
CS8493-Operating System Dept of CSE 2019 - 2020

Page 1

COMPUTER SYSTEM OVERVIEW:

BASIC ELEMENTS OF A COMPUTER: A computer consists of processor, memory, I/O components and system
bus.

i) Processor: It Controls the operation of the computer and performs its data processing functions. When there is only

one processor, it is often referred to as the central processing unit.

ii) Main memory: It Stores data and programs. This memory is typically volatile; that is, when the computer is shut

down, the contents of the memory are lost. Main memory is also referred to as real memory or primary memory.

iii) I/O modules: It moves data between the computer and its external environment. The external environment consists

of a variety of devices, including secondary memory devices (e. g., disks), communications equipment, and terminals.

iv) System bus: It provides the communication among processors, main memory, and I/O modules.

One of the processor’s functions is to exchange data with memory. For this purpose, it typically makes use of two

internal registers

A memory address registers (MAR), which specifies the address in memory for the next read or write.

ii) A memory buffer register (MBR), which contains the data to be written into memory or which receives the data

read from memory.

 An I/O address register (I/OAR) specifies a particular I/O device.

 An I/O buffer register (I/OBR) is used for the exchange of data between an I/O module and the processor.

 A memory module consists of a set of locations, defined by sequentially numbered addresses.
 An I/O module transfers data from external devices to processor and memory, and vice versa. It contains

internal buffers for temporarily holding data until they can be sent on.

UNIT- I OPERATING SYSTEMS OVERVIEW

Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory Hierarchy, Cache Memory,

Direct Memory Access, Multiprocessor and Multicore Organization. Operating system overview-objectives and

functions, Evolution of Operating System.- Computer System Organization-Operating System Structure and

Operations- System Calls, System Programs, OS Generation and System Boot.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 2

PROCESSOR REGISTERS:

A processor includes a set of registers that provide memory that is faster and smaller than main memory. Processor
registers serve two functions:

i) User-visible registers: Enable the machine or assembly language programmer to minimize main memory references

by optimizing register use.

ii) Control and status registers: Used by the processor to control the operation of the processor and by privileged OS
routines to control the execution of programs.

1. User-Visible Registers:

A user-visible register is generally available to all programs, including application programs as well as system

programs. The types of User visible registers are

i) Data Registers

ii) Address Registers
Data Registers can be used with any machine instruction that performs operations on data.

Address registers contain main memory addresses of data and instructions. Examples of address registers include the

following:

 Index register.

 Segment pointer

 Stack pointer

2. Control and status register:

A variety of processor registers are employed to control the operation of the processor. In addition to the MAR, MBR,

I/OAR, and I/OBR register the following are essential to instruction execution:

 Program counter (PC): Contains the address of the next instruction to be fetched.
 Instruction register (IR): It contains the instruction most recently fetched.

All processor designs also include a register or set of registers, often known as the program status word (PSW) that

contains status information. The PSW typically contains condition codes plus other status information, such as an

interrupt enable/disable bit and a kernel/user mode bit, carry bit, auxiliary carry bit.

INSTRUCTION EXECUTION:

 A program to be executed by a processor consists of a set of instructions stored in Memory. The instruction
processing consists of two steps.

 The processor reads (fetches) instructions from memory one at a time (fetch stage)

 Execute the instruction.(execute stage)

 Program execution consists of repeating the process of instruction fetch and instruction execution

 The two steps are referred to as the fetch stage and the execute stage.

 The processing required for a single instruction is called an instruction cycle.

Instruction Fetch and Execute:

 At the beginning of each instruction cycle, the processor fetches an instruction from memory.
 The instruction contains bits that specify the action the processor is to take. The processor interprets the

instruction and performs the required action. In general, these actions fall into four categories,

Processor-memory: Data may be transferred from processor to memory or from memory to processor.
Processor-I/O: Data may be transferred to or from a peripheral device by transferring between the processor and an

I/O module.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 3

Data processing: The processor may perform some arithmetic or logic operation on data. Control: An instruction may

specify that the sequence of execution be altered.

Example:

 The processor contains a single data register, called the accumulator (AC).
 The instruction format provides 4 bits for the opcode, allowing as many as 24 = 16 different opcodes.

 The opcode defines the operation the processor is to perform. The remaining 12 bits of the can be directly

addressed.

 The program fragment adds the contents of the memory word at address 940 to the contents of the memory word at

address 941 and stores the result in the location 941.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 4

Example: Consider a processor that executes a user application. In figure (a) the user program performs a series of

WRITE calls interleaved with processing.

1. The PC contains 300, the address of the first instruction. This instruction (the value 1940 in hexadecimal) is loaded

into the IR and the PC is incremented.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded from memory. The remaining

12 bits (three hexadecimal digits) specify the address, which is 940.

3. The next instruction (5941) is fetched from location 301 and the PC is incremented.

4. The old contents of the AC and the contents of location 941 are added and the result is stored in the AC.

5. The next instruction (2941) is fetched from location 302 and the PC is incremented.

6. The contents of the AC are stored in location 941.

I/O Function:

 Data can be exchanged directly between an I/O module and the processor.
 Just as the processor can initiate a read or write with memory, specifying the address of a memory location, the

processor can also read data from or write data to an I/O module.

 The processor identifies a specific device that is controlled by a particular I/O module. In some cases, it is desirable

to allow I/O exchanges to occur directly with main memory to relieve the processor of the I/O task.

 In such a case, the processor grants to an I/O module the authority to read from or write to memory, so that the I/O
memory transfer can occur without tying up the processor.

 During such a transfer, the I/O module issues read or write commands to memory, relieving the processor of

responsibility for the exchange. This operation is known as direct memory access.

INTERRUPTS:

 An interrupt is defined as hardware or software generated event external to the currently executing process that

affects the normal flow of the instruction execution.

 Interrupts are provided primarily as a way to improve processor utilization

Classes of Interrupts:

Program Generated by some condition that occurs as a result of an instruction execution, such as

arithmetic overflow, division by zero, attempt to execute an illegal machine instruction,
and reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to perform

certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation or to signal

a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

 The WRITE calls are the call to an I/O routine that is a system utility and that will perform the actual I/O
operation. The I/O program consists of three sections:

i) A sequence of instructions (4) to prepare for the actual I/O operation. This may include copying the data to be output

into a special buffer and preparing the parameters for a device command.

ii) The actual I/O command. Without the use of interrupts, once this command is issued, the program must wait for the

I/O device to perform the requested function. The program might wait by simply repeatedly performing a test operation

to determine if the I/O operation is done.

iii) A sequence of instructions (5) to complete the operation. This may include setting a flag indicating the success or

failure of the operation.

 After the first WRITE instruction is encountered, the user program is interrupted and execution continues with the

I/O program.

 After the I/O program execution is complete, execution resumes in the user program immediately following the

WRITE instruction.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 5

Program Flow of Control without and with Interrupts

Interrupts and the Instruction Cycle:

 With interrupts, the processor can be engaged in executing other instructions while an I/O operation is in

progress.

 When the processor encounters the WRITE instruction the I/O program is invoked that consists only of the

preparation code and the actual I/O command. After these few instructions have been executed, control returns

to the user program.

 Meanwhile, the external device is busy accepting data from computer memory and printing it. This I/O

operation is conducted concurrently with the execution of instructions in the user Program.

 When the external device becomes ready to accept more data from the processor, the I/O module for that

external device sends an interrupt request signal to the processor.

