void call1()

CS8251 Programming in C – UNIT I

Page 7

 csenotescorner.blogspot.com

void main()

{

call1();

printf(“In main v=%d”,v);

}

void call1()

{

printf(“In call1() v=%d”,v);

}

Output:

In main v=10

In call1() v=10

Since v is a external variable it is visible and accessed in all functions.

The typedef storage class

typedef is used for creating an alias or synonym for a known type.

Syntax:

Eg:

typedef char* cp;

cp c; // is same as char * c;

cp and (char *) can be used interchangeably.

Summary of storage classes

S.No Storage

class

Storage Initial

value

Lifetime Linkage

typedef knowntype synonym name;

CS8251 Programming in C – UNIT I

Page 8

 csenotescorner.blogspot.com

1 auto Memory Garbage Automatic NO

2 register CPU register Garbage Automatic NO

3 static Memory 0 Static Internal

4 extern Memory 0 Static External

 Constants

A constant is an entity whose value can‟t be changed during the execution of a program.

Constants are classified as:

1. Literal constants

2. Qualified constants

3. Symbolic constants

 Literal constants

Literal constant or just literal denotes a fixed value, which may be an integer, floating point

number, character or a string.

Literal constants are of the following types.

1. Integer Literal constant

2. Floating point Literal constant

3. Character Literal constant

4. String Literal constant

Integer Literal constant

Integer Literal constants are integer values like -1, 2, 8 etc. The rules for writing integer literal

constant are:

 An Integer Literal constant must have at least one digit

 It should not have any decimal point

 It can be either positive or negative.

 No special characters and blank spaces are allowed.

 A number without a sign is assumed as positive.

 Octal constants start with 0.

CS8251 Programming in C – UNIT I

Page 9

 csenotescorner.blogspot.com

 Hexadecimal constant start with 0x or 0X

Floating point Literal constant

Floating point Literal constants are values like -23.1, 12.8, 4e8 etc.. It can be written in a

fractional form or in an exponential form.

The rules for writing Floating point Literal constants in a fractional form:

 A fractional floating point Literal constant must have at least one digit.

 It should have a decimal point.

 It can be either positive or negative.

 No special characters and blank spaces are allowed.

The rules for writing Floating point Literal constants in an exponential form:

 A Floating point Literal constants in an exponential form has two parts: the mantissa

part and the exponent part. Both are separated by e or E.

 The mantissa part can be either positive or negative. The default sign is positive.

 The mantissa part should have at least one digit.

 The mantissa part can have a decimal point.

 The exponent part should have at least one digit

 The exponent part cannot have a decimal point.

 No special characters and blank spaces are allowed.

Character Literal constant

A Character Literal constant can have one or at most two characters enclosed within single

quotes. E.g, „A‟ , „a‟ , „ n „.

It is classified into:

 Printable character literal constant

 Non-Printable character literal constant.

Printable character literal constant

All characters except quotation mark, backslash and new line characters enclosed within single

quotes form a Printable character literal constant. Ex: „A‟ , „#‟

Non-Printable character literal constant.

CS8251 Programming in C – UNIT I

Page 10

 csenotescorner.blogspot.com

Non-Printable character literal constants are represented with the help of escape sequences. An

escape sequence consists of a backward slash (i.e. \) followed by a character and both enclosed

within single quotes.

String Literal constant

A String Literal constant consist of a sequence of characters enclosed within double quotes. Each

string literal constant is implicitly terminated by a null character.

E.g. “ABC”

 Qualified constants:

Qualified constants are created by using const qualifier.

E.g. const char a = „A‟

The usage of const qualifier places a lock on the variable after placing the value in it. So we can‟t

change the value of the variable a

 Symbolic constants

Symbolic constants are created with the help of the define preprocessor directive. For ex #define

PI= 3.14 defines PI as a symbolic constant with the value 3.14. Each symbolic constant is

replaced by its actual value during the pre-processing stage.

 Keywords

Keyword is a reserved word that has a particular meaning in the programming language. The

meaning of a keyword is predefined. It can‟t be used as an identifier.

CS8251 Programming in C – UNIT I

Page 11

 csenotescorner.blogspot.com

Operators: Precedence and Associativity

Operands

An operand specifies an entity on which an operation is to be performed. It can be a

variable name, a constant, a function call.

E.g: a=2+3 Here a, 2 & 3 are operands

Operator

An operator is a symbol that is used to perform specific mathematical or logical manipulations.

For e.g, a=2+3 Here = & + are the operators

Precedence of operators

 The precedence rule is used to determine the order of application of operators in

evaluating sub expressions.

 Each operator in C has a precedence associated with it.

 The operator with the highest precedence is operated first.

Associativity of operators

The associativity rule is applied when two or more operators are having same precedence in the

sub expression.

An operator can be left-to-right associative or right-to-left associative.

Category Operators Associativity Precedence

Unary +, -, !, ~, ++, - -, &, sizeof Right to left Level-1

Multiplicative *, /, % Left to right Level-2

CS8251 Programming in C – UNIT I

Page 12

 csenotescorner.blogspot.com

Additive +, - Left to right Level-3

Shift << , >> Left to right Level-4

Relational <, <=, >, >= Left to right Level-5

Rules for evaluation of expression

• First parenthesized sub expressions are evaluated first.

• If parentheses are nested, the evaluation begins with the innermost sub expression.

• The precedence rule is applied to determine the order of application of operators in evaluating

sub expressions.

• The associability rule is applied when two or more operators are having same precedence in the

sub expression.

Expressions

An expression is a sequence of operators and operands that specifies computation of a value.

For e.g, a=2+3 is an expression with three operands a,2,3 and 2 operators = & +

Simple Expressions & Compound Expressions

CS8251 Programming in C – UNIT I

Page 13

 csenotescorner.blogspot.com

An expression that has only one operator is known as a simple expression.

E.g: a+2

An expression that involves more than one operator is called a compound expression.

E.g: b=2+3*5

Classification of Operators

The operators in C are classified on the basis of

1) The number of operands on which an operator operates

2) The role of an operator

Classification based on Number of Operands

Types:

1. Unary Operator: A unary operator operates on only one operand. Some of the unary

operators are,

Operator Meaning

- Minus

++ Increment

-- Decrement

& Address- of operator

sizeof sizeof operator

2. Binary Operator: A binary operator operates on two operands. Some of the binary

operators are,

Operator Meaning

+ Addition

- Subtraction

* Multiplication

CS8251 Programming in C – UNIT I

Page 14

 csenotescorner.blogspot.com

/ Division

% Modular

Division

&& Logical AND

3. Ternary Operator

A ternary operator operates on 3 operands. Conditional operator (i.e. ?:) is the ternary operator.

Classification based on role of operands

Based upon their role, operators are classified as,

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise Operators

5. Assignment Operators

6. Miscellaneous Operators

1. Arithmetic Operators

They are used to perform arithmetic operations like addition, subtraction, multiplication, division

etc.

A=10 & B=20

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give

200

/ The division operator is used to find the quotient. B / A will give 2

% Modulus operator is used to find the remainder B%A will give 0

+,- Unary plus & minus is used to indicate the algebraic

sign of a value.

+A, -A

Increment operator

CS8251 Programming in C – UNIT I

csenotescorner.blogspot.com Page 15

The operator ++ adds one to its operand.

 ++a or a++ is equivalent to a=a+1

 Prefix increment (++a) operator will increment the variable BEFORE the

expression is evaluated.

 Postfix increment operator (a++) will increment AFTER the expression

evaluation.

 E.g.

1. c=++a. Assume a=2 so c=3 because the value of a is incremented and then it

is assigned to c.

2. d=b++ Assume b=2 so d=2 because the value of b is assigned to d before it is

incremented.

Decrement operator

The operator – subtracts one from its operand.

 --a or a-- is equivalent to a=a+1

 Prefix decrement (--a) operator will decrement the variable BEFORE the

expression is evaluated.

 Postfix decrement operator (a--) will decrement AFTER the expression

evaluation.

 E.g.

1. c=--a. Assume a=2 so c=1 because the value of a is decremented and then

it is assigned to c.

2. d=b-- Assume b=2 so d=2 because the value of b is assigned to d before it

is decremented.

2. Relational Operators

 Relational operators are used to compare two operands. There are 6 relational

operators in C, they are

Operator Meaning of Operator Example

CS8251 Programming in C – UNIT I

csenotescorner.blogspot.com Page 16

== Equal to 5==3 returns false (0)

> Greater than 5>3 returns true (1)

< Less than 5<3 returns false (0)

!= Not equal to 5!=3 returns true(1)

>= Greater than or equal to 5>=3 returns true (1)

<= Less than or equal to 5<=3 return false (0)

 If the relation is true, it returns value 1 and if the relation is false, it returns value

0.

 An expression that involves a relational operator is called as a condition. For e.g

a<b is a condition.

3. Logical Operators

 Logical operators are used to logically relate the sub-expressions. There are 3

logical operators in C, they are

 If the relation is true, it returns value 1 and if the relation is false, it returns value

0.

Operator Meaning of

Operator

Example
Description

&& Logial AND If c=5 and d=2 then,((c==5) && (d>5))

returns false.

It returns true when

both conditions are

true

|| Logical OR If c=5 and d=2 then, ((c==5) || (d>5))

returns true.

It returns true when

at-least one of the

condition is true

! Logical NOT If c=5 then, !(c==5) returns false. It reverses the state

of the operand

Truth tables of logical operations

condition 1 condition 2 NOT X X AND Y X OR Y

CS8251 Programming in C – UNIT I

Page 17

 csenotescorner.blogspot.com

(e.g., X) (e.g., Y) (~ X) (X && Y) (X || Y)

False false true false false

False true true false true

true false false false true

true true false true true

4. Bitwise Operators

C language provides 6 operators for bit manipulation. Bitwise operator operates on the

individual bits of the operands. They are used for bit manipulation.

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

Truth tables

p Q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

E.g.

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bit Operation of 12 and 25

CS8251 Programming in C – UNIT I

Page 18

 csenotescorner.blogspot.com

00001100

& 00011001

00001000 = 8 (In decimal)

Bitwise OR Operation of 12 and 25

00001100

| 00011001

00011101 = 29 (In decimal)

3 << 2 (Shift Left)

0011

1100=12

3 >> 1 (Shift Right)

0011

0001=1

5. Assignment Operators

To assign a value to the variable assignment operator is used.

Operators Example Explanation

Simple assignment operator = sum=10 10 is assigned to variable sum

Compound assignment operators

Or

Shorthand assignment operators

+= sum+=10 This is same as sum=sum+10

-= sum-=10 sum = sum-10

= sum=10 sum = sum*10

/+ sum/=10 sum = sum/10

%= sum%=10 sum = sum%10

&= sum&=10 sum = sum&10

^= sum^=10 sum = sum^10

CS8251 Programming in C – UNIT I

Page 19

 csenotescorner.blogspot.com

E.g.

var=5 //5 is assigned to var

a=c; //value of c is assigned to a

6. Miscellaneous Operators

Other operators available in C are

a. Function Call Operator(i.e. ())

b. Array subscript Operator(i.e [])

c. Member Select Operator

i. Direct member access operator (i.e. . dot operator)

ii. Indirect member access operator (i.e. -> arrow operator)

d. Conditional operator (?:)

e. Comma operator (,)

f. sizeof operator

g. Address-of operator (&)

a) Comma operator

 It is used to join multiple expressions together.

 E.g.

int i , j;

i=(j=10,j+20);

In the above declaration, right hand side consists of two expressions separated by

comma. The first expression is j=10 and second is j+20. These expressions are evaluated from

left to right. ie first the value 10 is assigned to j and then expression j+20 is evaluated so the final

value of i will be 30.

b) sizeof Operator

 The sizeof operator returns the size of its operand in bytes.

 Example : size of (char) will give us 1.

 sizeof(a), where a is integer, will return 2.

c) Conditional Operator

CS8251 Programming in C – UNIT I

Page 20

 csenotescorner.blogspot.com

 It is the only ternary operator available in C.

 Conditional operator takes three operands and consists of two symbols ? and : .

 Conditional operators are used for decision making in C.

Syntax :

(Condition? true_value: false_value);

For example:

c=(c>0)?10:-10;

If c is greater than 0, value of c will be 10 but, if c is less than 0, value of c will be -10.

d) Address-of Operator

It is used to find the address of a data object.

Syntax

E.g.

&operand

&a will give address of a.

Input/Output statements

The I/O functions are classified into two types:

 Formatted Functions

 Unformatted functions

CS8251 Programming in C – UNIT I

Page 21

 csenotescorner.blogspot.com

putchar(variable name);

 Unformatted Functions:

They are used when I/P & O/P is not required in a specific format.

C has 3 types I/O functions.

a) Character I/O

b) String I/O

c) File I/O

a) Character I/O:

1. getchar() This function reads a single character data from the standard input.

(E.g. Keyboard)

Syntax :

eg:

char c;

c=getchar();

2. putchar() This function prints one character on the screen at a time.

Syntax :

Unformatted Functions Formatted Functions

Input and Output functions

variable_name=getchar();

printf()

scanf()

getch()

getche()

getchar()

gets()

putch()

putchar()

puts()

CS8251 Programming in C – UNIT I

Page 22

 csenotescorner.blogspot.com

eg

char c=„C‟;

putchar(c);

Example Program

#include <stdio.h>

main()

{

int i;

char ch;

ch = getchar();

putchar(ch);

}

Output:

A

A

3. getch() and getche() : getch() accepts only a single character from keyboard. The character

entered through getch() is not displayed in the screen (monitor).

Syntax

Like getch(), getche() also accepts only single character, but getche() displays the entered

character in the screen.

Syntax

4 putch(): putch displays any alphanumeric characters to the standard output device. It displays

only one character at a time.

Syntax

b) String I/O

variable_name = getch();

variable_name = getche();

putch(variable_name);

CS8251 Programming in C – UNIT I

Page 23

 csenotescorner.blogspot.com

cgets(char *st);

1. gets() – This function is used for accepting any string through stdin (keyboard) until enter key

is pressed.

Syntax

2. puts() – This function prints the string or character array.

Syntax

3. cgets()- This function reads string from the console.

Syntax

It requires character pointer as an argument.

4. cputs()- This function displays string on the console.

Syntax

Example Program

void main()

{

char ch[30];

clrscr();

printf(“Enter the String : “);

gets(ch);

puts(“\n Entered String : %s”,ch);

puts(ch);

}

Output:

Enter the String : WELCOME

gets(variable_name);

puts(variable_name);

cputs(char *st);

CS8251 Programming in C – UNIT I

Page 24

 csenotescorner.blogspot.com

Entered String : WELCOME

 Formatted Input & Output Functions

When I/P & O/P is required in a specified format then the standard library functions

scanf() & printf() are used.

O/P function printf()

The printf() function is used to print data of different data types on the console in a

specified format.

General Form

Control String may contain

1. Ordinary characters

2. Conversion Specifier Field (or) Format Specifiers

They denoted by %, contains conversion codes like %c, %d etc.

and the optional modifiers width, flag, precision, size.

Conversion Codes

Data type Conversion Symbol

char %c

int %d

float %f

Unsigned octal %o

Pointer %p

Width Modifier: It specifies the total number of characters used to display the value.

Precision: It specifies the number of characters used after the decimal point.

E.g: printf(“ Number=%7.2\n”,5.4321);

Width=7

Precesion=2

Output: Number = 5.43(3 spaces added in front of 5)

Flag: It is used to specify one or more print modifications.

printf(“Control String”, var1, var2, …);

CS8251 Programming in C – UNIT I

Page 25

 csenotescorner.blogspot.com

E.g:

printf(“Number=%07.2\n”,5.4321)

Output: Number=0005.43

Size: Size modifiers used in printf are,

Size modifier Converts To

l Long int

h Short int

L Long double

%ld means long int variable

%hd means short int variable

3. Control Codes

They are also known as Escape Sequences.

E.g:

Control Code Meaning

\n New line

\t Horizontal Tab

\b Back space

Input Function scanf()

It is used to get data in a specified format. It can accept data of different data types.

Syntax

Flag Meaning

- Left justify the display

+ Display +Ve or –Ve sign of value

Space Display space if there is no sign

0 Pad with leading 0s

scanf(“Control String”, var1address, var2address, …);

CS8251 Programming in C – UNIT I

Page 26

 csenotescorner.blogspot.com

Format String or Control String is enclosed in quotation marks. It may contain

1. White Space

2. Ordinary characters

3. Conversion Specifier Field

It is denoted by % followed by conversion code and other optional modifiers E.g: width,

size.

Format Specifiers for scanf()

Data type Conversion Symbol

char %c

int %d

float %f

string %s

E.g Program:

#include <stdio.h>

void main()

{

int num1, num2, sum;

printf("Enter two integers: ");

scanf("%d %d",&num1,&num2);

sum=num1+num2;

printf("Sum: %d",sum);

}

Output

Enter two integers: 12 11

Sum: 23

 Decision making statements

Decision making statements in a programming language help the programmer to transfer the

control from one part to other part of the program.

CS8251 Programming in C – UNIT I

Page 27

 csenotescorner.blogspot.com

Test

expres
F

Statement

Flow of control: The order in which the program statements are executed is known as flow of

control. By default, statements in a c program are executed in a sequential order

Branching statements

Branching statements are used to transfer program control from one point to another.