 The processor responds by suspending operation of the current program. This process of branching off to a

routine to service that particular I/O device is known as an interrupt handler and resuming the original

execution after the device is serviced.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 6

Transfer of control via Interrupts

 To accommodate interrupts, an interrupt stage is added to the instruction cycle. In the interrupt stage, the

processor checks to see if any interrupts have occurred, indicated by the presence of an interrupt signal.

 If no interrupts are pending, the processor proceeds to the fetch stage and fetches the next instruction of the

current program.

 If an interrupt is pending, the processor suspends execution of the current program and executes an interrupt-

handler routine. This routine determines the nature of the interrupt and performs whatever actions are needed.

Interrupt Processing:

 An interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device

completes an I/O operation, the following hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding to the interrupt.

3. The processor tests for a pending interrupt request, determines that there is one, and sends an

acknowledgment signal to the device that issued the interrupt. The acknowledgment allows the device to

remove its interrupt signal.

4. The processor next needs to prepare to transfer control to the interrupt routine. It saves the program status

word (PSW) and the location of the next instruction to be executed, which is contained in the program counter.

These can be pushed onto a control stack.

5. The processor then loads the program counter with the entry location of the interrupt-handling routine that

will respond to this interrupt.

6. Once the program counter has been loaded, the processor proceeds to the next instruction cycle, which

begins with an instruction fetch. The contents of the processor registers need to be saved, because these

registers may be used by the interrupt handler. So all of these values, plus any other state information, need to

be saved.

7. The interrupt handler may now proceed to process the interrupt.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 7

8. When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the

registers

9. The final act is to restore the PSW and program counter values from the stack. As a result, the next instruction to be

executed will be from the previously interrupted program.

 The following is an example for a user program that is interrupted after the instruction at location N.

 The contents of all of the registers plus the address of the next instruction (N + 1), a total of M words, are pushed

onto the control stack.

 The stack pointer is updated to point to the new top of stack, and the program counter is updated to point to the

beginning of the interrupt service routine.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 8

Multiple Interrupts:

 One or more interrupts can occur while an interrupt is being processed. This is called as Multiple Interrupts.
 Two approaches can be taken to dealing with multiple interrupts.

 Sequential interrupt processing

 Nested interrupt processing

Sequential interrupt processing:

The first approach is to disable interrupts while an interrupt is being processed. A disabled interrupt simply means that
the processor ignores any new interrupt request signal.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 9

(a) Sequential Interrupt processing.

 If an interrupt occurs during this time, it generally remains pending and will be checked by the processor after
the processor has reenabled interrupts.

 Thus, when a user program is executing and an interrupt occurs, interrupts are disabled immediately. After the

interrupt-handler routine completes, interrupts are reenabled before resuming the user program and the

processor checks to see if additional interrupts have occurred.

 This approach is simple as interrupts are handled in strict sequential order.

 The drawback to this approach is that it does not take into account relative priority or time-critical needs.

Nested interrupt processing:

A second approach is to define priorities for interrupts and to allow an interrupt of higher priority to cause a lower-

priority interrupt handler to be interrupted.

 Let us consider a system with three I/O devices. A printer, a disk, and a communications line, with increasing

priorities of 2, 4, and 5, respectively. A user program begins at t=0. At t=10, a printer interrupt occurs.

 While this routine is still executing, at t=15, a communications interrupts occur. Because the communications

line has highest priority than the printer, the interrupt request is honored.

 The printer ISR is interrupted, its state is pushed onto the stack and the execution continues at the

communications ISR. While this routine is executing an interrupt occurs at t=20.This interrupt is of lower

priority it is simply held and the communications ISR runs to the completion.

When the communications ISR is complete at t=25, the previous processor state is restored which the execution of the

printer ISR. However, before even a single instruction in that routine can be executed the processor honors the higher

priority disk interrupt and transfers control to the disk ISR. Only when that routine completes (t= 35) the printer ISR is

resumed. When the Printer ISR completes at t=40then finally the control returns to the user program.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 10

Multiprogramming:

 With the use of interrupts, a processor may not be used very efficiently. If the time required to complete an I/O

operation is much greater than the user code between I/O calls then the processor will be idle much of the time.

 A solution to this problem is to allow multiple user programs to be active at the same time. This approach is

called as multiprogramming.

 When a program has been interrupted, the control transfers to an interrupt handler, once the interrupt- handler

routine has completed, control may not necessarily immediately be returned to the user program that was in

execution at the time.

 Instead, control may pass to some other pending program with a higher priority. This concept of multiple

programs taking turns in execution is known as multiprogramming.

MEMORY HIERARCHY:

 To achieve greatest performance, the memory must be able to keep up with the processor.

 As the processor is executing instructions, we would not want it to have to pause waiting for instructions or
operands.

 Thus the cost of memory must be reasonable in relationship to other components.

 There is a tradeoff among the three key characteristics of memory: namely, capacity, access time, and cost.

• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access speed
The designer would like to use memory technologies that provide for large-capacity memory. However, to meet

performance requirements, the designer needs to use expensive, relatively lower-capacity memories with fast access

times.

 The idea is to not rely on a single memory component but to employ a memory hierarchy. As one goes down
the hierarchy, the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time
d. Decreasing frequency of access to the memory by the processor

CS8493-Operating System Dept of CSE 2019 - 2020

Page 11

Suppose that the processor has access to two levels of memory. Level 1 contains 1000 bytes and has an access time of

0.1 μs; level 2 contains 100,000 bytes and has an access time of 1 μs.

 Assume that if a byte to be accessed is in level 1, then the processor accesses it directly. If it is in level 2, then
the byte is first transferred to level 1 and then accessed by the processor.

 T1 is the access time to level 1, and T2 is the access time to level 2.

 As can be seen, for high percentages of level 1 access, the average total access time is much closer to that of

level 1 than that of level 2. Suppose 95% of the memory accesses are found in the cache (H =0.95).Then the

average time to access a byte can be expressed as

(0.95) (0.1 μs) + (0.05) (0.1 μs + 1 μs)

= 0.095 + 0.055 = 0.15 μs

Thus the result is close to the access time of the faster memory. So the strategy of using two memory levels

works in principle.

 The basis for the validity of condition (Decreasing frequency of access to the memory by the processor) is a

principle known as locality of reference.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 12

 It is possible to organize data across the hierarchy such that the percentage of accesses to each successively

lower level is less than that of the level above.

 The fastest, smallest, and most expensive type of memory consists of the registers internal to the processor.

 The cache is the next level of memory that is not usually visible to the programmer or, indeed, to the processor.

Main memory is usually extended with a higher-speed, smaller cache.

 Each location in main memory has a unique address, and most machine instructions refer to one or more main

memory addresses. The three forms of memory just described are, typically, volatile and employ

semiconductor technology.

 External, nonvolatile memory is also referred to as secondary memory or auxiliary memory. These are used

to store program and data files and are usually visible to the programmer only in terms of files and records.

CACHE MEMORY:

 A CPU cache is a Cache used by the central processing unit (CPU) of a computer to reduce the average time to

access data from the main memory.

 The cache is a smaller, faster memory which stores copies of the data from main memory locations. Most

CPUs have different independent caches, including instruction and data caches, where the data cache is usually

organized as a hierarchy of more cache levels (L1, L2, etc.)

 The cache memory is small, fast memory between the processor and main memory.

CACHE PRINCIPLES:

 Cache memory provide memory access time similar to that of fastest memories available and at the same time

support a large memory size that has the price of less expensive types of semiconductor memories.

 The cache contains a copy of a portion of main memory.

 When the processor attempts to read a byte or word of memory, a check is made to determine if the byte or

word is in the cache.