2 types

a) Conditional Branching:- Program control is transferred from one point to another based

on the result of some condition

Eg) if, if-else, switch

b) Unconditional Branching:- Pprogram control is transferred from one point to another

without checking any condition

Eg) goto, break, continue, return

a) Conditional Branching : Selection statements

Statements available in c are

 The if statement

 The if-else statement

 The switch case statement

(i) The if statement

C uses the keyword if to execute a statement or set of statements when the logical condition is

true.

Syntax:

T

 If test expression evaluates to true, the corresponding statement is executed.

 If the test expression evaluates to false, control goes to next executable statement.

if (test expression)

Statement;

CS8251 Programming in C – UNIT I

Page 28

T F

csenotescorner.blogspot.com

 The statement can be single statement or a block of statements. Block of

statements must be enclosed in curly braces.

Example:

#include <stdio.h>

void main()

{

int n;

clrscr();

printf(“enter the number:”);

scanf(“%d”,&n);

if(n>0)

printf(“the number is positive”);

getch();

}

Output:

enter the number:50

the number is positive

(ii) The if-else statement

Syntax:

 If the test expression is true, statementT will be executed.

 If the test expression is false, statementF will be executed.

 StatementT and StatementF can be a single or block of statements.

Example:1 Program to check whether a given number is even or odd.

Test

expr

Stateme Stateme

if (test expression)

Statement T;

else

Statement F;

CS8251 Programming in C – UNIT I

Page 29

 csenotescorner.blogspot.com

#include <stdio.h>

void main(){

int n,r;

clrscr();

printf(“Enter a number:”);

scanf(“%d”,&n);

r=n%2;

if(r==0)

printf(“The number is even”);

else

printf(“The number is odd”);

getch();

}

Output:

Enter a number:15

The number is odd

Example:2 To check whether the two given numbers are equal

void main()

{

int a,b;

clrscr();

printf(“Enter a and b:”);

scanf(“%d%d”,&a,&b);

if(a==b)

printf(“a and b are equal”);

else

printf(“a and b are not equal”);

getch();

}

Output:

CS8251 Programming in C – UNIT I

Page 30

This nesting can be done up to an

csenotescorner.blogspot.com

Enter a and b: 2 4

a and b are not equal

(iii) Nested if statement

If the body the if statement contains another if statement, then it is known as nested if

statement

Syntax:

Syntax:

This is known as if ladder

(Or)

y level.

iv) Nested if-else statement

Here, the if body or else body of an if-else statement contains another if statement or if else

statement

Syntax:

if (condition)

{

statement 1;

statement 2;

}

else

if (test expression1)

{

…..

if (test expression2)

{

….

if (test expression3)

{

….

if (test expression n)

}}}

if (test expression)

{

statement;

if (test expression)

….

statement;

}

if (test expression)

if (test expression)

CS8251 Programming in C – UNIT I

Page 31

 csenotescorner.blogspot.com

{

statement 3;

if (condition)

statementnest;

statement 4;

}

Example:

Program for finding greatest of 3 numbers

#include<stdio.h>

void main()

{

int a,b,c;

printf(“Enter three numbers\n”);

scanf(“%d%d%d”,&a,&b,&c);

if(a>b)

{

}

else

if(a>c)

{

printf(“a is greatest”);

}

{ if(b>c)

{

printf(“b is greatest”);

}

else

{

printf(“C is greatest”);

}

}

CS8251 Programming in C – UNIT I

csenotescorner.blogspot.com

}

Output

Enter three numbers 2 4 6

C is greatest

v) Switch statement

 It is a multi way branch statement.

 It provides an easy & organized way to select among multiple operations depending upon

some condition.

Execution

1. Switch expression is evaluated.

2. The result is compared with all the cases.

3. If one of the cases is matched, then all the statements after that matched case gets executed.

4. If no match occurs, then all the statements after the default statement get executed.

 Switch ,case, break and default are keywords

 Break statement is used to exit from the current case structure

Flowchart

switch(expression)

case:

constant 0
statement break

case :

constant 1

default

Page 32

break statement

break statement

CS8251 Programming in C – UNIT I

Page 33

e1

n()

csenotescorner.blogspot.com

Syntax

printf(“Enter a character\n”);

scanf(“%c”,&ch);

switch(ch)

{

case „A‟:

printf(“you entered an A\n”);

break;

case „B‟:

printf(“you entered a B\n”);

break;

default:

printf(“Illegal entry”);

break;

}

getch();

End of switch

Exampl

void mai

{

char ch;
}

program statement;

program statement;

default:

program statement;

program statement;

……
break;

…

case value n:

program statement;
Program statement;

……

break;

case value 2:

program statement;

program statement;

……

break;

switch(expression)

{

case value 1:

CS8251 Programming in C – UNIT I

Page 34

 csenotescorner.blogspot.com

}

Output

Enter a character

A

You entered an A

Example2

void main()

{

int n;

printf(“Enter a number\n”);

scanf(“%d”,&n);

switch(n%2)

{

case 0:printf(“EVEN\n”);

break;

case 1:printf(“ODD\n”);

break;

}

getch();

}

Output:

Enter a number

5

ODD

b) Unconditional branching statements

i)The goto Statement

This statement does not require any condition. Here program control is transferred to

another part of the program without testing any condition.

CS8251 Programming in C – UNIT I

Page 35

break;

csenotescorner.blogspot.com

Syntax:

 label is the position where the control is to be transferred.

Example:

void main()

{

printf(“www.”);

goto x;

y:

printf(“mail”);

goto z;

x:

printf(“yahoo”);

goto y;

z:

printf(“.com”);

getch();

}

Output : www.yahoomail.com

b) break statement

 A break statement can appear only inside a body of , a switch or a loop

 A break statement terminates the execution of the nearest enclosing loop or

switch.

Syntax

Example:1

#include<stdio.h>

void main()

{

goto label;

break;

http://www/
http://www.yahoomail.com/

CS8251 Programming in C – UNIT I

Page 36

 csenotescorner.blogspot.com

int c=1;

while(c<=5)

{

if (c==3)

break;

printf(“\t %d”,c);

c++;

}

}

Output : 1 2

Example :2

#include<stdio.h>

void main()

{

int i;

for(i=0;i<=10;i++)

{

if (i==5)

break;

printf(“ %d”,i);

}

}

Output :1 2 3 4

iii) continue statement

 A continue statement can appear only inside a loop.

 A continue statement terminates the current iteration of the nearest enclosing

loop.

Syntax:

continue;

CS8251 Programming in C – UNIT I

Page 37

 csenotescorner.blogspot.com

Example :1

#include<stdio.h>

void main()

{

int c=1;

while(c<=5)

{

if (c==3)

continue;

printf(“\t %d”,c);

c++;

}

}

Output : 1 2 4 5

Example :2

#include<stdio.h>

main()

{

int i;

for(i=0;i<=10;i++)

{

if (i==5)

continue;

printf(“ %d”,i);

}

}

Output :1 2 3 4 6 7 8 9 10

iv) return statement:

A return statement terminates the execution of a function and returns the control to the

calling function.

CS8251 Programming in C – UNIT I

Page 38

escorner.blogspot.com csenot {

Statements;

}

Syntax:

(or)

 Looping statements

Iteration is a process of repeating the same set of statements again and again until the condition

holds true.

Iteration or Looping statements in C are:

1. for

2. while

3. do while

Loops are classified as

 Counter controlled loops

 Sentinel controlled loops

Counter controlled loops

 The number of iterations is known in advance. They use a control variable called

loop counter.

 Also called as definite repetitions loop.

 E.g: for

Sentinel controlled loops

 The number of iterations is not known in advance. The execution or termination of the

loop depends upon a special value called sentinel value.

 Also called as indefinite repetitions loop.

 E.g: while

1. for loop

It is the most popular looping statement.

Syntax:

for(initialization;condition2;incrementing/updating)

return;

return expression;

CS8251 Programming in C – UNIT I

Page 39

 csenotescorner.blogspot.com

There are three sections in for loop.

a. Initialization section – gives initial value to the loop counter.

b. Condition section – tests the value of loop counter to decide

whether to execute the

loop or not.

c. Manipulation section - manipulates the value of loop counter.

Execution of for loop

1. Initialization section is executed only once.

2. Condition is evaluated

a. If it is true, loop body is executed.

b. If it is false, loop is terminated

3. After the execution of loop, the manipulation expression is evaluated.

4. Steps 2 & 3 are repeated until step 2 condition becomes false.

Ex 1: Write a program to print 10 numbers using for loop

void main()

{

int i;

clrscr();

for(i=1;i<=10;i++)

{

printf(“%d”,i);

}

getch();

}

Output:

1 2 3 4 5 6 7 8 9 10

CS8251 Programming in C – UNIT I

Page 40

 csenotescorner.blogspot.com

Ex2: To find the sum of n natural number. 1+2+3…+n

void main()

{

int n, i, sum=0;

clrscr();

printf(“Enter the value for n”);

scanf(“%d”,&n);

for(i=1;i<=n;i++)

{

sum=sum+i;

}

printf(“Sum=%d”, sum);

getch();

}

Output:

Enter the value for n

4

sum=10

2. while statement

 They are also known as Entry controlled loops because here the condition is checked

before the execution of loop body.

Syntax:

Execution of while loop

a. Condition in while is evaluated

i. If it is true, body of the loop is executed.

while (expression)

{

statements;

}

CS8251 Programming in C – UNIT I

Page 41

 csenotescorner.blogspot.com

ii. If it is false, loop is terminated

b. After executing the while body, program control returns back to while header.

c. Steps a & b are repeated until condition evaluates to false.

d. Always remember to initialize the loop counter before while and manipulate loop counter

inside the body of while.

Ex 1: Write a program to print 10 numbers using while loop

void main()

{

int i=1;

clrscr();

while (num<=10)

{

printf (“%d”,i);

i=i+1;

}

getch();

}

Output:

1 2 3 4 5 6 7 8 9 10

Ex2: To find the sum of n natural number. 1+2+3…+n

void main()

{

int n, i=1, sum=0;

clrscr();

printf(“Enter the value for n”);

scanf(“%d”,&n);

while(i<=n)

{

sum=sum+i;

CS8251 Programming in C – UNIT I

Page 42

 csenotescorner.blogspot.com

i=i+1;

}

printf(“Sum=%d”, sum);

getch();

}

Output:

Enter the value for n

4

Sum=10

3. do while statement

 They are also known as Exit controlled loops because here the condition is checked after

the execution of loop body.

Syntax:

Execution of do while loop

a. Body of do-while is executed.

b. After execution of do-while body, do-while condition is evaluated

i. If it is true, loop body is executed again and step b is repeated.

ii. If it is false, loop is terminated

 The body of do-while is executed once, even when the condition is initially false.

Ex1: Write a program to print 10 numbers using do while loop

void main()

do

{

statements;

}

while(expression);

CS8251 Programming in C – UNIT I

Page 43

 csenotescorner.blogspot.com

{

int i=1;

clrscr();

do

{

printf (“%d”,i);

i=i+1;

} while (num<=10);

getch();

}

Output:

1 2 3 4 5 6 7 8 9 10

Ex2: To find the sum of n natural number. 1+2+3…+n

void main()

{

int n, i=1, sum=0;

clrscr();

printf(“Enter the value for n”);

scanf(“%d”,&n);

do

{

sum=sum+i;

i=i+1;

} while(i<=n);

printf(“Sum=%d”, sum);

getch();

}

Output:

Enter the value for n

4

Page 1

CS8251 Programming in C UNIT II

Sum=10

Three main ingredients of counter-controlled looping

1. Initialization of loop counter

2. Condition to decide whether to execute loop or not.

3. Expression that manipulates the value of loop.

Nested loops

 If the body of a loop contains another iteration statement, then we say that the loops

are nested.

 Loops within a loop are known as nested loop.

Syntax

UNIT IIARRAYS AND STRINGS

Introduction to Arrays: Declaration, Initialization – One dimensional array –

Example Program: Computing Mean, Median and Mode - Two dimensional

arrays – Example Program: Matrix Operations (Addition, Scaling,

Determinant and Transpose) - String operations: length, compare,

concatenate, copy – Selection sort, linear and binary search

Introduction to Arrays

while(condition)

{

while(condition)

{

Statements;

}

Statements;

}

Page 2

CS8251 Programming in C UNIT II

1 B. Shanmuga Sundari csenotescorner.blogspot.com

An Array is a collection of similar data elements. These data elements have the same data

type. The elements of the array are stored in consecutive memory locations and are referenced by

an index (also known as subscript). Subscript indicates an ordinal number of the elements

counted from the beginning of the array.

Definition:

An array is a data structure that is used to store data of the same type. The position of an element

is specified with an integer value known as index or subscript.

E.g.

a(integer array)

b(float array)

[0] [1] [2] [3]

Characteristics:

1 3 5 2

1.2 3.5 5.4 2.1

Page 3

CS8251 Programming in C UNIT II

2 B. Shanmuga Sundari csenotescorner.blogspot.com

i) All the elements of an array share a common name called as array name

ii) The individual elements of an array are referred based on their position.

iii) The array index in c starts with 0.

In general arrays are classified as:

1. Single dimensional array

2. Multi-dimensional array

 Declarations of Arrays

Array has to be declared before using it in C Program. Declaring Array means specifying three

things.

Data_type Data Type of Each Element of the array

Array_name Valid variable name

Size Dimensions of the Array Arrays

are declared using the following syntax:

type name[size]

Here the type can be either int, float, double, char or any oher valid data type. The number within

the brackets indicates the size of the array, i.e., the maximum number of elements that can be

stored in the array.

ex: int marks[10]

http://www.c4learn.com/c-programming/c-array-types/

Page 4

CS8251 Programming in C UNIT II

3 B. Shanmuga Sundari csenotescorner.blogspot.com

datatype arrayname [array size];

Initialization of arrays

Elements of the array can also be initialized at the time of declaration as in the case of

every other variable. When an array is initialized, we need to provide a value for every element

in the array. Arrays are initialized by writing,

type array_name[size] = { list of values};

The values are written with curly brackets and every value is separated by a comma. It is a

compiler error to specify more number of values than the number of elements in the array.

ex: int marks[5] = {90, 92, 78, 82, 58};

 One dimensional Array

 It is also known as one-dimensional arrays or linear array or vectors

 It consists of fixed number of elements of same type

 Elements can be accessed by using a single subscript. eg) a[2]=9;

Eg)

1 3 5 2

a

[0] [1] [2] [3] subscripts or indices

Declaration of Single Dimensional Array

Syntax:

E.g. int a[4]; // a is an array of 4 integers char

b[6]; //b is an array of 6 characters

Page 5

CS8251 Programming in C UNIT II

4 B. Shanmuga Sundari csenotescorner.blogspot.com

Initialization of single dimensional array

Elements of an array can also be initialized.

Rules

a) Elements of an array can be initialized by using an initialization list. An

initialization list is a comma separated list of initializers enclosed within braces.

Eg) int a[3]={1,3,4};

b) If the number of initializers in the list is less than array size, the leading array

locations gets initialized with the given values. The rest of the array locations gets

initialized to

0 - for int array

0.0 - for float array

\0 - for character array

Eg) int a[2]={1};

a

char b[5]={‘A’.’r’,’r’};

b

Usage of single dimensional array

The elements of single dimensional array can be accessed by using a subscript

operator([]) and a subscript.

Reading storing and accessing elements:

An iteration statement (i.e loop) is used for storing and reading elements.

1 0

‘A’ ‘r’ ‘r’ ‘\0’ ‘\0’

Page 6

CS8251 Programming in C UNIT II

5 B. Shanmuga Sundari csenotescorner.blogspot.com

Ex:1 Program to calculate the average marks of the class

#include <stdio.h>

void main()

{

int m[5],i,sum=0,n;

float avg;

printf(“enter number of students \n”);

scanf(“%d”,&n);

printf(“enter marks of students \n”);

for(i=0;i<n;i++)

{

scanf(“%d”,&m[i]);

}

for(i=0;i<n;i++)

sum=sum+m[i];

avg=(float)sum/n;

printf(“average=%f”,avg);

}

Output:

Enter number of students 5

Enter marks of students 55

60

78

85

90

Page 7

CS8251 Programming in C UNIT II

6 B. Shanmuga Sundari csenotescorner.blogspot.com

Average=73.6

Example Programs

C Program to Find Mean, Median, and Mode of Given Numbers.