 If so, the byte or word is delivered to the processor.(CACHE HIT)

 If not, a block of main memory, consisting of some fixed number of bytes, is read into the cache and then the

byte or word is delivered to the processor. (CACHE MISS)

CS8493-Operating System Dept of CSE 2019 - 2020

Page 13

Example: suppose that we have a 6-bit address and a 2-bit tag. The tag 01 refers to the block of locations with the

following addresses: 010000, 010001,010010, 010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010,

011011,011100, 011101, 011110, 011111.

Cache / Main memory

 In the above diagram the Main memory consists of up to 2n addressable words, with each word having a
unique n-bit address.

 This memory is considered to consist of a number of fixed length blocks of K words each. That is, there are

M= 2n/K blocks.

 Cache consists of C slots of K words each, and the number of slots is considerably less than the number of

main memory blocks (C << M).

 If a word in a block of memory that is not in the cache is read, that block is transferred to one of the slots of the

cache.

 Each slot includes a tag that identifies which particular block is currently being stored. The tag is usually some

number of higher-order bits of the address and refers to all addresses that begin with that sequence of bits.

READ OPERATION IN A CACHE:

 The processor generates the real address, RA, of a word to be read.

 If the word is contained in the cache, it is delivered to the processor. Otherwise, the block containing that word

is loaded into the cache and the word is delivered to the processor.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 14

CACHE READ OPERATION

CACHE DESIGN:

The key elements of cache design includes,
 Cache size

 Block Size
 Mapping Function

 Replacement algorithm

 Write policy

 The issue with cache size is that small caches can have a significant impact on performance.

 Another size issue is that of block size: As the block size increases from very small to larger sizes, the hit ratio

will at first increase because of the principle of locality:

 As the block size increases, more useful data are brought into the cache.

 The hit ratio will begin to decrease, however, as the block becomes even bigger and the probability of using the

newly fetched data becomes less than the probability of reusing the data that have to be moved out of the cache

to make room for the new block.

 When a new block of data is read into the cache, the mapping function determines which cache location the

block will occupy.

 When one block is read in, another may have to be replaced. The replacement algorithm chooses, within the

constraints of the mapping function, which block to replace when a new block is to be loaded into the cache

and the cache already has all slots filled with other blocks.

 A block that is least likely to be needed again in the near future will be replaced. An effective strategy is to

replace the block that has been in the cache longest with no reference to it. This policy is referred to as the

least-recently-used (LRU) algorithm.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 15

 When a system writes data to cache, it must at some point write that data to the backing store as well. The

timing of this write is controlled by what is known as the write policy.There are two basic writing approaches:

 Write-through: write is done synchronously both to the cache and to the backing store.

 Write-back (or write-behind): initially, writing is done only to the cache. The write to the backing store is

postponed until the cache blocks containing the data are about to be modified/replaced by new content.

I/O COMMUNICATION TECHNIQUES

I/O Communication techniques determine the communication between the memory and the I/O devices.

Three techniques are possible for I/O operations:
 Programmed I/O
 Interrupt-driven I/O

 Direct memory access (DMA)

Programmed I/O:

 When the processor is executing a program and encounters an instruction relating to I/O, it executes that

instruction by issuing a command to the appropriate I/O module.

 The I/O module performs the requested action and takes no action to alert the processor and it does not

interrupt the processor.

 The processor periodically checks the status of the I/O module until it finds that the operation is complete.
 The processor is responsible for extracting data from main memory for output and storing data in main

memory for input.

Thus, the instruction set includes I/O instructions in the following categories:

 Control: Used to activate an external device and tell it what to do.

 Status: Used to test various status conditions associated with an I/O module and its peripherals.

 Transfer: Used to read and/or write data between processor registers and external devices.

Interrupt-Driven I/O:

 An alternative to Programmed I/O is for the processor to issue an I/O command to a module and then go on to

do some other useful work.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 16

 The I/O module will then interrupt the processor to request service when it is ready to exchange data with the

processor.
 The processor then executes the data transfer and then resumes its former processing.

 The processor issues a READ command. The I/O module receives a READ command from the processor and then

proceeds to read data in from the device.

 Once the data are in the I/O module’s data register the module signals an interrupt to the processor over a control

line.

 When the interrupt from the I/O module occurs, the processor saves the context of the program it is currently

executing and begins to execute an interrupt-handling program that processes the interrupt.

 Interrupt-driven I/O is more efficient than programmed I/O because it eliminates needless waiting.

DIRECT MEMORY ACCESS

 Interrupt-driven I/O, though more efficient than simple programmed I/O, still requires the active intervention

of the processor to transfer data between memory and an I/O module.

 When large volumes of data are to be moved, a more efficient technique is required: direct memory access

(DMA).

 The DMA function can be performed by a separate module on the system bus or it can be incorporated into an

I/O module.

When the processor wishes to read or write a block of data, it issues a command to the DMA module, by sending to the

DMA module the following information:

 Whether a read or write is requested
 The address of the I/O device involved

 The starting location in memory to read data from or write data to

 The number of words to be read or written

 The processor then continues with other work. It has delegated this I/O operation to the DMA module, and that

module will take care of it.

 The DMA module transfers the entire block of data, one word at a time, directly to or from memory without

going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the

processor.

 Thus the processor is involved only at the beginning and end of the transfer.

MULTIPROCESSOR AND MULTICORE ORGANIZATION:

 A processor executes programs by executing machine instructions in sequence and one at a time. Each

instruction is executed in a sequence of operations (fetch instruction, fetch operands, perform operation, store

results).

 In order to achieve performance and reliability, the concept of parallelism has been introduced in the computers

which include symmetric multiprocessors, multicore computers and clusters.

 The multiple-processor systems in use today are of two types.

Asymmetric multiprocessing, in which each processor is assigned a specific task.A boss processor, controls the

system; the other processors either look to the boss for instruction or have predefined tasks. This scheme defines a

boss–worker relationship. The boss processor schedules and allocates work to the worker processors.

Symmetric multiprocessing (SMP), in which each processor performs all tasks within the operating system. SMP
means that all processors are peers; no boss–worker relationship exists between processors.

Symmetric Multiprocessors:

An SMP can be defined as a stand-alone computer system with the following characteristics:

1. There are two or more similar processors of comparable capability.

2. These processors share the same main memory and I/O facilities and are interconnected by a bus or other internal

connection scheme, such that memory access time is approximately the same for each processor.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 17

3. All processors share access to I/O devices, either through the same channels or through different channels that

provide paths to the same device.

4. All processors can perform the same functions

5. The system is controlled by an integrated operating system that provides interaction between processors and their

programs at the job, task, file, and data element levels.

In an SMP, individual data elements can constitute the level of interaction, and there can be a high degree of

cooperation between processes.

Advantages of Symmetric multiprocessors:

1. Increased throughput.
 By increasing the number of processors, we expect to get more work done in less time.

 If the work to be done by a computer can be organized so that some portions of the work can be done in

parallel, then a system with multiple processors will yield greater performance than one with a single processor

of the same type.

 2. Economy of scale. Multiprocessor systems can cost less than equivalent multiple single-processor systems,

because they can share peripherals, mass storage, and power supplies. If several programs operate on the same

set of data, it is cheaper to store those data on one disk and to have all the processors share them than to have

many computers with local disks and many copies of the data.

 3. Increased reliability. If functions can be distributed properly among several processors, then the failure of

one processor will not halt the system, only slow it down. If we have ten processors and one fails, then each of

the remaining nine processors can pick up a share of the work of the failed processor. Thus, the entire system

the entire system runs slower, rather than failing altogether. Increased reliability of a computer system is

crucial in many applications.

 The ability to continue providing service proportional to the level of surviving hardware is called Graceful

Degradation. Some systems go beyond graceful degradation and are called fault tolerant, because they can

suffer a failure of any single component and still continue operation.

The Disadvantage of symmetric multiprocessor includes

 If one processor fails then it will affect in the speed
 Multiprocessor systems are expensive

 Complex OS is required 4) Large main memory required.

 An attractive feature of an SMP is that the existence of multiple processors is transparent to the user. The

operating system takes care of scheduling of tasks on individual processors and of synchronization among

processors.

 There are multiple processors, each of which contains its own control unit, arithmetic logic unit, and registers.

 Each processor has access to a shared main memory and the I/O devices through some form of interconnection

mechanism; a shared bus is a common facility.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 18

 The processors can communicate with each other through memory (messages and status information left in

shared address spaces).

MULTICORE ORGANIZATION:

 A dual-core design contains two cores on the same chip.
 In this design, each core has its own register set as well as its own local cache. Other designs might use a

shared cache or a combination of local and shared caches.

 Performance has also been improved by the increased complexity of processor design to exploit parallelism in
instruction execution and memory access.

 An example of a multicore system is the Intel Core i7, which includes four x86 processors, each with a

dedicated L2 cache, and with a shared L3 cache

OPERATING SYSTEM OVERVIEW:

An OS is defined as a System program that controls the execution of application programs and acts as an

interface between applications and the computer hardware.

OPERATING SYSTEM OBJECTIVES AND FUNCTIONS:

 An operating system is a program that manages a computer’s hardware. It also provides a basis for application

programs and acts as an intermediary between the computer user and the computer hardware. It can be thought

of as having three objectives:

• Convenience

• Efficiency

• Ability to evolve

 The three other aspects of the operating system are

i) The operating system as a user or computer interface

ii) The operating system as a resource manager
iii) Ease of evolution of an operating system.

The Operating System as a User/Computer Interface

 The user of those applications, the end user, generally is not concerned with the details of computer hardware.

 An application can be expressed in a programming language and is developed by an application programmer.

 A set of system programs referred to as utilities implement frequently used functions that assist in program

creation, the management of files, and the control of I/O devices.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 19

 The most important collection of system programs comprises the OS. The OS masks the details of the

hardware from the programmer and provides the programmer with a convenient interface for using the system.

Briefly, the OS typically provides services in the following areas:

 Program development

 Program execution

 Access to I/O devices

 Controlled access to files

 System access

 Error detection and response

 Accounting:

The Operating System as Resource Manager

 A computer is a set of resources for the movement, storage, and processing of data and for the control of these

functions. The OS is responsible for managing these resources.

 The OS functions in the same way as ordinary computer software; that is, it is a program or suite of programs

executed by the processor.

 The OS frequently relinquishes control and must depend on the processor to allow it to regain control.

 The OS directs the processor in the use of the other system resources and in the timing of its execution of other

programs.

 A portion of the OS is in main memory. This includes the kernel, or nucleus, which contains the most

frequently, used functions in the OS.The remainder of main memory contains user programs and data.

 The allocation of this resource (main memory) is controlled jointly by the OS and memory management

hardware in the processor.

 The OS decides when an I/O device can be used by a program in execution and controls access to and use of

files.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 20

 The processor itself is a resource, and the OS must determine how much processor time is to be devoted to the

execution of a particular user program. In the case of a multiple-processor system, this decision must span all

of the processors.

Ease of Evolution of an Operating System

A major operating system will evolve over time for a number of reasons:

 Hardware upgrades plus new types of hardware

 New services: OS expands to offer new services in response to user demands.

 Fixes: Any OS has faults.

The functions of operating system includes,

 Process management

 Memory management
 File management

 I/O management

 Storage management.

EVOLUTION OF OPERATING SYSTEM:

An operating system acts as an intermediary between the user of a computer and the computer hardware. The evolution

of operating system is explained at various stages.

i) Serial Processing

ii) Simple Batch Systems

iii) Multiprogrammed batch systems.
iv) Time sharing systems

CS8493-Operating System Dept of CSE 2019 - 2020

Page 21

Serial processing

 During 1940s to the mid-1950s, the programmer interacted directly with the computer hardware; there was no
OS.

 Programs in machine code were loaded via the input device (e.g., a card reader).

 If an error halted the program, the error condition was indicated by the lights.

 If the program proceeded to a normal completion, the output appeared on the printer.
These early systems presented two main problems:

i) Scheduling: Most installations used a hardcopy sign-up sheet to reserve computer time. A user might sign up for an

hour and finish in 45 minutes; this would result in wasted computer processing time. On the other hand, the user might

run into problems, not finish in the allotted time, and be forced to stop before resolving the problem.

ii) Setup time: A single program, called a job, could involve loading the compiler plus the high-level language

program (source program) into memory, saving the compiled program (object program) and then loading and linking

together the object program and common functions. Thus, a considerable amount of time was spent just in setting up

the program to run.

This mode of operation could be termed serial processing, reflecting the fact that users have access to the computer in

series

Simple Batch Systems

 The central idea behind the simple batch-processing scheme is the use of a piece of software known as the

monitor.

 With this type of OS, the user no longer has direct access to the processor. Instead, the user submits the job on

cards or tape to a computer operator, who batches the jobs together sequentially and places the entire batch on

an input device, for use by the monitor.

 Each program is constructed to branch back to the monitor when it completes processing, and the monitor

automatically begins loading the next program.

Memory Layout for a Resident Monitor

 The monitor controls the sequence of events. For this the monitor must always be in main memory and

available for execution. That portion is referred to as the resident monitor.

 The monitor reads in jobs one at a time from the input device .As it is read in, the current job is placed in the

user program area, and control is passed to this job.

 Once a job has been read in, the processor will encounter a branch instruction in the monitor that instructs the

processor to continue execution at the start of the user program. The processor will then execute the

instructions in the user program until it encounters an ending or error condition.

 When the job is completed, it returns control to the monitor, which immediately reads in the next job. The
results of each job are sent to an output device, such as a printer, for delivery to the user.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 22

 The monitor performs a scheduling function: A batch of jobs is queued up, and jobs are executed as rapidly as

possible, with no intervening idle time.

 With each job, instructions are included in a form of job control language (JCL) which are denoted by the

beginning $. This is a special type of programming language used to provide instructions to the monitor.

The overall format of the job is given as

 The hardware features that are added as a part of simple batch systems include,
i) Memory protection

ii) Timer

iii) Privileged instructions

iv) Interrupts.
 The memory protection leads to the concept of dual mode operation.

 User Mode

 Kernel Mode.

Thus the simple batch system improves utilization of the computer

Multiprogrammed Batch Systems:

 Even in simple batch operating system, the processor is often idle. The problem is that I/O devices are slow

compared to the processor.

 Let us consider a program that processes a file of records and performs, on average, 100 machine instructions

per record. The computer spends over 96% of its time waiting for I/O devices to finish transferring data to and

from the file.

 In uniprogramming we will have a single program in the main memory. The processor spends a certain amount

of time executing, until it reaches an I/O instruction. It must then wait until that I/O instruction concludes

before proceeding. This inefficiency is not necessary.

 In Multiprogramming we will have OS and more user programs. When one job needs to wait for I/O, the

processor can switch to the other job, which is likely not waiting for I/O.This approach is known as

multiprogramming, or multitasking.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 23

 The most notable feature that is useful for multiprogramming is the hardware that supports I/O interrupts and

DMA (direct memory access).