#define SIZE 100

#include"stdio.h"

float mean_function(float[],int); float

median_function(float[],int); float

mode_function(float[],int); int main()

{

int i,n,choice;

float array[SIZE],mean,median,mode;

printf("Enter No of Elements\n");

scanf("%d",&n);

printf("Enter Elements\n");

for(i=0;i scanf("%f",&array[i]);

do

{

printf("\n\tEnter Choice\n\t1.Mean\n\t2.Median\n\t3.Mode\n4.Exit"); scanf("%d",&choice);

switch(choice)

{

case 1: mean=mean_function(array,n);

printf("\n\tMean = %f\n",mean); break;

http://lernc.blogspot.in/2009/05/c-program-to-find-mean-median-and-mode.html

Page 8

CS8251 Programming in C UNIT II

7 B. Shanmuga Sundari csenotescorner.blogspot.com

case 2: median=median_function(array,n);

printf("\n\tMedian = %f\n",median); break;

case 3: mode=mode_function(array,n);

printf("\n\tMode = %f\n",mode); break;

case 4: break; default:printf("Wrong

Option"); break;

}

}while(choice!=4);

}

float mean_function(float array[],int n)

{

int i;

float sum=0; for(i=0;i

sum=sum+array[i];

return (sum/n);

}

float median_function(float a[],int n)

{

float temp;

int i,j;

for(i=0;i

for(j=i+1;j

{

Page 9

CS8251 Programming in C UNIT II

8 B. Shanmuga Sundari csenotescorner.blogspot.com

if(a[i]>a[j])

{

temp=a[j];

a[j]=a[i];

a[i]=temp;

}

} if(n%2==0)

return (a[n/2]+a[n/2-1])/2; else

return a[n/2];

}

float mode_function(float a[],int n)

{

return (3*median_function(a,n)-2*mean_function(a,n));

}

Output

Enter Elements 2

3

4

Enter Choice

1.Mean

2.Median

3.Mode 4.Exit

Page 10

CS8251 Programming in C UNIT II

9 B. Shanmuga Sundari csenotescorner.blogspot.com

1

Mean = 3.000000

Enter Choice

1.Mean

2.Median

3.Mode 4.Exit

2

Median = 3.000000

Enter Choice 1.Mean

2.Median

3.Mode

4.Exit

3

Mode = 3.000000

Enter Choice

1.Mean

2.Median

3.Mode 4.Exit

4

Page 11

CS8251 Programming in C UNIT II

10 B. Shanmuga Sundari csenotescorner.blogspot.com

Two dimensional Array

 A 2D array is an array of 1-D arrays and can be visualized as a plane that has

rows and columns.

 The elements can be accessed by using two subscripts, row subscript (row

no), column subscript(column no).

 It is also known as matrix.

E.g,

a[3][5]

Declaration

e.g) int a [2][3]; //a is an integer array of 2 rows and 3 columns number

of elements=2*3=6

Initialization

1. By using an initialization list, 2D array can be initialized.

e.g. int a[2][3] = {1,4,6,2}

a

2. The initializers in the list can be braced row wise.

e.g int a[2][3] = {{1,4,6} , {2}};

1 2 3 6 7

9 10 5 0 4

3 1 2 1 6

1 4 6

2 0 0

datatype arrayname [row size][column size]

Page 12

CS8251 Programming in C UNIT II

11 B. Shanmuga Sundari csenotescorner.blogspot.com

Example Programs

Progarm for addition,transpose and multiplication of array

#include<stdio.h>

#include<conio.h>

void main()

{

int a,i,k,j,c1,c2,r1,r2;

int m1[10][10],m2[10][10],m3[10][10];

clrscr();

while(1)

{

printf("\n 1. Transpose of Matrix:-\n"); printf("\n

2. Addition of Matrix:-\n"); printf("\n 3.

Multiplication of Matrix:-\n"); printf("\n 4.

Exit\n");

printf("\n Enter your choice:-");

scanf("%d",&a);

switch(a)

{

case 1 :

printf("\n Enter the number of row and coloum:-");

scanf("%d%d",&r1,&c1);

printf("\n Enter the element :-");

for(i=0;i<r1;i++)

{

for(j=0;j<c1;j++)

Page 13

CS8251 Programming in C UNIT II

12 B. Shanmuga Sundari csenotescorner.blogspot.com

{

scanf("%d",&m1[i][j]);

m2[j][i]=m1[i][j];

}

}

/*Displaying transpose of matrix*/ printf("\n

Transpose of Matrix is:-\n");

for(i=0;i<r1;i++)

{

}

break;

case 2:

for(j=0;j<c1;j++)

printf("\t%d",m2[i][j]); printf("\n");

printf("\n how many row and coloum in Matrix one:-");

scanf("%d%d",&r1,&c1);

printf("\n How amny row and coloum in Matrix two:-");

scanf("%d%d",&r2,&c2);

if((r1==r2)&&(c1==c2))

{

printf("\n Addition is possible:-");

printf("\n Input Matrix one:-");

for(i=0;i<r1;i++)

{

for(j=0;j<c1;j++)

scanf("%d",&m1[i][j]);

Page 14

CS8251 Programming in C UNIT II

13 B. Shanmuga Sundari csenotescorner.blogspot.com

}

printf("\n Input Matrix two:-");

for(i=0;i<r2;i++)

{

for(j=0;j<c2;j++)

scanf("%d",&m2[i][j]);

}

/* Addition of Matrix*/

for(i=0;i<r1;i++)

{

for(j=0;j<c1;j++)

m3[i][j]=m1[i][j]+ m2[i][j];

}

printf("\n The sum is:-\n");

for(i=0;i<c1;i++)

{

}

}

else

for(j=0;j<r1;j++)

printf("%5d",m3[i][j]); printf("\n");

printf("\n Addition is not possible:-");

break;

case 3:

Page 15

CS8251 Programming in C UNIT II

14 B. Shanmuga Sundari csenotescorner.blogspot.com

printf("\n Enter number of row and coloum in matrix one:-");

scanf("%d%d",&r1,&c1);

printf("\n Enter number of row and coloum in matrix two:-");

scanf("%d%d",&r2,&c2);

if(c1==r2)

{

printf("\n Multiplication is possible:-");

printf("\n Input value of Matrix one:-");

for(i=0;i<r1;i++)

{

for(j=0;j<c1;j++)

scanf("%d",&m1[i][j]);

}

printf("\n Input value of Matrix two:-");

for(i=0;i<r2;i++)

{

for(j=0;j<c2;j++)

scanf("%d",&m2[i][j]);

}

for(i=0;i<r1;i++)

for(j=0;j<c2;j++)

{

m3[i][j]=0;

for(k=0;k<c1;k++)

m3[i][j]=m3[i][j]+m1[i][k]*m2[k][j];

}

/*Displaying final matrix*/

Page 16

CS8251 Programming in C UNIT II

15 B. Shanmuga Sundari csenotescorner.blogspot.com

printf("\n Multiplication of Matrix:-\n");

for(i=0;i<r1;i++)

{

}

else

for(j=0;j<c2;j++)

printf("\t%d",m3[i][j]); printf("\n");

}

printf("\n Multiplication is not possible");

break;

case 4:

exit(0);

break;

}

getch();

}

}

 String Operations

Definition:

The group of characters, digits, & symbols enclosed within double quotes is called as Strings.

Every string is terminated with the NULL (‘\0’) character.

E.g. “INDIA” is a string. Each character of string occupies 1 byte of memory.

The last character is always ‘\0’.

Declaration:

Page 17

CS8251 Programming in C UNIT II

16 B. Shanmuga Sundari csenotescorner.blogspot.com

String is always declared as character arrays.

Syntax

E.g. char a[20];

Initialization:

We can use 2 ways for initializing.

1. By using string constant

E.g. char str[6]= “Hello”;

2. By using initialisation list

E.g. char str[6]={‘H’, ‘e’, ‘l’, ;l’, ;o’, ‘\0’};

String Operations or String Functions

These functions are defined in string.h header file.

1. strlen() function

It is used to find the length of a string. The terminating character (‘\0’) is not counted.

Syntax

E.g.

s= “hai”;

strlen(s)-> returns the length of string s i.e. 3.

2. strcpy() function

It copies the source string to the destination string Syntax

char stringname[size];

temp_variable = strlen(string_name);

Page 18

CS8251 Programming in C UNIT II

17 B. Shanmuga Sundari csenotescorner.blogspot.com

E.g.

s1=“hai”;

s2= “welcome”;

strcpy(s1,s2); -> s2 is copied to s1. i.e. s1=welcome.

3. strcat() function

It concatenates a second string to the end of the first string. Syntax

E.g.

s1=“hai ”;

s2= “welcome”;

strcat(s1,s2); -> s2 is joined with s1. Now s1 is hai welcome.

E.g. Program:

#include <stdio.h>

#include <string.h>

void main ()

{

char str1[20] = "Hello"; char

str2[20] = "World"; char

str3[20];

int len ; strcpy(str3,

str1);

printf("Copied String= %s\n", str3);

strcpy(destination,source);

strcat(firststring, secondstring);

Page 19

CS8251 Programming in C UNIT II

18 B. Shanmuga Sundari csenotescorner.blogspot.com

strcat(str1, str2);

printf("Concatenated String is= %s\n", str1); len =

strlen(str1);

printf("Length of string str1 is= %d\n", len); return

0;

}

Output:

Copied String=Hello

Concatenated String is=HelloWorld

Length of string str1is

4. strcmp() function

It is used to compare 2 strings.

Syntax

 If the first string is greater than the second string a positive number is

returned.

 If the first string is less than the second string a negative number is

returned.

 If the first and the second string are equal 0 is returned.

5. strlwr() function

It converts all the uppercase characters in that string to lowercase characters. Syntax

temp_varaible=strcmp(string1,string2)

strlwr(string_name);

Page 20

CS8251 Programming in C UNIT II

19 B. Shanmuga Sundari csenotescorner.blogspot.com

E.g.

str[10]= “HELLO”;

strlwr(str);

puts(str);

Output: hello

6. strupr() function

It converts all the lowercase characters in that string to uppercase characters. Syntax

E.g.

str[10]= “HEllo”;

strupr(str); puts(str);

Output: HELLO

7. strrev() function

It is used to reverse the string.

Syntax

E.g.

str[10]= “HELLO”;

strrev(str);

puts(str);

Output: OLLEH

strupr(string_name);

strrev(string_name);

Page 21

CS8251 Programming in C UNIT II

20 B. Shanmuga Sundari csenotescorner.blogspot.com

String functions

Functions Descriptions

strlen() Determines the length of a String

strcpy() Copies a String from source to destination

strcmp() Compares two strings

strlwr() Converts uppercase characters to lowercase

strupr() Converts lowercase characters to uppercase

strdup() Duplicates a String

strstr() Determines the first occurrence of a given String in another string

strcat() Appends source string to destination string

strrev() Reverses all characters of a string

Example: String Comparison

void main()

{

char s1[20],s2[20]; int

val;

printf(“Enter String 1\n”);

gets(s1);

printf(“Enter String 2\n”); gets

(s2); val=strcmp(s1,s2);

if (val==0)

printf(“Two Strings are equal”); else

printf(“Two Strings are not equal”);

getch();

Page 22

CS8251 Programming in C UNIT II

21 B. Shanmuga Sundari csenotescorner.blogspot.com

}

Output:

Enter String 1

Computer Enter

String 2

Programming

Two Strings are not equal

2.8.1 String Arrays

They are used to store multiple strings. 2-D char array is used for string arrays.

Declaration

E.g.

char s[2][30];

Here, s can store 2 strings of maximum 30 characters each.

Initialization

2 ways

1. Using string constants

char s[2][20]={“Ram”, “Sam”};

2. Using initialization list.

char s[2][20]={ {‘R’, ‘a’, ‘m’, ‘\0’},

{‘S’, ‘a’, ‘m’, ‘\0’}};

E.g. Program

#include<stdio.h>

void main()

{

char arrayname[rowsize][colsize];

Page 23

CS8251 Programming in C UNIT II

22 B. Shanmuga Sundari csenotescorner.blogspot.com

int i;

char s[3][20]; printf(“Enter

Names\n”); for(i=0;i<3;i++)

scanf(“%s”, s[i]);

printf(“Student Names\n”);

for(i=0;i<3;i++) printf(“%s”,

s[i]);

}

Sorting

Sorting is the process of arranging elements either in ascending or in descending order.

Sorting Methods

1. Selection Sort

2. Bubble Sort

3. Merge sort

4. Quick sort

1. Selection sort

It finds the smallest element in the list & swaps it with the element present at the head of the

list.

E.g.

25 20 15 10 5

5 20 15 10 25

5 10 15 20 25

Page 24

CS8251 Programming in C UNIT II

23 B. Shanmuga Sundari csenotescorner.blogspot.com

2. Bubble Sort

In this method, each data item is compared with its neighbour element. If they are not

in order, elements are exchanged.

With each pass, the largest of the list is "bubbled" to the end of the list. E.g.

Pass 1:

25 20 15 10 5

20 25 15 10 5

20 15 25 10 5

20 15 10 25 5

20 15 10 5 25

25 is the largest element

Repeat same steps until the list is sorted

3. Merge Sort:

 Merge sort is based on Divide and conquer method.

 It takes the list to be sorted and divide it in half to create two unsorted

lists.

 The two unsorted lists are then sorted and merged to get a sorted list.

Page 25

CS8251 Programming in C UNIT II

24 B. Shanmuga Sundari csenotescorner.blogspot.com

4. Quick Sort

 This method also uses the technique of ‘divide and conquer’.

 Pivot element is selected from the list, it partitions the rest of the list into

two parts – a sub-list that contains elements less than the pivot and other

sub-list containing elements greater than the pivot.

 The pivot is inserted between the two sub-lists. The algorithm is recursively

applied to sort the elements.

Page 26

CS8251 Programming in C UNIT II

25 B. Shanmuga Sundari csenotescorner.blogspot.com

Program:

#include <stdio.h>

void main()

{

int i, j, temp, n, a[10]; printf("Enter

the value of N \n"); scanf("%d", &n);

printf("Enter the numbers \n"); for (i

= 0; i < n; i++)

scanf("%d", &a[i]); for

(i = 0; i < n; i++)

{

for (j = i + 1; j < n; j++)

{

if (a[i] > a[j])

{

temp = a[i];

Page 27

CS8251 Programming in C UNIT II

26 B. Shanmuga Sundari csenotescorner.blogspot.com

a[i] = a[j];

a[j] = temp;

}

}

}

printf("The numbers arranged in ascending order are given below \n"); for (i = 0; i

< n; i++)

printf("%d\n", a[i]);

printf("The numbers arranged in descending order are given below \n"); for(i=n-

1;i>=0;i--)

printf("%d\n",a[i]);

}

Output:

Enter the value of N 4

Enter the numbers 10

2 5 3

The numbers arranged in ascending order are given below 2

3

5

10

The numbers arranged in descending order are given below 10

5

3

2

Page 28

CS8251 Programming in C UNIT II

27 B. Shanmuga Sundari csenotescorner.blogspot.com

 Searching

Searching is an operation in which a given list is searched for a particular value. If the

value is found its position is returned.

Types:

1. Linear Search

2. Binary Search

1. Linear Search

The search is linear. The search starts from the first element & continues in a sequential fashion till

the end of the list is reached. It is slower method.

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

int a[10],i,n,m,c=0;

clrscr();

printf("Enter the size of an array: ");

scanf("%d",&n);

printf("Enter the elements of the array: ");

for(i=0;i<=n-1;i++)

scanf("%d",&a[i]);

printf("Enter the number to be searched: ");

scanf("%d",&m);

for(i=0;i<=n-1;i++)

{

if(a[i]==m)

{

Page 29

CS8251 Programming in C UNIT II

printf("Element is in the position %d\n",i+1); c=1;

break;

}

}

if(c==0)

printf("The number is not in the list");

getch();

}

Output:

Enter the size of an array: 4

Enter the elements of the array: 4 3 5 1 Enter

the number to be search: 5 Element is in the

position 3

2. Binary Search

 If a list is already sorted then we can easily find the element using

binary serach.

 It uses divide and conquer technique.

Steps:

1. The middle element is tested with searching element. If found, its

position is returned.

2. Else, if searching element is less than middle element, search the left half

else search the right half.

3. Repeat step 1 & 2.

Program:

Page 30

CS8251 Programming in C UNIT II

#include<stdio.h>

void main()

{

int a[10],i,n,m,c=0,l,u,mid; printf("Enter

the size of an array: "); scanf("%d",&n);

printf("Enter the elements in ascending order: ");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("Enter the number to be searched: ");

scanf("%d",&m);

l=0,u=n-1;

while(l<=u)

{

mid=(l+u)/2;

if(m==a[mid])

{

c=1;

break;

}

else if(m<a[mid])

{

u=mid-1;

}

else

l=mid+1;

}

Page 1

CS8251 Programming in C UNIT III

30 B. Shanmuga Sundari csenotescorner.blogspot.com

if(c==0)

printf("The number is not found."); else

printf("The number is found.");

}

Sample output:

Enter the size of an array: 5

Enter the elements in ascending order: 4 7 8 11 21 Enter the number to

be search: 11

The number is found.

Example:

3 5 7 9 11

Search key=7 middle element=7

Searching element=middle element. So the element is found. Search key=11

Middle element=7 Searching

element>middle

So go to right half: 9 11. Repeat steps until 11 is found or list ends.

Page 44

Page 2

CS8251 Programming in C UNIT III

1 B. Shanmuga Sundari csenotescorner.blogspot.com

UNIT III FUNCTIONS AND POINTERS

Introduction to functions: Function prototype, function definition, function call, Built-in

functions (string functions, math functions) – Recursion – Example Program: Computation of

Sine series, Scientific calculator using built-in functions, Binary Search using recursive functions

– Pointers – Pointer operators – Pointer arithmetic – Arrays and pointers – Array of pointers –

Example Program: Sorting of names – Parameter passing: Pass by value, Pass by reference –

Example Program: Swapping of two numbers and changing the value of a variable using

pass by reference

Introduction to functions

A function is a subprogram of one or more statements that performs a specific task when called.

Advantages of Functions:

1. Code reusability

2. Better readability

3. Reduction in code redundancy

4. Easy to debug & test.

Classification of functions:

 Based on who develops the function

 Based on the number of arguments a function accepts

1. Based on who develops the function

There are two types.

1. Library functions

2. User-defined functions

1. Library functions [Built-in functions]

Page 3

CS8251 Programming in C UNIT III

2 B. Shanmuga Sundari csenotescorner.blogspot.com

Library functions are predefined functions. These functions are already developed by someone

and are available to the user for use. Ex. printf(), scanf().

2. User-defined functions

User-defined functions are defined by the user at the time of writing a program. Ex. sum(),

square()

Using Functions

A function can be compared to a black box that takes in inputs, processes it, and then outputs

the

result. Terminologies using functions are:

 A function f that uses another function g is known as the calling function,

and g is known as the called function.

 The inputs that a function takes are known as arguments.

 When a called function returns some result back to the calling function, it is

said to return that result.

 The calling function may or may not pass parameters to the called function.

If the called function accepts arguments, the calling function will pass

parameters, else not.

 Function declaration is a declaration statement that identifies a function’s

name, a list of arguments that it accepts, and the type of data it returns.

 Function definition consists of a function header that identifies the function,

followed by the body of the function containing the executable code for that

function.

 Function Prototype

Before using a function, the compiler must know the number of parameters and the type

of parameters that the function expects to receive and the data type of

Page 4

CS8251 Programming in C UNIT III

3 B. Shanmuga Sundari csenotescorner.blogspot.com

value that it will return to the calling program. Placing the function declaration statement prior to

its use enables the compiler to make a check on the arguments used while calling that function.

Syntax:

return_data_type function_name(data_type variable1, data_type variable2,..);

Here, function_name is a valid name for the function. Naming a function

follows the same rules that are followed while naming variables. A function should

have a meaningful name that must specify the task that the function will perform.

return_data_type specifies the data type of the value that will be returned to the calling

function as a result of the processing performed by the called function.

(data_type variable1, data_type variable2, ...) is a list of variables of

specified data types.

These variables are passed from the calling function to the called function. They are also

known as arguments or parameters that the called function accepts to perform its task.

 Function definition

When a function is defined, space is allocated for that function in the memory. A function

definition comprises of two parts:

 Function header

 Function body

The syntax of a function definition can be given as:

return_data_type function_name(data_type variable1, data_type variable2,..)

{

.............

statements

Page 5

CS8251 Programming in C UNIT III

4 B. Shanmuga Sundari csenotescorner.blogspot.com

.............

return(variable);

}

While return_data_type function_name(data_type variable1, data_type variable2,...) is

known as the function header, the rest of the portion comprising of program statements within

the curly brackets { } is the function body which contains the code to perform the specific task.

Note that the function header is same as the function declaration. The only difference

between the two is that a function header is not followed by a semi- colon.

 Function Call

The function call statement invokes the function. When a function is invoked, the compiler

jumps to the called function to execute the statements that are a part of that function. Once the

called function is executed, the program control passes back to the calling function.

Syntax:

function_name(variable1, variable2, ...);

The following points are to be noted while calling a function:

 Function name and the number and the type of arguments in the function call

must be same as that given in the function declaration and the function

header of the function definition.

 Names (and not the types) of variables in function declaration, function call,

and header of function definition may vary.

 Arguments may be passed in the form of expressions to the called function.

In such a case, arguments are first evaluated and converted to the type of

formal parameter and then the body of the function gets executed.

Page 6

CS8251 Programming in C UNIT III

5 B. Shanmuga Sundari csenotescorner.blogspot.com

 If the return type of the function is not void, then the value returned by the

called function may be assigned to some variable as given below.

variable_name = function_name(variable1, variable2, ...);

Working of a function

void main()

{

int x,y,z;

int abc(int, int, int) // Function declaration

…..

…..

abc(x,y,z) // Function Call

… Actual arguments

…

}

int abc(int i, int j, int k) // Function definition

{ Formal arguments

…….

….

return (value);

}

Calling function – The function that calls a function is known as a calling

function.

Called function – The function that has been called is known as a called function.

Page 7

CS8251 Programming in C UNIT III

6 B. Shanmuga Sundari csenotescorner.blogspot.com

Actual arguments – The arguments of the calling function are called as actual

arguments.

Formal arguments – The arguments of called function are called as formal

arguments.

Steps for function Execution:

1. After the execution of the function call statement, the program control is

transferred to the called function.

2. The execution of the calling function is suspended and the called function

starts execution.

3. After the execution of the called function, the program control returns to

the calling function and the calling function resumes its execution.

 Built-in functions (string functions, math functions)

The standard library functions are built-in functions in C programming to handle tasks

such as mathematical computations, I/O processing, string handling etc. These functions are

defined in the header file.

The printf() is a standard library function to send formatted output to the screen (display

output on the screen). This function is defined in "stdio.h" header file.

There are other numerous library functions defined under "stdio.h", such as scanf(),

fprintf(), getchar() etc. Once you include "stdio.h" in your program, all these functions are

available for use.

Library of Mathematical functions.

These are defined in math.h header file.

Example:

Page 8

CS8251 Programming in C UNIT III

7 B. Shanmuga Sundari csenotescorner.blogspot.com

1 double cos(double x)- Returns the cosine of a radian angle x

2 double sin(double x)- Returns the sine of a radian angle x.

3 double exp(double x)- Returns the value of e raised to the xth power

4 double log(double x)
Returns the natural logarithm (base-e logarithm) of x.

5
double sqrt(double x)
Returns the square root of x.

6
double pow(double x, double y)
Returns x raised to the power of y.

Library of standard input & output functions

Header file: stdio.h

Example:

1 printf() This function is used to print the character, string, float, integer,

octal and hexadecimal values onto the output screen

2 scanf() This function is used to read a character, string, and numeric data

from keyboard.

3 getc() It reads character from file

4 gets() It reads line from keyboard

Library of String functions:

Header file: string.h

Example:

Functions Descriptions

strlen() Determines the length of a String

strcpy() Copies a String from source to destination

strcmp() Compares two strings

http://www.tutorialspoint.com/c_standard_library/c_function_cos.htm
http://www.tutorialspoint.com/c_standard_library/c_function_sin.htm
http://www.tutorialspoint.com/c_standard_library/c_function_exp.htm
http://www.tutorialspoint.com/c_standard_library/c_function_log.htm
http://www.tutorialspoint.com/c_standard_library/c_function_sqrt.htm
http://www.tutorialspoint.com/c_standard_library/c_function_pow.htm

Page 9

CS8251 Programming in C UNIT III

8 B. Shanmuga Sundari csenotescorner.blogspot.com

strlwr() Converts uppercase characters to lowercase

strupr() Converts lowercase characters to uppercase

Example: strlen function

#include <stdio.h> int

main() {

char string1[20];

char string2[20];

strcpy(string1, "Hello");

strcpy(string2, "Hellooo");

printf("Length of string1 : %d\n", strlen(string1));

printf("Length of string2 : %d\n", strlen(string2)); return 0;

}

Output:

Length of string1 : 5

Length of string2 : 7

Example: strcpy function

#include <stdio.h> int

main() {

char input_str[20];

char *output_str;

strcpy(input_str, "Hello"); printf("input_str:

%s\n", input_str); output_str = strcpy(input_str,

"World");

Page 10

CS8251 Programming in C UNIT III

9 B. Shanmuga Sundari csenotescorner.blogspot.com

printf("input_str: %s\n", input_str);

printf("output_str: %s\n", output_str);

return 0;

}

Output:

input_str: Hello

input_str: World

output_str: World

Example :strcmp function

#include<stdio.h>

#include<string.h>

void main()

{

char one[20] = “William Lambton”; char

two[20] = “William Lamberton”;

if(strcmp(one, two) == 0)

printf(“The names are the same.”); else

printf(“The names are different.”);

}

Output:

The names are different

Example: Strupr() and strlwr()

Page 11

CS8251 Programming in C UNIT III

10 B. Shanmuga Sundari csenotescorner.blogspot.com

#include<stdio.h>

#include<string.h> int

main()

{

char str[] = “ String Functions”;

printf(“%s \n”, strupr(str));

printf(“%s \n”, strlwr(str)); return 0;

}

Output:

STRING FUNCTIONS

string functions

 Recursion

A function that calls itself is known as a recursive function.

Direct & Indirect Recursion:

Direct Recursion:

A function is directly recursive if it calls itself. A()

{

….

….

A();// call to itself

….

}

Indirect Recursion:

Function calls another function, which in turn calls the original function.

Page 12

CS8251 Programming in C UNIT III

11 B. Shanmuga Sundari csenotescorner.blogspot.com

A()

{

…

…

B();

…

} B(

)

{

…

…

A();// function B calls A

…

}

Consider the calculation of 6! (6 factorial) ie 6! =

6 * 5 * 4 * 3 * 2 * 1

6! = 6 * 5!

6! = 6 * (6 - 1)!

n! = n * (n - 1)!

Types of Recursion Direct

Recursion

A function is said to be directly recursive if it explicitly calls itself. Here, the function Func()

calls itself for all positive values of n, so it is said to be a directly recursive function.

int Func (int n)

{

Page 13

CS8251 Programming in C UNIT III

12 B. Shanmuga Sundari csenotescorner.blogspot.com

if (n == 0) return

n; else

return (Func (n–1));

}

Indirect Recursion

A function is said to be indirectly recursive if it contains a call to another function which

ultimately calls it. These two functions are indirectly recursive as they both call each other.

int Funcl (int n)

{

if (n == 0) return

n; else

return Func2(n);

}

int Func2(int x)

{

return Func1(x–1);

}

Tail Recursion

A recursive function is said to be tail recursive if no operations are pending to be performed

when the recursive function returns to its caller. When the called function returns, the returned

value is immediately returned from the calling function.

Page 14

CS8251 Programming in C UNIT III

13 B. Shanmuga Sundari csenotescorner.blogspot.com

int Fact(int n)

{

if (n == 1)

return 1;

else

return (n * Fact(n–1));

}

The above function is a nontail-recursive function, because there is a pending operation

of multiplication to be performed on return from each recursive call. Whenever there is a

pending operation to be performed, the function becomes non-tail recursive. In such a non-tail

recursive function, information about each pending operation must be stored, so the amount of

information directly depends on the number of calls.

int Fact(n)

{

return Fact1(n, 1);

}

int Fact1(int n, int res)

{

if (n == 1) return

res; else

return Fact1(n–1, n*res);

}

The same factorial function can be written in a tail recursive manner. In the code, Fact1 function

preserves the syntax of Fact(n). Here the recursion occurs in the Fact1 function and not in Fact

function. Fact1 has no pending operation to be

Page 15

CS8251 Programming in C UNIT III

14 B. Shanmuga Sundari csenotescorner.blogspot.com

performed on return from recursive calls. The value computed by the recursive call is simply

returned without any modification. So in this case, the amount of information to be stored on the

system stack is constant (only the values of n and res need to be stored) and is independent of the

number of recursive calls.

E.g. Program:

#include<stdio.h>

#include<conio.h>

void main()

{

int fact(int);

int n,f;

printf(“Enter the number \n”);

scanf(“%d”,&n);

f=fact(n);

printf(“The factorial of a number =%d”,f);

getch();

}

int fact(int n)

{

if(n==1)

return(1);

else

return n*fact(n-1);

}

OUTPUT

Enter the number to find the factorial

Page 16

CS8251 Programming in C UNIT III

15 B. Shanmuga Sundari csenotescorner.blogspot.com

5

The factorial of a number=120

Pattern of Recursive Calls:

Based on the number of recursive calls, the recursion is classified in to 3 types. They are,

1. Linear Recursion - Makes only one recursive call.

2. Binary Recursion - Calls itself twice.

3. N-ary recursion - Calls itself n times.

Converting Recursive Functions to Tail Recursive

A non-tail recursive function can be converted into a tail-recursive function by using an

auxiliary parameter as we did in case of the Factorial function. The auxiliary parameter is used to

form the result. When we use such a parameter, the pending operation is incorporated into the

auxiliary parameter so that the recursive call no longer has a pending operation.

Recursive functions can also be characterized depending on the way in which the

recursion grows in a linear fashion or forming a tree structure as shown below:

int Fibonacci(int num)

{

if(num ==)

return ; else

return (Fibonacci(num - 1) + Fibonacci(num – 2));

}

else if (num == 1)

Page 17

CS8251 Programming in C UNIT III

16 B. Shanmuga Sundari csenotescorner.blogspot.com

return 1;

Observe the series of function calls. When the function pending operations in turn calls the

function

Fibonacci(7) = Fibonacci(6) + Fibonacci(5)

Fibonacci(6) = Fibonacci(5) + Fibonacci(4)

Fibonacci(5) = Fibonacci(4) + Fibonacci(3)

Fibonacci(4) = Fibonacci(3) + Fibonacci(2)

Fibonacci(3) = Fibonacci(2) + Fibonacci(1)

Fibonacci(2) = Fibonacci(1) + Fibonacci(0) Now

we have, Fibonacci(2) = 1 + 0 = 1 Fibonacci(4) =

2 + 1 = 3

Fibonacci(5) = 3 + 2 = 5

Fibonacci(6) = 3 + 5 = 8

Fibonacci(7) = 5 + 8 = 13

On the contrary, a recursive function is said to be tree recursive (or non- linearly

recursive) if the pending operation makes another recursive call to the function. For example, the

Fibonacci function in which the pending operations recursively call the Fibonacci function.

Tower of Hanoi

The tower of Hanoi is one of the main applications of recursion. It says, ‘if you can solve

n–1 cases, then you can easily solve the nth case’. The figure (a) below shows three rings

mounted on pole A. The problem is to move all these rings from pole A to pole C while

maintaining the same order. The main issue is that the smaller disk must always come above the

larger disk.

Page 18

CS8251 Programming in C UNIT III

17 B. Shanmuga Sundari csenotescorner.blogspot.com

In our case, A is the source pole, C is the destination pole, and B is the spare pole. To

transfer all the three rings from A to C, we will first shift the upper two rings (n–1 rings) from

the source pole to the spare pole. We move the first two rings from pole A to B as shown in

figure (b) .

Now that n–1 rings have been removed from pole A, the nth ring can be easily moved

from the source pole (A) to the destination pole (C). Figure (c) shows this step.

The final step is to move the n–1 rings from the spare pole (B) to the destination pole (C).

This is shown in Fig. (d)

To summarize, the solution to our problem of moving n rings from A to C using B as spare can

be given as:

Base case: if n=1

 Move the ring from A to C using B as spare

Recursive case:

 Move n – 1 rings from A to B using C as spare

 Move the one ring left on A to C using B as spare

 Move n – 1 rings from B to C using A as spare

Figure (a)

Page 19

CS8251 Programming in C UNIT III

18 B. Shanmuga Sundari csenotescorner.blogspot.com

Figure (b)

Figure (c)

Figure (d)

 Example Program

Program for Computation of Sine series

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

Page 20

CS8251 Programming in C UNIT III

19 B. Shanmuga Sundari csenotescorner.blogspot.com

{

int i, n ;

float x, val, sum, t ;

clrscr() ;

printf("Enter the value for x : ") ;

scanf("%f", &x) ;

printf("\nEnter the value for n : ") ;

scanf("%d", &n) ;

val = x ;

x = x * 3.14159 / 180 ;

t = x ; sum

= x ;

for(i = 1 ; i < n + 1 ; i++)

{

t = (t * pow((double) (-1), (double) (2 * i - 1)) * x * x) / (2 * i * (2 * i + 1)) ; sum = sum

+ t ;

}

printf("\nSine value of %f is : %8.4f", val, sum) ; getch() ;

}

Output:

Enter the value for x : 30

Enter the value for n : 20

Sine value of 30.000000 is : 0.5000

Scientific calculator using built-in functions

CS8251 Programming in C UNIT III

20 B. Shanmuga Sundari csenotescorner.blogspot.com

Program for binary search using recursive function

#include<stdio.h> int

main()

{

int a[10],i,n,m,c,l,u;

printf("Enter the size of an array: ");

scanf("%d",&n);

printf("Enter the elements of the array: ");

for(i=0;i<n;i++)

{

scanf("%d",&a[i]);

}

printf("Enter the number to be search: ");

scanf("%d",&m);

l=0,u=n-1;

c=binary(a,n,m,l,u);

if(c==0)

CS8251 Programming in C UNIT III

20 B. Shanmuga Sundari csenotescorner.blogspot.com

printf("Number is not found."); else

printf("Number is found.");

return 0;

}

int binary(int a[],int n,int m,int l,int u)

{

int mid,c=0;

if(l<=u)

{

mid=(l+u)/2;

if(m==a[mid])

{

c=1;

}

else if(m<a[mid])

{

return binary(a,n,m,l,mid-1);

}

else

return binary(a,n,m,mid+1,u);

}

else

CS8251 Programming in C UNIT III

22 B. Shanmuga Sundari csenotescorner.blogspot.com

return c;

}

Output:

Enter the size of an array: 5

Enter the elements of the array: 8 9 10 11 12 Enter

the number to be search: 8

Number is found.