 With interrupt-driven I/O or DMA, the processor can issue an I/O command for one job and proceed with the
execution of another job while the I/O is carried out by the device controller.

 When the I/O operation is complete, the processor is interrupted and control is passed to an interrupt-handling

program in the OS.The OS will then passes control to another job.

 Multiprogramming operating systems are fairly sophisticated compared to single-program, or uniprogramming,

systems. To have several jobs ready to run, they must be kept in main memory, requiring some form of

memory management.

 In addition, if several jobs are ready to run, the processor must decide which one to run, this decision requires
an algorithm for scheduling.

Time-Sharing Systems:

 In time sharing systems the processor time is shared among multiple users.
 In a time-sharing system, multiple users simultaneously access the system through terminals, with the OS

interleaving the execution of each user program in a short burst or quantum of computation.

 If there are n users actively requesting service at one time, each user will only see on the average 1/n of the

effective computer capacity.

Batch Multiprogramming Vs Time Sharing systems

CS8493-Operating System Dept of CSE 2019 - 2020

Page 24

Example: Assume that there are four interactive users with the following memory requirements, in words:

JOB1: 15,000

JOB2: 20,000
JOB3: 5000

JOB4: 10,000

 One of the first time-sharing operating systems to be developed was the Compatible Time-Sharing System

(CTSS)

 The system ran on a computer with 32,000 36-bit words of main memory, with the resident monitor consuming

5000 of that. When control was to be assigned to an interactive user, the user’s program and data were loaded

into the remaining 27,000 words of main memory.

 A program was always loaded to start at the location of the 5000th word

 A system clock generated interrupts at a rate of approximately one every 0.2 seconds.

 At each clock interrupt, the OS regained control and could assign the processor to another user. This technique

is known as time slicing.

i) Initially, the monitor loads JOB1 and transfers control to it.
ii) Later, the monitor decides to transfer control to JOB2. Because JOB2 requires more memory than JOB1,

JOB1 must be written out first, and then JOB2 can be loaded.

iii) Next, JOB3 is loaded in to be run. However, because JOB3 is smaller than JOB2, a portion of

JOB2 can remain in memory, reducing disk write time.

iv) Later, the monitor decides to transfer control back to JOB1.An additional portion of JOB2 must be written

out when JOB1 is loaded back into memory.

v) When JOB4 is loaded, part of JOB1 and the portion of JOB2 remaining in memory are retained.

vi) At this point, if either JOB1 or JOB2 is activated, only a partial load will be required. In this example, it

is JOB2 that runs next. This requires that JOB4 and the remaining resident portion of JOB1 be written out and

that the missing portion of JOB2 be read in.

COMPUTER SYSTEM ORGANIZATION:

Computer system organization deals with the structure of the computer system.

Computer system operation:

 A modern general-purpose computer system consists of one or more CPUs and a number of device controllers

connected through a common bus that provides access to shared memory.

 For a computer to start running when it is powered up or rebooted—it needs to have an initial program to run.
This initial program is called as the Bootstrap program.

 It is stored within the computer hardware in read-only memory (ROM) or electrically erasable programmable

read-only memory (EEPROM), known by the general term firmware.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 25

 The bootstrap loader It initializes all aspects of the system, from CPU registers to device controllers to memory

contents.

 The bootstrap program loads the operating system and start executing that system.

 Once the kernel is loaded and executing, it can start providing services to the system and its users. When is the

system is booted it waits for some event to occur.

 The occurrence of an event is usually signaled by an interrupt from either the hardware or the software.

 When the CPU is interrupted, it stops what it is doing and immediately transfers execution to a fixed location.

That contains the starting address of the service routine for the interrupt.

 The interrupt service routine executes; on completion, the CPU resumes the interrupted computation.

Storage structure:

 The CPU can load instructions only from memory, so any programs to run must be stored in main memory.
 Main memory commonly is implemented in a semiconductor technology called dynamic random-access

memory

 ROM is a read only memory that is used to store the static programs such as bootstrap loader.
 All forms of memory provide an array of bytes. Each byte has its own address. The operations are done

through load or store instructions.

 The load instruction moves a byte or word from main memory to an internal register within the CPU, whereas

the store instruction moves the content of a register to main memory.

 Ideally, we want the programs and data to reside in main memory permanently.

This arrangement usually is not possible for the following two reasons

i) Main memory is usually too small to store all needed programs and data permanently
ii) Main memory is a volatile storage device that loses its contents when power is turned off or otherwise lost.

 Most computer systems provide secondary storage as an extension of main memory. The main requirement

for secondary storage is that it be able to hold large quantities of data permanently.

 The wide variety of storage systems can be organized in a hierarchy according to speed and cost.
 The higher levels are expensive, but they are fast. As we move down the hierarchy, the cost per bit generally

decreases, whereas the access time generally increases

 Volatile storage loses its contents when the power to the device is removed so that the data must be written to
nonvolatile storage for safekeeping.

 Caches can be installed to improve performance where a large difference in access time or transfer rate exists

between two components.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 26

I/O Structure:

A large portion of operating system code is dedicated to managing I/O, both because of its importance to the reliability

and performance of a system.

 A general-purpose computer system consists of CPUs and multiple device controllers that are connected

through a common bus. Each device controller is in charge of a specific type of device.

 The device controller is responsible for moving the data between the peripheral devices that it controls and its
local buffer storage

 Operating systems have a device driver for each device controller. This device driver understands the device

controller and provides the rest of the operating system with a uniform interface to the device.

 To start an I/O operation, the device driver loads the appropriate registers within the device controller.
 The controller starts the transfer of data from the device to its local buffer. Once the transfer of data is

complete, the device controller informs the device driver via an interrupt that it has finished its operation. This

is called as interrupt driven I/O.

 The direct memory access I/O technique transfers a block of data directly to or from its own buffer storage to

memory, with no intervention by the CPU. Only one interrupt is generated per block, to tell the device driver

that the operation has completed,

CS8493-Operating System Dept of CSE 2019 - 2020

Page 27

OPERATING SYSTEM STRUCTURE:

 The operating systems are large and complex. A common approach is to partition the task into small

components, or modules, rather than have one monolithic system.

 The structure of an operating system can be defined the following structures.

 Simple structure

 Layered approach

 Microkernels

 Modules

 Hybrid systems

Simple structure:

The Simple structured operating systems do not have a well-defined structure. These systems will be simple, small and

limited systems.

Example: MS-DOS.

In MS-DOS, the interfaces and levels of functionality are not well separated.
In MS-DOS application programs are able to access the basic I/O routines. This causes the entire systems to be

crashed when user programs fail.

Example: Traditional UNIX OS

 It consists of two separable parts: the kernel and the system programs.
 The kernel is further separated into a series of interfaces and device drivers

 The kernel provides the file system, CPU scheduling, memory management, and other operating-system

functions through system calls.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 28

 This monolithic structure was difficult to implement and maintain.

Layered approach:

 A system can be made modular in many ways. One method is the layered approach, in which the operating

system is broken into a number of layers (levels). The bottom layer (layer 0) is the hardware; the highest (layer

N) is the user interface.

 An operating-system layer is an implementation of an abstract object made up of data and the operations that

can manipulate those data.

 The main advantage of the layered approach is simplicity of construction and debugging. The layers are

selected so that each uses functions (operations) and services of only lower-level layers.

 Each layer is implemented only with operations provided by lower-level layers. A layer does not need to know

how these operations are implemented; it needs to know only what these operations do.

 The major difficulty with the layered approach involves appropriately defining the various layers because a

layer can use only lower-level layers.

 A problem with layered implementations is that they tend to be less efficient than other types.

Microkernels:

In the mid-1980s, researchers at Carnegie Mellon University developed an operating system called Mach that

modularized the kernel using the microkernel approach.

This method structures the operating system by removing all nonessential components from the kernel and
implementing them as system and user-level programs.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 29

 Microkernel provide minimal process and memory management, in addition to a communication facility.

 The main function of the microkernel is to provide communication between the client program and the various

services that are also running in user space.

 The client program and service never interact directly. Rather, they communicate indirectly by exchanging

messages with the microkernel.

 One benefit of the microkernel approach is that it makes extending the operating system easier. All new

services are added to user space and consequently do not require modification of the kernel.

 The performance of microkernel can suffer due to increased system-function overhead.

Modules:

 The best current methodology for operating-system design involves using loadable kernel modules

 The kernel has a set of core components and links in additional services via modules, either at boot time or
during run time.

 The kernel provides core services while other services are implemented dynamically, as the kernel is running.

 Linking services dynamically is more comfortable than adding new features directly to the kernel, which

would require recompiling the kernel every time a change was made.

 Example: Solaris OS

The Solaris operating system structure is organized around a core kernel with seven types of loadable kernel modules:
 Scheduling classes
 File systems

 Loadable system calls

CS8493-Operating System Dept of CSE 2019 - 2020

Page 30

 Executable formats

 STREAMS modules
 Miscellaneous

 Device and bus drivers

Hybrid Systems:

 The Operating System combines different structures, resulting in hybrid systems that address performance,
security, and usability issues.

 They are monolithic, because having the operating system in a single address space provides very efficient

performance.

 However, they are also modular, so that new functionality can be dynamically added to the kernel.

Example: Linux and Solaris are monolithic (simple) and also modular, IOS.

Apple IOS Structure

OPERATING SYSTEM OPERATIONS:

 The operating system and the users share the hardware and software resources of the computer system, so we

need to make sure that an error in a user program could cause problems only for the one program running.

 Without protection against these sorts of errors, either one erroneous program might modify another program,

the data of another program, or even the operating system itself.

Dual-Mode and Multimode Operation:

 In order to ensure the proper execution of the operating system, we must be able to distinguish between the

execution of operating-system code and user defined code.

 The computer systems provide hardware support that allows us to differentiate among various modes of

execution.

There are two separate modes of operation

 User mode
 Kernel mode(Supervisor mode or system mode or privileged mode)

 A bit, called the mode bit, is added to the hardware of the computer to indicate the current mode: kernel (0) or
user (1)

 The mode bit, can distinguish between a task that is executed on behalf of the operating system and one that is

executed on behalf of the user.

 When the computer system is executing on behalf of a user application, the system is in user mode and when a

user application requests a service from the operating system the system must make a transition from user to

kernel mode

 At system boot time, the hardware starts in kernel mode. The operating system is then loaded and starts user

applications in user mode.

 Whenever a trap or interrupt occurs, the hardware switches from user mode to kernel mode (that is, changes
the state of the mode bit to 0).

 The dual mode of operation provides us with the means for protecting the operating system from errant users—

and errant users from one another

CS8493-Operating System Dept of CSE 2019 - 2020

Page 31

 The hardware allows privileged instructions to be executed only in kernel mode. If an attempt is made to

execute a privileged instruction in user mode, the hardware does not execute the instruction but rather treats it

as illegal and traps it to the operating system

 System calls provide the means for a user program to ask the operating system to perform tasks reserved for

the operating system on the user program’s behalf.

 The lack of a hardware-supported dual mode can cause serious shortcomings in an operating system.MS-DOS
was written for the Intel 8088 architecture, which has no mode bit and therefore no dual mode

 Once hardware protection is in place, it detects errors that violate modes. These errors are normally handled by

the operating system.

Timer:

 The operating system maintains control over the CPU. We cannot allow a user program to get stuck in an

infinite loop or to fail to call system services and never return control to the operating system.

 A timer can be set to interrupt the computer after a specified period. A variable timer is generally

implemented by a fixed-rate clock and a counter.

 The operating system sets the counter. Every time the clock ticks, the counter is decremented. When the

counter reaches 0, an interrupt occurs

SYSTEM CALLS:

 The system call provides an interface to the operating system services.
 Application developers often do not have direct access to the system calls, but can access them through an

application programming interface (API). The functions that are included in the API invoke the actual system

calls.

 Systems execute thousands of system calls per second. Application developers design programs according to

an application programming interface (API).

 For most programming languages, the Application Program Interface provides a system call interface that
serves as the link to system calls made available by the operating system

 The system-call interface intercepts function calls in the API and invokes the necessary system calls within the

Operating system.

 Example: System calls for writing a simple program to read data from one file and copy them to another file

 The caller of the system call need know nothing about how the system call is implemented or what it does

during execution.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 32

 The caller need only obey the API and understand what the operating system will do as a result of the

execution of that system call.

Three general methods are used to pass parameters to the operating system

 pass the parameters in registers

 parameters are generally stored in a block, or table, in memory, and the address of the block is passed as a

parameter in a register

 Parameters also can be placed, or pushed, onto the stack by the program and popped off the stack by the

operating system.

Types of System Calls:

System calls can be grouped roughly into six major categories

 Process control,

 File manipulation

 Device manipulation,

 Information maintenance,

 Communications,

 Protection.

PROCESS CONTROL:

 A Running program needs to be able to halt its execution either normally (end ()) or abnormally (abort()).
 Under either normal or abnormal circumstances, the operating system must transfer control to the invoking

command interpreter.

 A process or job executing one program may want to load() and execute() another program. This feature allows

the command interpreter to execute a program as directed by, for example, a user command, the click of a

mouse, or a batch command.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 33

 If we create a new job or process, or perhaps even a set of jobs or processes, we should be able to control its

execution that requires to determine and reset the attributes of a job or process, including the job’s priority, its

maximum allowable execution time, and so on (get process attributes() and set process attributes()).

 We may also want to terminate a job or process that we created (terminate process()) if we find that it is

incorrect or is no longer needed.

 The System calls associated with process control includes

 end, abort

 load, execute

 create process, terminate process

 get process attributes, set process attributes

 Wait for time

 wait event, signal event

 allocate and free memory

 When a process has been created We may want to wait for a certain amount of time to pass (wait time()) or we

will want to wait for a specific event to occur (wait event()).

 The jobs or processes should then signal when that event has occurred (signal event()
 To start a new process, the shell executes a fork() system call. Then, the selected program is loaded into

memory via an exec() system call, and the program is executed

 When the process is done, it executes an exit() system call to terminate, returning to the invoking process a

status code of 0 or a nonzero error code.

FILE MANAGEMENT:

 In order to work with files We first need to be able to create () and delete () files. Either system call requires

the name of the file and perhaps some of the file’s attributes. Once the file is created, we need to open() it and

to use it.

 We may also read (), write (), or reposition ().Finally, we need to close () the file, indicating that we are no

longer using it.

 In addition, for either files or directories, we need to be able to determine the values of various attributes and

perhaps to reset them if necessary.

 File attributes include the file name, file type, protection codes, accounting information, and so on. At least two

system calls, get file attributes () and set file attributes (), are required for this function.

 The System calls associated with File management includes

 File management

 create file, delete file

 open, close

 read, write, reposition

CS8493-Operating System Dept of CSE 2019 - 2020

Page 34

 get file attributes, set file attributes

DEVICE MANAGEMENT:

 A process may need several resources to execute—main memory, disk drives, access to files, and so on. If the

resources are available, they can be granted, and control can be returned to the user process. Otherwise, the

process will have to wait until sufficient resources are available.