Pointers

Definition:

A pointer is a variable that stores the address of a variable or a function

Advantages

1. Pointers save memory space

2. Faster execution

3. Memory is accessed efficiently.
Declaration

E.g) int *p //p is an pointer to an int

float *fp //fp is a pointer to a float

int a=10; p a

int *p=&a;

4000 2000

p is an integer pointer & holds the address of an int variable a.

Pointer to pointer

A pointer that holds the address of another pointer variable is known as a pointer to

pointer.

E.g.

10 2000

datatype *pointername;

CS8251 Programming in C UNIT III

23 B. Shanmuga Sundari csenotescorner.blogspot.com

1000

1000

12.5

4000

12

12

int **p;

p is a pointer to a pointer to an integer. int

a=12;

int *p=&a; a

int **pptr=&p;

p 4000

6000

So **pptr=12

8000

pptr

 Operations on pointers

1. Referencing operation: A pointer variable is made to refer to an object.

Reference operator(&) is used for this. Reference operator is also known as

address of (&) operator.

Eg) float a=12.5;

float *p;

p=&a;

a

1000

P

2000

2. Dereferencing a pointer

The object referenced by a pointer can be indirectly accessed by dereferencing the

pointer. Dereferencing operator (*) is used for this .This operator is also known as

indirection operator or value- at-operator

Eg) int b;

int a=12;

a int *p;

6000

CS8251 Programming in C UNIT III

)

;

24 B. Shanmuga Sundari csenotescorner.blogspot.com

2000

1000

1000 p=&a;

b=*p; \\value pointed by p(or)value at

1000=12,

Example program

#include<stdio.h>

void main()
{

p so b=12

2000

Note

int a=12;

int *p;

int **pptr;

p=&a;

pptr=&p;

printf(“a value=%d”,a);

printf(“value by dereferencing p is %d \n”,*p); printf(“value

by dereferencing pptr is %d \n”,**pptr printf(“value of p is

%u \n”,p);

printf(“value of pptr is %u\n”,pptr);

}

%p is used for addresses; %u

can also be used.

*p=value at p

=value at (1000)=12

*pptr=value at(pptr)

=value at(value at (2000))

=value at (1000)=12

Output:

a value=12

value by dereferencing p is 12 value

by dereferencing pptr is 12 value of p

is 1000

value of pptr is 2000

1000

2000

pptr

3000

 Pointer arithmetic

Arithmetic operations on pointer variables are also possible.

p

a 12

CS8251 Programming in C UNIT III

25 B. Shanmuga Sundari csenotescorner.blogspot.com

E.g.) Addition, Increment, Subtraction, Decrement.

1. Addition

(i) An addition of int type can be added to an expression of pointer type. The result

is pointer type.(or)A pointer and an int can be added.

Eg) if p is a pointer to an object then

p+1 =>points to next object

p+i=>point s to ith object after p

(ii) Addition of 2 pointers is not allowed.

2. Increment

Increment operator can be applied to an operand of pointer type.

3. Decrement

Decrement operator can be applied to an operand of pointer type.

4. Subtraction

i) A pointer and an int can be subtracted.

ii) 2 pointers can also be subtracted.

26 B. Shanmuga Sundari csenotescorner.blogspot.com

S.no Operator Type of

operand

1

Type of

operand

2

Result

type

Example Initial

value

Final

value

Description

1 + Pointer

to type

T

int Pointer

to type

T

 Result =

initial value

of ptr +int

operand *

sizeof (T)

Eg.

int *

int

int *

p=p+5

p=2000

2010

2000+5*2=

2010

2 ++ Pointer

to type

T

-

Pointer

to type

T

 Post

increment

Result =

initial value

of pointer

Pre-

increment

Result =

initial value

of pointer +

sizeof (T)

Eg. post float* - float* ftr=p++ ftr=? ftr=2000

CS8251 Programming in C UNIT III

27 B. Shanmuga Sundari csenotescorner.blogspot.com

 increment p=2000 p=2004 Value of ptr

= Value of

ptr

+sizeof(T)

3 - Pointer

to type

T

int Pointer

to type

T

 Result =

initial value

of ptr - int

operand *

sizeof (T)

E.g. float* int float* p=p-1 p=2000 1996 2000 – 1 *

4 = 2000-

4=1996

4 -- Pointer

to type

T

-

Pointer

to type

T

 Post

decrement

Result =

initial value

of pointer

Pre-

decrement

Result =

initial value

of pointer –

sizeof(T)

Value of ptr

Eg.pre

decrement

float*

-

float*

ftr=--p

ftr=?

p=2000

ftr=1996

p=1996

CS8251 Programming in C UNIT III

CS8251 Programming in C UNIT III

28 B. Shanmuga Sundari csenotescorner.blogspot.com

 = Value of

ptr –

sizeof(T)

3.11. Pointers and Arrays

In C language, pointers and arrays are so closely related.

i) An array name itself is an address or pointer. It points to the address of first

element (0th element) of an array.

Example

#include<stdio.h>

void main()

{

int a[3]={10,15,20};

printf(“First element of array is at %u\n”, a);

printf(“2nd element of array is at %u\n”, a+1); printf(“3nd

element of array is at %u\n”, a+2);

1000 1002 1004

}

Output

First element of array is at 1000 2nd

element of array is at 1002 3nd

element of array is at 1004

ii) Any operation that involves array subscripting is done by using pointers in c

language.

10 15 20

CS8251 Programming in C UNIT III

29 B. Shanmuga Sundari csenotescorner.blogspot.com

E.g.) E1[E2]=>*(E1+E2)

Example

#include<stdio.h>

void main()

{

int a[3]={10,15,20};

printf(“Elements are %d %d %d\n”, a[0],a[1],a[2]); printf(“Elements are %d

%d %d\n”, *(a+0),*(a+1),*(a+2);

}

Output:

Elements are 10 15 20

Elements are 10 15 20

Array of pointers

An array of pointers is a collection of addresses. Pointers in an array must be the same

type.

int a=10,b=20,c=30;

int *b[3]={&a,&b,&c};

a b c

4000 4100 4400

4000 4100 4400

10 20 30

CS8251 Programming in C UNIT III

30 B. Shanmuga Sundari csenotescorner.blogspot.com

b

5000 5002 5004

Example:

Now look at another code in which we store the address of three individual arrays in the array of

pointers:

int main()

{

int arr1[]={1,2,3,4,5};

int arr2[]={0,2,4,6,8};

int arr3[]={1,3,5,7,9};

int *parr[3] = {arr1, arr2, arr3}; int i;

for(i = 0;i<3;i++)

printf(«%d», *parr[i]);

return 0;

}

Output

1 0 1

Example Program Sorting

of names

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

CS8251 Programming in C UNIT III

31 B. Shanmuga Sundari csenotescorner.blogspot.com

char *x[20];

int i,n=0;

void reorder(int n,char *x[]);

clrscr();

printf("Enter no. of String : ");

scanf("%d",&n);

printf("\n");

for(i=0;i<n;i++)

{

printf("Enter the Strings %d : ",i+1);

x[i]=(char *)malloc(20*sizeof(char));

scanf("%s",x[i]);

}

reorder(n,x); printf("\nreorder list

is : \n"); for(i=0;i<n;i++)

{

printf("%d %s\n",i+1,x[i]);

}

getch();

}

void reorder(int n,char *x[])

{

int i,j; char

t[20];

for(i=0;i<n-1;i++)

for(j=i+1;j<n;j++)

if(strcmp(x[i],x[j])>0)

{

}

Output:

Enter no. of string 5

strcpy(t,x[j]);

strcpy(x[j],x[i]);

strcpy(x[i],t);

}

return;

CS8251 Programming in C UNIT III

32 B. Shanmuga Sundari csenotescorner.blogspot.com

Enter the Strings 1 kailash

Enter the Strings 2 Aswin

Enter the Strings 3 Zulphia

Enter the Strings 4 Babu

Enter the Strings 5 Clinton

Reorder list is

Aswin

Babu

Clinton

kailash

Clinton

Parameter passing

Whenever we call a function then sequence of executable statements gets executed. We can pass

some of the information to the function for processing called argument. There are two

ways in which arguments can be passed from calling function to called function. They are:

1. Pass by value

2. Pass by reference

1. Pass by value (Call by value)

 In this method the values of actual arguments are copied to formal

arguments.

 Any change made in the formal arguments does not affect the actual

arguments.

 Once control, return backs to the calling function the formal

parameters are destroyed.

CS8251 Programming in C UNIT III

33 B. Shanmuga Sundari csenotescorner.blogspot.com

E.g. Program:

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b;

void swap(int ,int);

a=10;

b=20;

printf("\n Before swapping: a = %d and b = %d",a,b); swap(a,

b);

printf("\n After swapping: a= %d and b= %d",a,b); getch();

}

void swap(int a1,int b1)

{

temp=a1;

a1=b1;

}

int temp;

b1=temp;

OUTPUT:

Before swapping: a =10 and b =20

CS8251 Programming in C UNIT III

34 B. Shanmuga Sundari csenotescorner.blogspot.com

After swapping: a =10 and b = 20

CS8251 Programming in C UNIT III

35 B. Shanmuga Sundari csenotescorner.blogspot.com

10 20

Main function

a b

1000 1002

Swap function

a1 b1

2000 2002

After swap function a1

 b1

2000 2002

2. Pass by reference (Call b y reference)

 In this method, the addresses of the actual arguments are passed to formal

argument.

 Thus formal arguments points to the actual arguments.

 So changes made in the arguments are permanent.

Example Program:

10 20

10 20

CS8251 Programming in C UNIT III

36 B. Shanmuga Sundari csenotescorner.blogspot.com

#include<stdio.h>

#include<conio.h>

void main()

{

b=20;

}

int a,b;

void swap(int *,int *);

a=10;

printf("\n Before swapping: a= %d and b= %d",a,b);

swap(&a,&b);

printf("\n After swapping: a= %d and b= %d",a,b); getch();

void swap(int *a1,int *b1)

{

int t;

t = *a1;

*a1 = *b1;

*b1 = t;

}

OUTPUT:

Before swapping: a = 10 and b = 20 After

swapping: a = 20 and b = 10 Main

function

a b

CS8251 Programming in C UNIT III

37 B. Shanmuga Sundari csenotescorner.blogspot.com

10 20

1000 1002

Swap function

a1 b1

a1, b1 points to a and b.

2000 2002

After swap function a b

1000 1002

Example Program: Swapping of two numbers and changing the value of a variable using

pass by reference

#include<stdio.h>

#include<conio.h>

void swap(int *num1, int *num2);

void main() {

int x, y;

printf("\nEnter First number : ");

scanf("%d", &x);

printf("\nEnter Second number : ");

scanf("%d", &y);

20 10

1000 1002

CS8251 Programming in C – UNIT IV

1

printf("\nBefore Swaping x = %d and y =

%d", x, y); swap(&x, &y); // Function Call -

Pass By Reference printf("\nAfter Swaping

x = %d and y = %d", x, y); getch();

}

void swap(int *num1, int *num2) {

int temp;

temp = *num1;

*num1 = *num2;

*num2 = temp;

}

Output:

Enter First

number : 12

Enter

Second

number : 21

Before Swaping x =

12 and y = 21 After

Swaping x = 21 and y

= 12

CS8251 Programming in C – UNIT IV

2

UNIT IV STRUCTURES

Structure - Nested structures – Pointer and Structures – Array of structures – Example

Program using structures and pointers – Self referential structures – Dynamic memory

allocation - Singly linked list - typedef

 Introduction

Using C language we can create new data types. These data types are known as User

Defined data types & can be created by using Structures, Unions & Enumerations.

Need for Structure

Arrays can store data of same data type. They can’t be used to store data of

different data types. For this Structures are used.

Structures

A structure is a collection of variables of different types under a single name. It is

used for storing different types of data.

3 aspects:

1. Defining a structure type

2. Declaring variables

3. Using & performing operations.

Structure Definition

The structure can be defined with the keyword struct followed by the name of

structure and opening brace with data elements of different type then closing brace with

semicolon.

General Form

struct [structure tag name]

{

type membername1;

type membername2;

……

}[variable name];

E.g.

struct book

{

char title[25];

CS8251 Programming in C – UNIT IV

3

int pages;

CS8251 Programming in C – UNIT IV

4

float price;

};

 Structure definition does not reserve any space in the memory.

 It is not possible to initialize the structure members during the structure

definition.

 A structure definition must always be terminated with a semicolon.

Rules for Structure members

1. A structure can have data of different types

2. A structure can’t contain an instance of itself.

E.g.

struct box

{

struct box a; // not possible

};

3. A structure can contain members of other complete types.

E.g.

struct name

{

char firstname[20];

char lastname[20];

};

struct person

{

struct name personname;

float salary;

}

4. A structure can contain a pointer to itself;

Declaration

CS8251 Programming in C – UNIT IV

5

Variables of structure type can be declared either at the time of structure

definition or after the structure definition.

General Form

struct structurename variablename[=initialization list]; E.g.

struct book b1,b2;

struct book b3={“CP”,500,385.00};

Accessing Members of Structure

There are two types of operators used for accessing members of a structure.

1. Direct member access operator (dot operator) (.)

2. Indirect member access operator (arrow operator) (->)

Using Dot operator

General form:

structure variable name.member variable name E.g.

Suppose, we want to access title of structure variable b1, then, it can be

accessed as:

b1.title

We can also directly assign values to members.

b1.title= “CP”;

 Structures within a Structure (Nested Structures)

A structure can be nested within another structure. Structure within structure is

known as nested structure i.e.) one structure can be declared inside other.

Example program:

#include<stdio.h>

struct name

{

char fname[20],lastname[20];

};

CS8251 Programming in C – UNIT IV

6

struct student

{

int sno,m1,m2,m3;

int tot;

float avg;

struct name sname;

};

void main()

{

struct student s[10];

float,avg;

int n,i;

printf(“Enter the number of students \n”);

scanf(“%d”,&n);

for(i=0;i<n;i++)

{

printf(“Enter student details \n”);

scanf(“%d”,&s[i].sno); scanf((“%d%d%d”,&s[i].m1,

&s[i].m2, &s[i].m3); scanf(“%s”, s[i].sname.fname);

scanf((“%s”,s[i].sname.lastname);

s[i].tot=s[i].m1+s[i].m2+s[i].m3;

s[i].avg=s[i].tot/6.0;

}

printf(“Student Mark lists\n”);

for(i=0;i<n;i++)

printf(“%s\t%s\t%f”,s[i].sname.fname, s[i].sname.lastname,s[i].avg);

}

Output:

CS8251 Programming in C – UNIT IV

7

tot

m3

m2

m1

sn

student

Enter the number of students 2

Enter student details

1 70 58 68 AjithKesav

2 90 86 95 RishikKesav

Student Mark lists

AjithKesav 70.000

RishikKesav 90.000

Accessing members in nested structure

E.g) s[i].sname.lastname

nested structure

 Pointer and Structures

lastname

fname

outerstructure variable.innerstructure variable.member name

name

avg

CS8251 Programming in C – UNIT IV

8

It is possible to create a pointer to a structure. A Structure containing a member that is a

pointer to the same structure type is called self referential structure. A pointer variable for the

structure can be declared by placing an asterisk(*) in front of the structure pointer variable.

Syntax:

struct namedstructuretype

*identifiername;

Example:

struct struct_name

{

data_type member_name1;

data_type member_name2;

.....................................

}*ptr;

OR

struct struct_name *ptr;

Dot(.) operator is used to access the data using normal structure variable and arrow (->) is

used to access the data using pointer variable.

1. Illustration of Structures using pointers

#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[30];

float percentage;

};

CS8251 Programming in C – UNIT IV

9

int main()

{

int i;

struct student record1 = {1, "Raju", 90.5};

struct student *ptr;

ptr = &record1;

printf("Records of Student: \n"); printf("

Id is: %d \n", ptr->id); printf(" Name is:

%s \n", ptr->name);

printf(" Percentage is: %f \n\n", ptr->percentage); return 0;

}

Output:

Records of Student:

Id is: 1

Name is: Sankar

Percentage is: 90.500000

 Array of Structures

Array of Structures is nothing but a collection of structures. It is an array whose

elements are of structure type. This is also called as Structure Array in C.

Consider the structure type struct student. This structure contains student

information like student name, s.no etc.

struct student

{

char name[20];

int sno, m1, m2, m3;

float average;

};

CS8251 Programming in C – UNIT IV

10

Using a single structure variable we can store single student details. To store information

about several students, we have to create a separate variable for each student. It is not

feasible. So array of structures are used.