 A system with multiple users may require us to first request() a device, to ensure exclusive use of it.
 After we are finished with the device, we release() it. These functions are similar to the open() and close()

system calls for files.
 Once the device has been requested (and allocated to us), we can read(), write(), and (possibly) reposition() the

device, just as we can with files.

 I/O devices are identified by special file names, directory placement, or file attributes.

 The System calls associated with Device management includes

 request device, release device

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices

INFORMATION MAINTENANCE:
 Many system calls exist simply for the purpose of transferring information between the user program and the

operating system.

 Example, most systems have a system call to return the current time() and date().
 Other system calls may return information about the system, such as the number of current users, the version

number of the operating system, the amount of free memory or disk space, and so on.

 Many systems provide system calls to dump() memory. This provision is useful for debugging.
 Many operating systems provide a time profile of a program to indicate the amount of time that the program

executes at a particular location or set of locations.

 The operating system keeps information about all its processes, and system calls are used to access this information.
 Generally, calls are also used to reset the process information (get process attributes() and set process attributes()).

The System calls associated with Device management includes

 get time or date, set time or date

 get system data, set system data

 get process, file, or device attributes

 set process, file, or device attributes

COMMUNICATION:

 There are two common models of Interprocess communication: the message passing model and the shared-

memory model.

 In the message-passing model, the communicating processes exchange messages with one another to transfer
information.

 Messages can be exchanged between the processes either directly or indirectly through a common mailbox.

 Each process has a process name, and this name is translated into an identifier by which the operating system
can refer to the process. The get hostid() and get processid() system calls do this translation.

 The recipient process usually must give its permission for communication to take place with an accept

connection () call.

 The source of the communication, known as the client, and the receiving daemon, known as a server, then

exchange messages by using read message() and write message() system calls.

 The close connection() call terminates the communication

 In the shared-memory model, processes use shared memory create() and shared memory attach() system calls

to create and gain access to regions of memory owned by other processes.

 The system calls associated with communication includes,

 create, delete communication connection

 send, receive messages

CS8493-Operating System Dept of CSE 2019 - 2020

Page 35

 Transfer status information

 attach or detach remote devices

PROTECTION:

 Protection provides a mechanism for controlling access to the resources provided by a computer system.
 System calls providing protection include set permission () and get permission (), which manipulate the

permission settings of resources such as files and disks.

 The allow user () and deny user () system calls specify whether particular users can—or cannot—be allowed

access to certain resources.

SYSTEM PROGRAMS:

System programs, also known as system utilities, provide a convenient environment for program development and

execution.

They can be divided into these categories:

 File management

 Status information
 File modification.

 Programming-language support

 Program loading and execution

 Communications
 Background services

File Management:These programs create, delete, copy, rename, print, dump, list, and generally manipulate files and

directories.

Status Information: Some programs simply ask the system for the date, time, amount of available memory or disk

space, number of users, or similar status information.

Others are more complex, providing detailed performance, logging, and debugging information.

File Modification: Several text editors may be available to create and modify the content of files stored on disk or

other storage devices

There may also be special commands to search contents of files or perform transformations of the text.

Programming Language support: Compilers, assemblers, debuggers, and interpreters for common programming

languages (such as C, C++, Java, and PERL) are often provided with the operating system.

Program Loading and Execution: Once a program is assembled or compiled, it must be loaded into memory to be

executed.

The system may provide absolute loaders, relocatable loader.

Communication: These programs provide the mechanism for creating virtual connections among processes, users, and

computer systems.

They allow users to send messages to one another’s screens, to browse Web pages, to send e-mail messages, to log in

remotely, or to transfer files from one machine to another.

Background Services: All general-purpose systems have methods for launching certain system-program processes at

boot time. Some of these processes terminate after completing their tasks, while others continue to run until the system

is halted. Constantly running system-program processes are known as services, subsystems, or daemons.

 Along with system programs, most operating systems are supplied with programs that are useful in solving

common problems or performing common operations.

CS8493-Operating System Dept of CSE 2019 - 2020

Page 36

 Such application programs include Web browsers, word processors and text formatters, spreadsheets,

database systems, compilers, plotting and statistical-analysis packages, and games.

OS GENERATION:

 The operating systems are designed to run on any of a class of machines at a variety of sites with a variety of

peripheral configurations.

 The Computer system must then be configured or generated for each specific computer site, a process

sometimes known as system generation SYSGEN.

 The operating system is normally distributed on disk, on CD-ROM or DVD-ROM, or as an ―ISO‖ image,

which is a file in the format of a CD-ROM or DVD-ROM.

 To generate a system, the special program called SYSGEN program reads from a given file, or asks the

operator of the system for information concerning the specific configuration of the hardware system.

The following kinds of information must be determined.

 What CPU is to be used?

 How will the boot disk be formatted?

 How much memory is available?

 What devices are available?

 What operating-system options are desired, or what parameter values are to be used?

 A system administrator can use this information to modify a copy of the source code ofthe operating system.

The operating system then is completely compiled.

 The system description can lead to the creation of tables and the selection of modules from a precompiled

library. These modules are linked together to form the generated operating system

 It is also possible to construct a system that is completely table driven. All the code is always part of the

system, and selection occurs at execution time, rather than at compile or link time.

SYSTEM BOOT:

 The procedure of starting a computer by loading the kernel is known as booting the system.

 A small piece of code known as the bootstrap program or bootstrap loader locates the kernel,loads it into

main memory, and starts its execution.

In some computer systems system booting is a two step process.

 First a simple bootstrap loader fetches a more complex boot program from disk

 A complex boot program loads the OS

 The bootstrap program can perform a variety of tasks. Usually, one task is to run diagnostics to determine the

state of the machine.

 It can also initialize all aspects of the system, from CPU registers to device controllers and the contents of main

memory and then it starts the Operating system.

 All forms of ROM are also known as firmware, since their characteristics fall somewhere between those of

hardware and those of software.

 A problem with firmware in general is that executing code there is slower than executing code in RAM.

 Some systems store the operating system in firmware and copy it to RAM for fast execution.

 A final issue with firmware is that it is relatively expensive, so usually only small amounts are available.

 For large operating systems the bootstrap loader is stored in firmware, and the operating system is on disk.

 The Bootstrap program has a piece of code that can read a single block at a fixed location from disk into

memory and execute the code from that Boot block.

 The program stored in the boot block may be sophisticated enough to load the entire operating system into

memory and begin its execution.

 A disk that has a Boot partition is called as a Boot Disk.

 GRUB is an example of an open-source bootstrap program for Linux systems.

CS8493 OPERATING SYSTEMS UNIT -II

UNIT II - PROCESS MANAGEMENT

Processes-Process Concept, Process Scheduling, Operations on Processes, Interprocess

Communication; Threads- Overview, Multicore Programming, Multithreading Models;

Windows 7 - Thread and SMP Management. Process Synchronization - Critical Section Problem,

Mutex Locks, Semophores, Monitors; CPU Scheduling and Deadlocks.

PROCESS CONCEPT

 A process can be thought of as a program in execution.

 A process is the unit of work in a modern time-sharing system.

 A process generally includes the process stack, which contains temporary data (such as

method parameters, return addresses, and local variables), and a data section, which

contains global variables.

Difference between program and process

 A program is a passive entity, such as the contents of a file stored on disk, whereas a

process is an active entity, with a program counter specifying the next instruction to

execute and a set of associated resources.