General form

E.g. Program:

#include<stdio.h>

#include<conio.h>

struct employee

{

char name[15];

int empid,bsal;

float net,gross;

};

void main()

{

struct employee emp[10];

float hra,da,tax;

int n,i,j;

clrscr();

printf("Enter the number of employees\n");

scanf("%d",&n);

for(i=1;i<=n;i++)

{

printf("\nEnter the employee name");

scanf("%s",emp[i].name);

printf("\nEnter the employee id");

struct structurename arrayname[size];

CS8251 Programming in C – UNIT IV

11

scanf("%d",&emp[i].empid);

printf("\nEnter the basic salary");

scanf("%d",&emp[i].bsal);

hra=((10*emp[i].bsal)/100);

da=((35*emp[i].bsal)/100);

tax=((15*emp[i].bsal)/100);

emp[i].gross=emp[i].bsal+hra+da;

emp[i].net=emp[i].gross-tax;

}

printf("Employee Name Employee ID Employee Net Salary \n");

for(i=1;i<=n;i++)

printf("%s\t\t%d\t\t%f\n",emp[i].name,emp[i].empid,emp[i].net);

getch();

}

Output:

Enter the number of Employees 2

Enter the employee name

Anu

Enter the employee id

01

Enter the basic salary

1000

Enter the employee name

Meena

Enter the employee id

02

Enter the basic salary

CS8251 Programming in C – UNIT IV

12

2000

Employee Name

Employee ID

Net Salary

Anu 01 1300.000

Meena 02 2600.000

 Example Program using structures and pointers

1. C program to read and print employee's record using structure

#include <stdio.h>

/*structure declaration*/

struct employee{

char name[30];

int empId; float

salary;

};

int main()

{

/*declare structure variable*/

struct employee emp;

/*read employee details*/ printf("\nEnter

details :\n");

printf("Name ?:"); gets(emp.name);

printf("ID ?:"); scanf("%d",&emp.empId);

printf("Salary ?:"); scanf("%f",&emp.salary);

/*print employee details*/

printf("\nEntered detail is:");

printf("Name: %s" ,emp.name);

CS8251 Programming in C – UNIT IV

13

printf("Id: %d" ,emp.empId);

printf("Salary: %f\n",emp.salary);

return 0;

}

Output:

Enter details :

Name ?:Raju

ID ?:007

Salary ?:76543

Entered detail is:

Name: Raju

Id: 007

Salary: 76543.000000

 Self referential structures

Self referential Structures are those structures that contain a reference to data of its same

type. i.e in addition to other data a self referential structure contains a pointer to a data that it

of the same type as that of the structure. For example: consider the structure node given as

follows:

struct node

{

int val;

struct node *next;

};

Here the structure node will contain two types of data an integer val and next which is a

pointer a node. Self referential structure is the foundation of other data structures.

 Dynamic memory allocation

CS8251 Programming in C – UNIT IV

14

Dynamic memory allocation refers to the process of manual memory management

(allocation and deallocation).

The functions supports for dynamic memory allocation are,

1. malloc()

2. calloc()

3. realloc()

4. free()

1. malloc() function

malloc() allocates N bytes in memory and return pointer to allocated memory. The

returned pointer contains link/handle to the allocated memory.

void * malloc(number_of_bytes);

 It returns void pointer (generic pointer). Which means we can easily typecast it

to any other pointer types.

 It accepts an integer number_of_bytes, i.e. total bytes to allocate in memory.

Note: malloc() returns NULL pointer on failure.

Example

int N = 10; // Number of bytes to allocate int

*ptr; // Pointer variable to store address

ptr = (int *) malloc(N * sizeof(int)); // Allocate 10 * 4 bytes in memory

Here,

 ptr is a pointer to integer to store address of the allocated memory.

 (int *) is typecast required. As, I mentioned above that malloc() return void *.

Hence, to work with void pointer we must typecast it to suitable type.

 N * sizeof(int) - Since size of int is not fixed on all compilers. Hence, to get size

of integer on current compiler I have used sizeof() operator.

2. calloc() function

calloc() function allocates memory contiguously. It allocates multiple memory blocks and

initializes all blocks with 0 (NULL).

CS8251 Programming in C – UNIT IV

15

Note: malloc() allocates uninitialized memory blocks.

Syntax

void* calloc(number_of_blocks, number_of_bytes);

Here,

 Similar to malloc() it returns void pointer.

 It accepts two parameters number_of_blocks i.e. total blocks to allocate

and number_of_bytes i.e. bytes to allocate per block.

Therefore, you can say that calloc() will allocate

total (number_of_blocks * number_of_bytes) bytes. Each block initialized with 0

(NULL).

Example:

int *ptr;

ptr = (int *) calloc(N, sizeof(int));

Here, all memory blocks are initialized with 0.

3. realloc() function

When working with huge data and if the allocated memory is not sufficient to store data. In that

case, we need to alter/update the size of an existing allocated memory blocks (which has

been created by either malloc() or calloc()).

We use realloc() function to alter/update the size of exiting allocated memory blocks. The

function may resize or move the allocated memory blocks to a new location.

Syntax

void* realloc(ptr, updated_memory_size);

 Similar to all other functions for Dynamic Memory Allocation in C, it returns

void pointer. Which points to the address of existing or newly allocated memory.

 ptr is a pointer to memory block of previously allocated memory.

 updated_memory_size is new (existing + new) size of the memory block.

Example

// Original memory blocks allocation

CS8251 Programming in C – UNIT IV

16

int N = 10;

int *ptr;

ptr = (int *) malloc(N * sizeof(int));

// Increase the value of N

N = 50;

// Reallocate memory blocks

ptr = (int *) realloc(ptr, N * sizeof(int));

4. free() function

C programming has a built-in library function free() to clear or release the unused memory.

The free() function clears the pointer (assigns NULL to the pointer) to clear the dynamically

allocated memory. If pointer contains NULL, then free() does nothing (because pointer will

not be pointing at any memory addresses). If it contains any address of dynamically allocated

memory, free() will clear pointer by assigning NULL.

Syntax

free(ptr);

The function accepts a void pointer ptr. It points to previously allocated memory using any of

Dynamic Memory Allocation functions in C.

Example:

int N=10;

int *ptr;

// Allocate memory using malloc

ptr=(int *) malloc (N* size of (int));

//Free allocated memory

free(ptr);

 Singly Linked List

• A linked list in simple terms is a linear collection of data elements. These data

elements are called nodes.

CS8251 Programming in C – UNIT IV

• Linked list is a data structure which in turn can be used to implement other data

structures. Thus, it acts as building block to implement data structures like stacks,

queues and their variations.

• A linked list can be perceived as a train or a sequence of nodes in which each

node contain one or more data fields and a pointer to the next node.

In the above linked list, every node contains two parts- one integer and the other a pointer to

the next node. The left part of the node which contains data may include a simple data type,

an array or a structure. The right part of the node contains a pointer to the next node (or

address of the next node in sequence). The last node will have no next node connected to it, so

it will store a special value called NULL.

A singly linked list is the simplest type of linked list in which every node contains some data and

a pointer to the next node of the same data type. By saying that the node contains a pointer to

the next node we mean that the node stores the address of the next node in sequence.

Traversing a singly linked list

Traversing a linked list means accessing the nodes of the list in order to perform some

operations on them. A Linked list always contains a pointer variable START which stores

the address of the first node of the list. The end of the list is marked by string NULL or -1 in

the NEXT field of the last node. For traversing the singly linked list, we make use of another

pointer variable PTR which points to the node that is correctly being accessed. The algorithm

to traverse a linked list is shown below:

2 3 4 5 X 7 1

START

6

15

Algorithm for traversing a linked list

Step 1: [INITIALIZE] SET PTR = START

Step 2: Repeat Steps 3 and 4 while PTR != NULL

Step 3: Apply Process to PTR->DATA

Step 4: SET PTR = PTR->NEXT

[END OF LOOP]

Step 5: EXIT

CS8251 Programming in C – UNIT IV

In this algorithm, we first initialize PTR with the address of start. So now PTR points to the

first node of the linked list.

Then in step 2 while loop is executed which is repeated till PTR processes the last node, that is,

until it encounters NULL.

In step 3, we apply the process to the current node.

In step 4, we move to the next node by making PTR point to the node whose address is stored

in the NEXT field.

The algorithm print the information stored in each node of the linked list is shown

below:

We will traverse each and every node of the list and while traversing every individual node,

we will increment the counter by 1. Once we reach NULL, that is when all the nodes of the

linked list have been traversed, the final value of the counter will be displayed. Figure below

shows the algorithm to print the number of nodes in a linked list.

Algorithm to print the information stored in

each node of the linked list

Step 1: [INITIALIZE] SET PTR = START

Step 2: Repeat Steps 3 and 4 while PTR != NULL

Step 3: Write PTR->DATA

Step 4: SET PTR = PTR->NEXT

[END OF LOOP]

Step 5: EXIT

16

Algorithm to print the number of nodes in the linked list

Step 1: [INITIALIZE] SET Count = 0

Step 2: [INITIALIZE] SET PTR = START

Step 3: Repeat Steps 4 and 5 while PTR != NULL

Step 4: SET Count = Count + 1

Step 5: SET PTR = PTR->NEXT

[END OF LOOP]

CS8251 Programming in C – UNIT IV

17

4.8. 3 I tio n in ing ly L ked Lis a S in
3 4 7

Searching for a value in a Linked list

Searching a linked list means to find a particular element in the linked list. A linked list

consists of two parts – the DATA part and NEXT part, where DATA stores the relevant

information and NEXT stores the address of the next node in the sequence. Figure below shows

the algorithm to search a linked list.

Consider the linked list shown in figure we have val=4, then the flow of the algorithm can be

explained as shown in figure

er t

X 5 2 1 7 3 4 6

7 3 4 6

2 6

1 3 4 6

X 5 ns 1

Algorithm to search an unsorted linked list

Step 1: [INITIALIZE] SET PTR = START

Step 2: Repeat Steps 3 while PTR != NULL

Step 3: IF VAL = PTR->DATA

SET POS = PTR

Go To Step 5

ELSE

SET PTR = PTR->NEXT

[END OF IF]

[END OF LOOP]

Step 4: SET POS = NULL

Step 5: EXIT

1 2 X 5

7 2 X 5

CS8251 Programming in C – UNIT IV

18

Insert a new node at the head of the list is straightforward. The main idea is that we create a

new node, set its next link to refer to the current head, and then set head to point to the new

node.

Algorithm addFirst(String newData):

create a new node v containing newData

v.setNext(head)

head = v

size = size + 1

Insertion at the tail

If we keep a reference to the tail node, then it would be easy to insert an element at the tail of

the list. Assume we keep a tail node in the class of SLinkedList, the idea is to create a new

node, assign its next reference to point to a null object, set the next reference of the tail to

point to this new object, and then assign the tail reference itself to this new node. Initially

both head and tail point to null object.

Algorithm addLast(String newData):

create a new node v containing newData

v.setNext(null)

if (head == null) { // list is empty

head = v

} else { // list is not empty

tail.setNext(v)

}

tail = v

size = size + 1

Deletion in a Singly Linked List

Deletion at the head

Removal of an element at the head of a singly linked list is relatively easy. However

removing a tail node is not easy.

CS8251 Programming in C – UNIT IV

19

Algorithm removeFirst()

if (head = = null) then

Indicate an error: the list is empty

tmp = head

head = head.getNext()

tmp.setNext(null)

size = size - 1

Example:

include<stdio.h>

#include<stdlib.h>

#include<stdbool.h>

struct test_struct

{

int val;

struct test_struct *next;

};

struct test_struct *head = NULL; struct

test_struct *curr = NULL; struct

test_struct* create_list(int val)

{

printf("\n creating list with headnode as [%d]\n",val);

struct test_struct *ptr = (struct test_struct*)malloc(sizeof(struct test_struct));

if(NULL == ptr)

{

printf("\n Node creation failed \n"); return NULL;

}

ptr->val = val;

ptr->next = NULL;

head = curr = ptr;

return ptr;

CS8251 Programming in C – UNIT IV

20

}

struct test_struct* add_to_list(int val, bool add_to_end)

{

if(NULL == head)

{

return (create_list(val));

}

if(add_to_end)

printf("\n Adding node to end of list with value [%d]\n",val);

else printf("\n Adding node to beginning of list with value [%d]\n",val); struct

test_struct *ptr = (struct test_struct*)malloc(sizeof(struct test_struct)); if(NULL

== ptr)

{ printf("\n Node creation failed \n"); return NULL;

}

ptr->val = val;

ptr->next = NULL;

if(add_to_end)

{ curr->next = ptr; curr = ptr;

}

else { ptr->next = head; head = ptr;

}

return ptr;

}

struct test_struct* search_in_list(int val, struct test_struct **prev)

{

struct test_struct *ptr = head;

struct test_struct *tmp = NULL;

bool found = false;

printf("\n Searching the list for value [%d] \n",val);

while(ptr != NULL)

{

CS8251 Programming in C – UNIT IV

21

if(ptr->val == val)

{ found = true; break;

}

else

{

tmp = ptr; ptr = ptr->next;

}

}

if(true == found)

{

if(prev) *prev = tmp;

return ptr;

}

else

{

return NULL; } }

int delete_from_list(int val)

{

struct test_struct *prev = NULL;

struct test_struct *del = NULL;

printf("\n Deleting value [%d] from list\n",val); del

= search_in_list(val,&prev);

if(del == NULL) { return -1; }

else

{

if(prev != NULL)

prev->next = del->next;

if(del == curr)

{ curr = prev;

}

else if(del == head)

CS8251 Programming in C – UNIT IV

22

{

head = del->next;

} }

free(del);

del = NULL; return 0;

}

void print_list(void) {

struct test_struct *ptr = head;

printf("\n -------Printing list Start---------- \n");

while(ptr != NULL)

{

printf("\n [%d] \n",ptr->val);

ptr = ptr->next;

}

printf("\n -------Printing list End --------- \n"); return;

}

int main(void)

{

int i = 0, ret = 0;

struct test_struct *ptr = NULL;

print_list();

for(i = 5; i<10; i++)

add_to_list(i,true); print_list();

for(i = 4; i>0; i--)

add_to_list(i,false); print_list();

for(i = 1; i<10; i += 4)

{ ptr = search_in_list(i, NULL);

if(NULL == ptr)

{

printf("\n Search [val = %d] failed, no such element found\n",i);

CS8251 Programming in C – UNIT IV

23

}

else

{

printf("\n Search passed [val = %d]\n",ptr->val); }

print_list(); ret = delete_from_list(i);

if(ret != 0) { printf("\n delete [val = %d] failed, no such element found\n",i);

}

else

{

printf("\n delete [val = %d] passed \n",i); } print_list(); } return 0;

}

 Typedef

The typedef keyword enables the programmer to create a new data type name by using an

existing data type.

By using typedef, no new data is created, rather an alternate name is given to a known data

type.

Syntax: typedef existing_data_type new_data_type;

It is used to create a new data using the existing type.

Syntax: typedef data type name;

Example: typedef int hours: hours hrs;/

* Now, hours can be used as new datatype */

Multiple Choice Questions

1. A data structure that can store related information together is

A. array

B. string

C. structure

D. all of these

CS8251 Programming in C – UNIT IV

24

Answer: all of these

2. A data structure that can store related information of different data types

together is

A. array

B. string

C. Structure

D. all of these

Answer: Structure

3. Memory for a structure is allocated at the time of

A. Structure definition

B. Structure variable declaration

C. Structure declaration

D. Function declaration

Answer: Structure variable declaration

4. A Structure member variable is generally accessed using the

A. address operator

B. dot operator

C. comma operator

D. ternary operator

Answer: dot operator

5. A Structure can be placed within another structure and is known as,

A. Self-referential structure

B. Nested Structure

C. Parallel structure

D. Pointer to structure

Answer: Nested Structure

CS8251 Programming in C – UNIT IV

25

6. A union number variable is generally accessed using the

A. address operator

B. dot operator

C. comma operator

D. ternary operator

Answer: dot operator

7. Typedef can be used with which of these data types

A. struct

B. union

C. enum

D. all of these

Answer: all of these

8. The enumerated type is derived from which data type

A. int

B. double

C. float

D. char

Answer: int

9. Which operator connects the structure name to its member name?

A. –

B. <-

C. Dot operator

D. Both <- and dot operator

Answer: Dot operator

10. Which of the following operation is illegal in structures?

a) Typecasting of structure

b) Pointer to a variable of the same structure

CS8251 Programming in C – UNIT IV

26

c) Dynamic allocation of memory for structure

d) All of the mentioned

Answer: Typecasting of structure

11. Presence of code like “s.t.b = 10” indicates

a) Syntax Error

b) Structure

c) double data type

d) An ordinary variable name

Answer: Structure

12. What is the size of a C structure.?

A) C structure is always 128 bytes.

B) Size of C structure is the total bytes of all elements of structure.

C) Size of C structure is the size of largest element.

D) None of the above

Answer: Size of C structure is the total bytes of all elements of structure

13. A C Structure or User defined data type is also called.?

A) Derived data type

B) Secondary data type

C) Aggregate data type

D) All the above

Answer: All the above

14. What is actually passed if you pass a structure variable to a function.?

A) Copy of structure variable

B) Reference of structure variable

C) Starting address of structure variable

D) Ending address of structure variable

Answer: Copy of structure variable

CS8251 Programming in C - UNIT V

1

15. What is the output of C program with structure array pointers.? int

main()

{

struct car

{

int km;

}*p1[2];

struct car c1={1234};

p1[0]=&c1;

printf("%d ",p1[0]->km);

return 0;

}

A) 0

B) 1

C) c

D) Compiler error

Answer: 1234

CS8251 Programming in C - UNIT V

2

UNIT V FILE PROCESSING

Files – Types of file processing: Sequential access, Random access – Sequential access file -

Example Program: Finding average of numbers stored in sequential access file - Random

access file -Example Program: Transaction processing using random access files – Command

line arguments

 Introduction

A file is a semi-permanent, named collection of data. A File is usually stored on

magnetic media, such as a hard disk or magnetic tape. Semi-permanent means that data saved

in files stays safe until it is deleted or modified.

Named means that a particular collection of data on a disk has a name, like

mydata.dat and access to the collection is done by using its name.

A file represents a sequence of bytes on the disk where a group of related data is

stored. File is created for permanent storage of data. It is a readymade structure.

Types of Files

1. Text files

2. Binary files

1. Text Files

A text file consists of consecutive characters, which are interpreted by the library

functions used to access them and by format specifiers used in functions.

Text files are the normal .txt files that you can easily create using Notepad or any

simple text editors.

They take minimum effort to maintain, are easily readable, and provide least security

and takes bigger storage space.

2. Binary files

A binary file consists of bytes of data arranged in continuous block. A separate set of

library functions is there to process such data files.

Binary files are mostly the .bin files in your computer. Instead of storing data in plain

text, they store it in the binary form (0's and 1's). They can hold higher amount of data, are

not readable easily and provides a better security than text files.

File Operations

In C, you can perform four major operations on the file, either text or binary:

CS8251 Programming in C - UNIT V

3

1. Creating a new file

2. Opening an existing file

3. Closing a file

4. Reading from and writing information to a file

Function description

fopen() - create a new file or open a existing file

fclose() - closes a file

getc() - reads a character from a file putc()

- writes a character to a file fscanf() -

reads a set of data from a file fprintf() -

writes a set of data to a file getw() - reads

a integer from a file putw() - writes a

integer to a file fseek() - set the position to

desire point ftell() - gives current position

in the file

rewind() - sets the position to the beginning point

1. Opening a File or Creating a File

Opening a file means creating a new file with specified file name and with accessing mode.

The fopen() function is used to create a new file or to open an existing file.

Syntax:

*fp = FILE *fopen(const char *filename, const char *mode);

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to the opened(or

created) file.

filename is the name of the file to be opened and mode specifies the purpose of

opening the file.

Mode can be of following types:

CS8251 Programming in C - UNIT V

4

Mode Description

Mode Purpose

r opens a text file in reading mode

w opens or create a text file in writing mode.

a opens a text file in append mode

r+ opens a text file in both reading and writing mode

w+ opens a text file in both reading and writing mode

a+ opens a text file in both reading and writing mode

rb opens a binary file in reading mode

wb opens or create a binary file in writing mode

ab opens a binary file in append mode

rb+ opens a binary file in both reading and writing mode

wb+ opens a binary file in both reading and writing mode

ab+ opens a binary file in both reading and writing mode

2. Closing a File

A file must be closed after all the operation of the file have been completed. The fclose()

function is used to close an already opened file.

Syntax:

int fclose(FILE *fp);

Here fclose() function closes the file and returns zero on success, or EOF if there is an error

in closing the file. This EOF is a constant defined in the header file stdio.h.

3. Reading and writing to a text file

i. Read a character from a file: fgetc function

CS8251 Programming in C - UNIT V

5

The ‘fgetc’ function is used to read a character from a file which is opened in read mode.

Syntax:

c=fgetc(p1);

where p1 is the file pointer.

ii. Read a data from a file: fscanf function

The fscanf function is used to read data from a file. It is similar to the scanf function except

that fscanf() is used to read data from the disk.

Syntax:

fscanf(fb “format string”, &v1, &v2…&vn);

where fb refers to the file pointer. v1, v2, … vn refers variables whose values are read from

the disk “format string” refers the control string which represents the conversion

specification.

iii. Write a character to a file:fputc function

The function ‘fputc’ is used to write a character variable x to the file opened in write mode.

Syntax:

fputc(x,fp1);

where fp1 is the file pointer.

iv. Writing data to a file : fprintf()

fprintf() function is used to write data to a file. It is similar to the printf() function except that

fprintf() is used to write data to the disk.

Syntax:

fprintf(fp, “format string”, v1,v2… vn);

where fp refers to the file pointer.

 Types of file processing

There are two main ways a file can be organized:

CS8251 Programming in C - UNIT V

6

1. Sequential Access — In this type of file, the data are kept sequentially. To read last

record of the file, it is expected to read all the records before that particular record. It

takes more time for accessing the records.

2. Random Access — In this type of file, the data can be read and modified

randomly. If it is desired to read the last record of a file, directly the same record can

be read. Due to random access of data, it takes less access time as compared to the

sequential file.

Sequential Access File

A Sequential file is characterized by the fact that individual data items are arranged

serially in a sequence, one after another. They can only be processed in serial order from the

beginning. In other words, the records can be accessed in the same manner in which they

have been stored. It is not possible to start reading or writing a sequential file from anywhere

except at the beginning.

Random Access File

The second and better method of arranging records of a file is called direct access or

random access. In this arrangement one can have access to any record which is situated at the

middle of the file without reading or passing through other records in the file.

 Reading Sequential Access file

Data is stored in files so that the data can be retrieved for processing when needed

Example:

clients.dat file contents

100 Jones 9023.00

200 Frank 234.00

300 Mano 29023.00

400 Bala 2344.00

Program:

// Reading and printing a sequential file

#include <stdio.h>

CS8251 Programming in C - UNIT V

7

#include <stdlib.h>

int main(void) {

unsigned int account; // account number

char name[30]; // account name

double balance; // account balance

FILE *cfPtr; // cfPtr = clients.dat file pointer

// fopen opens file; exits program if file cannot be opened if

((cfPtr = fopen("clients.dat", "r")) == NULL) { puts("File

could not be opened");

exit(0);

}

printf("%-10s%-13s%s\n", "Account", "Name", "Balance");

fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);

// while not end of file

while (!feof(cfPtr)) {

printf("%-10d%-13s%7.2f\n", account, name, balance);

fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);

} // end while

fclose(cfPtr); // fclose closes the file

} // end main

Output:

Account Name Balance

100 Jones 9023.00

200 Frank 234.00

300 Mano 29023.00

CS8251 Programming in C - UNIT V

8

400 Bala 2344.00

 Read numbers from file and calculate Average

/* Program to read from the num.dat file and find the average of the numbers */

#include <stdio.h>

#include <stdlib.h>

#define DATAFILE "prog15.dat" int

main() {

FILE* fp;

int n[50], i = 0;

float sum = 0;

if ((fp = fopen(DATAFILE, "r")) == NULL) {

printf("Unable to open %s. \n", DATAFILE);

exit(0);

}

puts("Reading numbers from num.dat");

while (!feof(fp)) {

fscanf(fp, "%d ", &n[i]);

printf("%d %d\n", i, n[i]);

sum += n[i];

i++;

}

fclose(fp);

// if no data is available in the file if

(i == 0)

printf("No data available in %s", DATAFILE);

CS8251 Programming in C - UNIT V

9

float average = sum / i;

printf("The average is %.3f for %d numbers\n", average, i);

return 0;

}

Output:

 Random access file

 Access individual records without searching through other records

 Instant access to records in a file

 Data can be inserted without destroying other data

 Data previously stored can be updated or deleted without overwriting.

 Implemented using fixed length records

 Sequential files do not have fixed length records

0 100

200 300 400 500

 }byte offsets

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

} } } } } }

CS8251 Programming in C - UNIT V

10

Functions For Selecting A Record Randomly

The functions used to randomly access a record stored in a file are fseek(), ftell(), rewind(),

fgetpos(), and fsetpos().

1. fseek()

• fseek() is used to reposition a binary stream. The prototype of fseek() can be

given as,

• int fseek(FILE *stream, long offset, int origin);

• fseek() is used to set the file position pointer for the given stream. Offset is an

integer value that gives the number of bytes to move forward or backward in

the file. Offset may be positive or negative, provided it makes sense. For

example, you cannot specify a negative offset if you are starting at the

beginning of the file. The origin value should have one of the following values

(defined in stdio.h):

• SEEK_SET: to perform input or output on offset bytes from start of the file

• SEEK_CUR: to perform input or output on offset bytes from the current

position in the file

• SEEK_END: to perform input or output on offset bytes from the end of the file

• SEEK_SET, SEEK_CUR and SEEK_END are defined constants with value 0,

1 and 2 respectively.

• On successful operation, fseek() returns zero and in case of failure, it returns a

non-zero value. For example, if you try to perform a seek operation on a file

that is not opened in binary mode then a non-zero value will be returned.

• fseek() can be used to move the file pointer beyond a file, but not before the

beginning.

Example: Write a program to print the records in reverse order. The file must be opened in

binary mode. Use fseek()

#include<stdio.h>

#include<conio.h>

main()

{ typedef struct employee

CS8251 Programming in C - UNIT V

11

{ int emp_code;

char name[20];

int hra;

int da;

int ta;

};

FILE *fp;

struct employee e;

int result, i;

fp = fopen("employee.txt", "rb");

if(fp==NULL)

{ printf("\n Error opening file");

exit(1);

}

for(i=5;i>=0;i--)

{ fseek(fp, i*sizeof(e), SEEK_SET);

fread(&e, sizeof(e), 1, fp);

printf("\n EMPLOYEE CODE : %d", e.emp_code); printf("\n

Name : %s", e.name);

printf("\n HRA, TA and DA : %d %d %d", e.hra, e.ta, e.da);

}

fclose(fp);

getch();

return 0;

}

2. rewind()

CS8251 Programming in C - UNIT V

12

• rewind() is used to adjust the position of file pointer so that the next I/O

operation will take place at the beginning of the file. It’s prototype can be given

as

• void rewind(FILE *f);

• rewind() is equivalent to calling fseek() with following parameters:

fseek(f,0L,SEEK_SET);

3. fgetpos()

• The fgetpos() is used to determine the current position of the stream. It’s

prototype can be given as

int fgetpos(FILE *stream, fpos_t *pos);

• Here, stream is the file whose current file pointer position has to be determined.

pos is used to point to the location where fgetpos() can store the position

information. The pos variable is of type fops_t which is defined in stdio.h and

is basically an object that can hold every possible position in a FILE.

• On success, fgetpos() returns zero and in case of error a non-zero value is

returned. Note that the value of pos obtained through fgetpos() can be used by

the fsetpos() to return to this same position.

4. fsetpos()

• The fsetpos() is used to move the file position indicator of a stream to the

location indicated by the information obtained in "pos" by making a call to the

fgetpos(). Its prototype is

• int fsetpos(FILE *stream, const fops_t pos);

• Here, stream points to the file whose file pointer indicator has to be re-

positioned. pos points to positioning information as returned by "fgetpos".

• On success, fsetpos() returns a zero and clears the end-of-file indicator. In case

of failure it returns a non-zero value

The program opens a file and reads bytes at several different locations.

#include <stdio.h>

main()

{

CS8251 Programming in C - UNIT V

13

FILE *fp;

fpos_t pos;

char feedback[20];

fp = fopen(“comments.txt”, “rb”);

if(fp == NULL)

{

printf(“\n Error opening file”);

exit(1);

}

// Read some data and then check the position.

fread(feedback, sizeof(char), 20, fp);

if(fgetpos(fp, &pos) != 0)

{

printf(“\n Error in fgetpos()");

exit(1);

}

fread(feeback, sizeof(char), 20, fp);

printf("\n 20 bytes at byte %ld: %s", pos, feedback);

// Set a new position and read more data pos =

90;

if(fsetpos(fp, &pos) != 0)

{

printf(“\n Error in fsetpos()");

exit(1);

}

fread(feedback, sizeof(char), 20, fp);

CS8251 Programming in C - UNIT V

14

printf("\n 20 bytes at byte %ld: %s", pos, feedback);

fclose(fp);

}

5. ftell()

The ftell function is used to know the current position of file pointer. It is at this position at

which the next I/O will be performed. The syntax of the ftell() defined in stdio.h can be given

as:

long ftell (FILE *stream);

On successful, ftell() function returns the current file position (in bytes) for stream. However,

in case of error, ftell() returns -1.

When using ftell(), error can occur either because of two reasons:

First, using ftell() with a device that cannot store data (for example, keyboard)

Second, when the position is larger than that can be represented in a long integer. This will

usually happen when dealing with very large files

FILE *fp;

char c; int

n;

fp=fopen("abc","w");

if(fp==NULL)

{ printf("\n Error Opening The File");

exit(1);

}

while((c=getchar())!=EOF)

putc(c,fp);

n = ftell(fp);

fclose(fp);

fp=fopen("abc","r");

CS8251 Programming in C - UNIT V

15

if(fp==NULL)

{ printf("\n Error Opening The File");

exit(1);

}

while(ftell(fp)<n)

{ c= fgetc(fp);

printf('%c", c);

}

fclose(fp);

 Example Program: Transaction processing using random access files

The program maintains a bank’s account information—updating existing accounts, adding

new accounts, deleting accounts and storing a listing of all the current accounts in a text file

for printing.

The program has five options.

Option 1

calls function textFile to store a formatted list of all the accounts (typically called a report) in

a text file called accounts.txt that may be printed later. The function uses fread and the

sequential file access techniques used in the program of Section below.

After option 1 is chosen, the file accounts.txt contains:

Acct Last Name First Name Balance

29 Brown Nancy -24.54

33 Dunn Stacey 314.33

37 Barker Doug 0.00

88 Smith Dave 258.34

96 Stone Sam 34.98

CS8251 Programming in C - UNIT V

16

Option 2

calls the function updateRecord to update an account. The function will update only a

record that already exists, so the function first checks whether the record specified by the

user is empty. The record is read into structure client with fread, then member acctNum is

compared to 0. If it’s 0, the record contains no information, and a message is printed stating

that the record is empty. Then the menu choices are displayed. If the record contains

information, function updateRecord inputs the transaction amount, calculates the new balance

and rewrites the record to the file.

Enter account to update (1 - 100): 37 37

Barker Doug 0.00

Enter charge (+) or payment (-): +87.99

37 Barker Doug 87.99

Option 3

calls the function newRecord to add a new account to the file. If the user enters an account

number for an existing account, newRecord displays an error message indicating that the

record already contains information, and the menu choices are printed again

Enter new account number (1 - 100): 22

Enter lastname, firstname, balance

? Johnston Sarah 247.45

Option 4

calls function deleteRecord to delete a record from the file. Deletion is accomplished by

asking the user for the account number and re-initialising the record. If the account contains

no information, deleteRecord displays an error message indicating that the account does not

exist.

Option 5

terminates program execution.

Example Program:

CS8251 Programming in C - UNIT V

17

// Bank-account program reads a random-access file sequentially, updates data already written

to the file, creates new data to be placed in the file, and deletes data previously in the file. //

#include <stdio.h>

#include <stdlib.h>

// clientData structure definition

struct clientData {

unsigned int acctNum; // account number

char lastName[15]; // account last name char

firstName[10]; // account first name double

balance; // account balance

}; // end structure clientData

// prototypes

unsigned int enterChoice(void);

void textFile(FILE *readPtr); void

updateRecord(FILE *fPtr); void

newRecord(FILE *fPtr); void

deleteRecord(FILE *fPtr); int

main(int argc, char *argv[]) {

FILE *cfPtr; // credit.dat file pointer

unsigned int choice; // user's choice

// fopen opens the file; exits if file cannot be opened

// Do not change the mode "rb+" - it will not work! if

((cfPtr = fopen("credit.dat", "rb+")) == NULL) {

printf("%s: File could not be opened.\n", argv[0]);

exit(-1);

CS8251 Programming in C - UNIT V

18

}

// enable user to specify action

while ((choice = enterChoice()) != 5) {

switch (choice) {

// create text file from record file

case 1:

textFile(cfPtr); break;

// update record

case 2:

updateRecord(cfPtr); break;

// create record

case 3:

newRecord(cfPtr); break;

// delete existing record

case 4:

deleteRecord(cfPtr); break;

// display if user does not select valid choice

default:

puts("Incorrect choice"); break;

} // end switch

} // end while

fclose(cfPtr); // fclose closes the file

} // end main

// create formatted text file for printing

void textFile(FILE *readPtr) {

FILE *writePtr; // accounts.txt file pointer

CS8251 Programming in C - UNIT V

19

int result; // used to test whether fread read any bytes

// create clientData with default information

struct clientData client = {0, "", "", 0.0};

// fopen opens the file; exits if file cannot be opened

if ((writePtr = fopen("accounts.txt", "w")) == NULL) {

puts("File could not be opened.");

} // end if

else {

rewind(readPtr); // sets pointer to beginning of file

fprintf(writePtr, "%-6s%-16s%-11s%10s\n", "Acct", "Last Name","First Name", "Balance");

// copy all records from random-access file into text file

while (!feof(readPtr)) {

result = fread(&client, sizeof(struct clientData), 1, readPtr);

// write single record to text file

if (result != 0 && client.acctNum != 0) {

fprintf(writePtr, "%-6d%-16s%-11s%10.2f\n", client.acctNum,

client.lastName, client.firstName, client.balance);

} // end if

} // end while

fclose(writePtr); // fclose closes the file

} // end else

} // end function textFile

// update balance in record

void updateRecord(FILE *fPtr) {

CS8251 Programming in C - UNIT V

20

unsigned int account; // account number

double transaction; // transaction amount

// create clientData with no information

struct clientData client = {0, "", "", 0.0};

// obtain number of account to update

printf("%s", "Enter account to update (1 - 100): ");

scanf("%d", &account);

// move file pointer to correct record in file

fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);

// read record from file

fread(&client, sizeof(struct clientData), 1, fPtr);

// display error if account does not exist if

(client.acctNum == 0) {

printf("Account #%d has no information.\n", account);

} else { // update record

printf("%-6d%-16s%-11s%10.2f\n\n", client.acctNum, client.lastName,

client.firstName, client.balance);

// request transaction amount from user printf("%s",

"Enter charge (+) or payment (-): "); scanf("%lf",

&transaction);

client.balance += transaction; // update record balance

printf("%-6d%-16s%-11s%10.2f\n", client.acctNum, client.lastName,

client.firstName, client.balance);

// move file pointer to correct record in file

// move back by 1 record length

fseek(fPtr, -sizeof(struct clientData), SEEK_CUR);

CS8251 Programming in C - UNIT V

21

// write updated record over old record in file fwrite(&client,

sizeof(struct clientData), 1, fPtr);

} // end else

} // end function updateRecord

// delete an existing record

void deleteRecord(FILE *fPtr) {

struct clientData client; // stores record read from file struct

clientData blankClient = {0, "", "", 0}; // blank client

unsigned int accountNum; // account number

// obtain number of account to delete

printf("%s", "Enter account number to delete (1 - 100): ");

scanf("%d", &accountNum);

// move file pointer to correct record in file

fseek(fPtr, (accountNum - 1) * sizeof(struct clientData), SEEK_SET);

// read record from file

fread(&client, sizeof(struct clientData), 1, fPtr);

// display error if record does not exist if

(client.acctNum == 0) {

printf("Account %d does not exist.\n", accountNum);

} // end if

else { // delete record

// move file pointer to correct record in file

fseek(fPtr, (accountNum - 1) * sizeof(struct clientData), SEEK_SET);

CS8251 Programming in C - UNIT V

22

// replace existing record with blank record

fwrite(&blankClient, sizeof(struct clientData), 1, fPtr);

} // end else

} // end function deleteRecord

// create and insert record

void newRecord(FILE *fPtr) {

// create clientData with default information struct

clientData client = {0, "", "", 0.0}; unsigned int

accountNum; // account number

// obtain number of account to create

printf("%s", "Enter new account number (1 - 100): ");

scanf("%d", &accountNum);

// move file pointer to correct record in file

fseek(fPtr, (accountNum - 1) * sizeof(struct clientData), SEEK_SET);

// read record from file

fread(&client, sizeof(struct clientData), 1, fPtr);

// display error if account already exists

if (client.acctNum != 0) {

printf("Account #%d already contains information.\n", client.acctNum);

} // end if

else { // create record user enters last name, first name and balance printf("%s",

"Enter lastname, firstname, balance\n? "); scanf("%14s%9s%lf",

client.lastName, client.firstName, &client.balance); client.acctNum =

accountNum;

CS8251 Programming in C - UNIT V

23

// move file pointer to correct record in file

fseek(fPtr, (client.acctNum - 1) * sizeof(struct clientData), SEEK_SET);

// insert record in file

fwrite(&client, sizeof(struct clientData), 1, fPtr);

} // end else

} // end function newRecord

// enable user to input menu choice

unsigned int enterChoice(void) {

unsigned int menuChoice; // variable to store user's choice

// display available options printf("%s",

"\nEnter your choice\n"

"1 - store a formatted text file of accounts called\n" "

 \"accounts.txt\" for printing\n"

"2 - update an account\n" "3

- add a new account\n" "4 -

delete an account\n" "5 -

end program\n? ");

scanf("%u", &menuChoice); // receive choice from user return

menuChoice;

} // end function enterChoice

Output

CS8251 Programming in C - UNIT V

24

 Command line arguments

Command line argument is a parameter supplied to the program when it is invoked.

Command line argument is an important concept in C programming. It is mostly used when

you need to control your program from outside. Command line arguments are passed to the

main() method.

Syntax:

int main(int argc, char *argv[])

CS8251 Programming in C - UNIT V

25

Here argc counts the number of arguments on the command line and argv[] is a pointer array

which holds pointers of type char which points to the arguments passed to the program

Example:

#include <stdio.h>

#include <conio.h>

int main(int argc, char *argv[])

{

int i;

if(argc >= 2)

{

printf("The arguments supplied are:\n");

for(i = 1; i < argc; i++)

{

printf("%s\t", argv[i]);

}

}

else

{

printf("argument list is empty.\n");

}

return 0;

}

Remember that argv[0] holds the name of the program and argv[1] points to the first

command line argument and argv[n] gives the last argument. If no argument is supplied,

argc will be 1.

CS8251 Programming in C - UNIT V

26

Multiple Choice Questions

1. _ is a collection of data.

A. Buffer

B. Stream

C. File

Answer: File

2. If the mode includes b after the initial letter, what does it indicates?

a) text file

b) big text file

c) binary file

Answer: binary file

3. What is the function of the mode ‘ w+’?

a) create text file for writing, discard previous contents if any

b) create text file for update, discard previous contents if any

c) create text file for writing, do not discard previous contents if any

d) create text file for update, do not discard previous contents if any

Answer: create text file for update, discard previous contents if any

4. fflush(NULL) flushes all

a) input streams

b) output streams

c) previous contents

d) appended text

Answer: output streams

5. What is the keyword used to declare a C file pointer.?

A) file

CS8251 Programming in C - UNIT V

27

B) FILE

C) FILEFP

D) filefp

Answer: FILE

6. What is a C FILE data type.?

A) FILE is like a Structure only

B) FILE is like a Union only

C) FILE is like a user define int data type

D) None of the above

Answer: FILE is like a Structure only

7. Where is a file temporarily stored before read or write operation in C

language.?

A) Notepad

B) RAM

C) Hard disk

D) Buffer

Answer: Buffer

8. Which function gives the current position of the file.

A. fseek()

B. fsetpos()

C. ftell()

D. Rewind()

Answer: ftell()

9. Which function is used to perform block output in binary files?

A. fwrite()

B. fprintf()

CS8251 Programming in C - UNIT V

28

C. fputc()

D. fputs()

Answer: fwrite()

10. Select the standard stream in C

A. stdin

B. stdout

C. stderr

D. all of these

Answer: all of these

11. From which standard stream does a C program read data?

A. Stdin

B. stdout

C. stderr

D. all of these

Answer: stderr

12. Which acts as an interface between stream and hardware?

A. file pointer

B. buffer

C. stdout

D. stdin

Answer: buffer

13. Which function is used to associate a file with a stream?

A. fread()

CS8251 Programming in C – UNIT I

B. fopen()

C. floes()

D. fflush()

Answer: fopen()

14. Which function returns the next character from stream, EOF if the end of file is reached, or if

there is an error?

A. fgetc()

B. fgets()

C. fputs()

D. fwrite()

Answer: fgetc()

	UNIT I BASICS OF C PROGRAMMING
	Introduction to programming paradigms
	Programming Languages
	Structure of C program
	Fig 1.1 Structure of C program
	Basic Data Types in C
	Storage classes
	Syntax:
	1. The auto storage class
	2. The register storage class
	Example:
	3. The static storage class
	Ex:
	Output:
	4. The extern storage class
	The typedef storage class
	Eg:
	Summary of storage classes
	Literal constants
	Integer Literal constant
	Floating point Literal constant
	Character Literal constant
	Printable character literal constant
	Non-Printable character literal constant.
	String Literal constant
	Qualified constants:
	Symbolic constants
	Keywords
	Operators: Precedence and Associativity Operands
	Operator
	Precedence of operators
	Associativity of operators
	Rules for evaluation of expression
	Expressions
	Simple Expressions & Compound Expressions
	Classification of Operators
	Classification based on Number of Operands
	3. Ternary Operator
	Classification based on role of operands
	1. Arithmetic Operators
	Increment operator
	Decrement operator
	2. Relational Operators
	3. Logical Operators
	Truth tables of logical operations
	5. Assignment Operators
	6. Miscellaneous Operators
	a) Comma operator
	b) sizeof Operator
	c) Conditional Operator
	d) Address-of Operator
	Input/Output statements
	Unformatted Functions:
	a) Character I/O:
	b) String I/O

	Example Program
	Formatted Input & Output Functions
	O/P function printf()
	General Form
	Conversion Codes
	3. Control Codes
	E.g:
	Format Specifiers for scanf()
	Output
	Decision making statements
	Branching statements
	a) Conditional Branching : Selection statements
	(i) The if statement
	Example: (1)
	Output: (1)
	(ii) The if-else statement
	Example:1 Program to check whether a given number is even or odd.
	Example:2 To check whether the two given numbers are equal
	(iii) Nested if statement
	Syntax: (1)
	iv) Nested if-else statement
	Syntax: (2)
	Example: (2)
	Output (1)
	v) Switch statement
	Execution
	b) Unconditional branching statements i)The goto Statement
	Example: (3)
	{
	b) break statement
	iii) continue statement
	iv) return statement:
	Looping statements
	Counter controlled loops
	Sentinel controlled loops
	1. for loop
	Execution of for loop
	Ex 1: Write a program to print 10 numbers using for loop
	Ex2: To find the sum of n natural number. 1+2+3…+n
	2. while statement
	Execution of while loop
	Ex 1: Write a program to print 10 numbers using while loop
	Ex2: To find the sum of n natural number. 1+2+3…+n (1)
	3. do while statement
	Execution of do while loop
	Ex1: Write a program to print 10 numbers using do while loop
	Ex2: To find the sum of n natural number. 1+2+3…+n (2)
	Three main ingredients of counter-controlled looping
	Nested loops
	UNIT IIARRAYS AND STRINGS
	Introduction to Arrays
	Definition:
	Characteristics:
	Declarations of Arrays
	Initialization of arrays
	One dimensional Array
	Eg)
	[0] [1] [2] [3] subscripts or indices
	Initialization of single dimensional array
	Usage of single dimensional array
	Reading storing and accessing elements:
	Ex:1 Program to calculate the average marks of the class
	Output: (2)
	Example Programs
	Output (2)
	Two dimensional Array
	a[3][5]
	Initialization
	Example Programs (1)
	String Operations Definition:
	Declaration:
	Initialization:
	String Operations or String Functions
	1. strlen() function
	2. strcpy() function
	3. strcat() function
	E.g. Program:
	Output: (3)
	4. strcmp() function
	5. strlwr() function
	6. strupr() function
	7. strrev() function
	String functions
	Output: (4)
	2.8.1 String Arrays
	Declaration
	Initialization (1)
	Sorting
	1. Selection sort
	2. Bubble Sort
	3. Merge Sort:
	4. Quick Sort
	Output: (5)
	Searching
	1. Linear Search
	Output: (6)
	2. Binary Search
	Example: (4)
	Page 44
	UNIT III FUNCTIONS AND POINTERS
	Introduction to functions
	Advantages of Functions:
	Classification of functions:
	1. Based on who develops the function
	1. Library functions [Built-in functions]
	2. User-defined functions
	Using Functions
	Function Prototype
	Syntax: (3)
	Function definition
	return_data_type function_name(data_type variable1, data_type variable2,..)

 (1)
	}
	Function Call
	Syntax: (4)
	Working of a function
	… Actual arguments
	{ Formal arguments
	Steps for function Execution:
	Built-in functions (string functions, math functions)
	Library of Mathematical functions.
	Library of standard input & output functions
	Library of String functions:
	Example: strlen function
	Output: (7)
	Example: strcpy function
	Output: (8)
	Example: Strupr() and strlwr()
	Recursion
	Direct & Indirect Recursion:
	Indirect Recursion:
	Types of Recursion Direct Recursion
	int Func (int n)
	if (n == 0) return n; else
	} (1)
	int Funcl (int n)
	if (n == 0) return n; else (1)
	} (2)
	{ (1)
	} (3)
	int Fact(n)
	return Fact1(n, 1);
	int Fact1(int n, int res)
	if (n == 1) return res; else
	} (4)
	OUTPUT
	Pattern of Recursive Calls:
	Converting Recursive Functions to Tail Recursive
	Tower of Hanoi
	Recursive case:
	Example Program (1)
	Output: (9)
	Scientific calculator using built-in functions
	Output: (10)
	Pointers Definition:
	Advantages
	Declaration (1)
	Pointer to pointer
	6000
	8000
	Operations on pointers
	2. Dereferencing a pointer
	Output: (11)
	Pointer arithmetic
	3.11. Pointers and Arrays
	Output: (12)
	Array of pointers
	Example: (5)
	Output (3)
	Example Program Sorting of names
	Output: (13)
	Enter the Strings 1 kailash Enter the Strings 2 Aswin Enter the Strings 3 Zulphia Enter the Strings 4 Babu Enter the Strings 5 Clinton Reorder list is
	Parameter passing
	1. Pass by value (Call by value)
	E.g. Program: (1)
	2. Pass by reference (Call b y reference)
	Example Program:
	Example Program: Swapping of two numbers and changing the value of a variable using pass by reference
	Output: (14)
	UNIT IV STRUCTURES
	Introduction
	Need for Structure
	Structures
	Structure Definition
	General Form (1)
	E.g.
	Rules for Structure members
	Declaration (2)
	General Form (2)
	Accessing Members of Structure
	Using Dot operator General form:
	Structures within a Structure (Nested Structures)
	Accessing members in nested structure
	Pointer and Structures
	Syntax: (5)
	1. Illustration of Structures using pointers
	Records of Student:
	Array of Structures
	General form
	Output: (15)
	Example Program using structures and pointers
	Self referential structures
	Dynamic memory allocation
	1. malloc() function
	Example
	2. calloc() function
	Syntax
	Example: (6)
	3. realloc() function
	Syntax (1)
	Example (1)
	4. free() function
	Syntax (2)
	Example: (7)
	Singly Linked List
	Traversing a singly linked list
	Searching for a value in a Linked list
	er t
	Insertion at the tail
	Deletion in a Singly Linked List
	Example: (8)
	Typedef
	Multiple Choice Questions
	2. A data structure that can store related information of different data types together is
	3. Memory for a structure is allocated at the time of
	4. A Structure member variable is generally accessed using the
	5. A Structure can be placed within another structure and is known as,
	6. A union number variable is generally accessed using the
	7. Typedef can be used with which of these data types
	8. The enumerated type is derived from which data type
	9. Which operator connects the structure name to its member name?
	10. Which of the following operation is illegal in structures?
	11. Presence of code like “s.t.b = 10” indicates
	12. What is the size of a C structure.?
	13. A C Structure or User defined data type is also called.?
	14. What is actually passed if you pass a structure variable to a function.?
	15. What is the output of C program with structure array pointers.? int main()
	struct car
	int km;
	struct car c1={1234}; p1[0]=&c1;
	} (5)
	UNIT V FILE PROCESSING
	Introduction
	Types of Files
	1. Text Files
	2. Binary files
	File Operations
	Function description
	1. Opening a File or Creating a File
	Syntax:

	2. Closing a File
	Syntax:

	3. Reading and writing to a text file
	i. Read a character from a file: fgetc function

	Syntax:
	c=fgetc(p1);
	ii. Read a data from a file: fscanf function

	Syntax: (1)
	fscanf(fb “format string”, &v1, &v2…&vn);
	iii. Write a character to a file:fputc function
	iv. Writing data to a file : fprintf()

	Types of file processing
	Sequential Access File
	Random Access File
	Reading Sequential Access file
	Example:
	clients.dat file contents

	Output:
	Read numbers from file and calculate Average
	Random access file

	bytes
	bytes (1)
	bytes (2)
	bytes (3)
	bytes (4)
	bytes (5)
	Functions For Selecting A Record Randomly
	1. fseek()
	Example: Write a program to print the records in reverse order. The file must be opened in binary mode. Use fseek()
	2. rewind()
	• void rewind(FILE *f);
	3. fgetpos()
	int fgetpos(FILE *stream, fpos_t *pos);
	4. fsetpos()
	5. ftell()
	long ftell (FILE *stream);

	Example Program: Transaction processing using random access files
	Option 1
	Option 2
	Enter account to update (1 - 100): 37 37 Barker Doug 0.00

	Option 3
	Enter new account number (1 - 100): 22 Enter lastname, firstname, balance

	Option 4
	Option 5
	// delete an existing record
	// obtain number of account to delete
	// move file pointer to correct record in file
	// create and insert record
	// obtain number of account to create
	// move file pointer to correct record in file (1)
	// read record from file
	// display error if account already exists
	// move file pointer to correct record in file (2)
	// insert record in file
	// enable user to input menu choice

	Output
	Syntax:
	Example:

	Multiple Choice Questions
	2. If the mode includes b after the initial letter, what does it indicates?
	3. What is the function of the mode ‘ w+’?
	4. fflush(NULL) flushes all
	5. What is the keyword used to declare a C file pointer.?
	6. What is a C FILE data type.?
	7. Where is a file temporarily stored before read or write operation in C language.?
	8. Which function gives the current position of the file.
	9. Which function is used to perform block output in binary files?
	10. Select the standard stream in C
	11. From which standard stream does a C program read data?
	12. Which acts as an interface between stream and hardware?
	13. Which function is used to associate a file with a stream?
	14. Which function returns the next character from stream, EOF if the end of file is reached, or if there is an error?