Process States:

 As a process executes, it changes state.

 The state of a process is defined in part by the current activity of that process.

 Each process may be in one of the following states:

1. New: The process is being created.

2. Running: Instructions are being executed.

3. Waiting: The process is waiting for some event to occur (such as an I/O

completion or reception of a signal).

4. Ready: The process is waiting to be assigned to a processor.

5. Terminated: The process has finished execution.

Process State Transition Diagram

CS8493 OPERATING SYSTEMS UNIT -II

Process Control Block

 Each process is represented in the operating system by a process control block (PCB)-

also called a task control block.

 A PCB defines a process to the operating system.

 It contains the entire information about a process.

 Some of the information a PCB contains are:

1. Process state: The state may be new, ready, running, waiting or

terminated.

2. Program counter: The counter indicates the address of the next

instruction to be executed for this process.

3. CPU registers: The registers vary in number and type, depending on the

computer architecture.

4. CPU-scheduling information: This information includes a process

priority, pointers to scheduling queues, and any other scheduling

parameters.

5. Memory-management information: This information may include such

information as the value of the base and limit registers, the page tables, or

the segment tables, depending on the memory system used by the

operating system.

6. Accounting information: This information includes the amount of CPU

and real time used, time limits, account numbers, job or process numbers,

and so on.

7. Status information: The information includes the list of I/O devices

allocated to this process, a list of open files, and so on.

Process Control Block

CS8493 OPERATING SYSTEMS UNIT -II

PROCESS SCHEDULING

 The objective of multiprogramming is to have some process running at all times, so as to

maximize CPU utilization.

Scheduling Queues

There are 3 types of scheduling queues .They are:

1. Job Queue

2. Ready Queue

3. Device Queue

 As processes enter the system, they are put into a job queue.

 The processes that are residing in main memory and are ready and waiting to execute are

kept on a list called the ready queue.

 The list of processes waiting for an I/O device is kept in a device queue for that

particular device.

Various Scheduling Queues

 A new process is initially put in the ready queue. It waits in the ready queue until it is

selected for execution (or dispatched).

 Once the process is assigned to the CPU and is executing, one of several events could

occur:

 The process could issue an I/O request, and then be placed in an I/O queue.

 The process could create a new subprocess and wait for its termination.

 The process could be removed forcibly from the CPU, as a result of an interrupt,

and be put back in the ready Queue.

 A common representation of process scheduling is a queuing diagram.

CS8493 OPERATING SYSTEMS UNIT -II

Queuing Diagram Representation of Process Scheduling

Schedulers

 A process migrates between the various scheduling queues throughout its lifetime.

 The operating system must select, for scheduling purposes, processes from these queues

in some fashion.

 The selection process is carried out by the appropriate scheduler.

There are three different types of schedulers.They are:

1. Long-term Scheduler or Job Scheduler

2. Short-term Scheduler or CPU Scheduler

3. Medium term Scheduler

 The long-term scheduler, or job scheduler, selects processes from this pool and loads

them into memory for execution. It is invoked very infrequently. It controls the degree of

multiprogramming.

 The short-term scheduler, or CPU scheduler, selects from among the processes that are

ready to execute, and allocates the CPU to one of them. It is invoked very frequently.

 Processes can be described as either I/O bound or CPU bound.

 An I\O-bound process spends more of its time doing I/O than it spends doing

computations.

 A CPU-bound process, on the other hand, generates I/O requests infrequently, using

more of its time doing computation than an I/O-bound process uses.

 The system with the best performance will have a combination of CPU-bound and I/O-

bound processes.

CS8493 OPERATING SYSTEMS UNIT -II

Medium term Scheduler

 Some operating systems, such as time-sharing systems, may introduce an additional,

intermediate level of scheduling.

 The key idea is medium-term scheduler, removes processes from memory and thus

reduces the degree of multiprogramming.

 At some later time, the process can be reintroduced into memory and its execution can

be continued where it left off. This scheme is called swapping.

Addition of Medium term Scheduling to Queuing Diagram

Context Switch

 Switching the CPU to another process requires saving the state of the old process and

loading the saved state for the new process.

 This task is known as a context switch.

 Context-switch time is pure overhead, because the system does no useful work while

switching.

 Its speed varies from machine to machine, depending on the memory speed, the number

of registers that must be copied, and the existence of special instructions.

CS8493 OPERATING SYSTEMS UNIT -II

OPERATIONS ON PROCESSES

1. Process Creation

 A process may create several new processes, during the course of execution.

 The creating process is called a parent process, whereas the new processes are called the

children of that process.

 When a process creates a new process, two possibilities exist in terms of execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

 There are also two possibilities in terms of the address space of the new process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

 In UNIX, each process is identified by its process identifier, which is a unique integer. A

new process is created by the fork system call.

Creating a Process using fork() system call

2. Process Termination

 A process terminates when it finishes executing its final statement and asks the operating

system to delete it by using the exit system call.

 At that point, the process may return data (output) to its parent process (via the wait

system call).

 A process can cause the termination of another process via an appropriate system call.

 A parent may terminate the execution of one of its children for a variety of reasons, such

as these:

CS8493 OPERATING SYSTEMS UNIT -II

1. The child has exceeded its usage of some of the resources that it has been

allocated.

2. The task assigned to the child is no longer required.

3. The parent is exiting, and the operating system does not allow a child to continue

if its parent terminates. On such systems, if a process terminates (either normally

or abnormally), then all its children must also be terminated. This phenomenon,

referred to as cascading termination, is normally initiated by the operating

system.

Cooperating Processes

 The concurrent processes executing in the operating system may be either independent

processes or cooperating processes.

 A process is independent if it cannot affect or be affected by the other processes

executing in the system.

 A process is cooperating if it can affect or be affected by the other processes executing in

the system.

 Benefits of Cooperating Processes

1. Information sharing

2. Computation speedup

3. Modularity

4. Convenience

 Example

Producer – Consumer Problem

 A producer process produces information that is consumed by a consumer process.

 For example, a print program produces characters that are consumed by the printer driver.

A compiler may produce assembly code, which is consumed by an assembler.

 To allow producer and consumer processes to run concurrently, we must have available a

buffer of items that can be filled by the producer and emptied by the consumer.

o unbounded-buffer: places no practical limit on the size of the buffer.

o bounded-buffer : assumes that there is a fixed buffer size.

Shared data

#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

The shared buffer is implemented as a circular array with two logical pointers: in and out. The

variable in points to the next free position in the buffer; out points to the first full position in the

buffer. The buffer is empty when in == out ; the buffer is full when ((in + 1) % BUFFERSIZE)

== out.

CS8493 OPERATING SYSTEMS UNIT -II

Producer Process

while (1)

{

 while (((in + 1) % BUFFER_SIZE) == out);

 /* do nothing */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

}

Consumer process
while (1)

{

 while (in == out);

 /* do nothing */

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

}

INTER-PROCESS COMMUNICATION

 Operating systems provide the means for cooperating processes to communicate with

each other via an inter process communication (PC) facility.

 IPC provides a mechanism to allow processes to communicate and to synchronize their

actions.IPC is best provided by a message passing system.

Basic Structure:

 If processes P and Q want to communicate, they must send messages to and receive

messages from each other; a communication link must exist between them.

 Physical implementation of the link is done through a hardware bus , network etc,

 There are several methods for logically implementing a link and the operations:

1. Direct or indirect communication

2. Symmetric or asymmetric communication

3. Automatic or explicit buffering

4. Send by copy or send by reference

5. Fixed-sized or variable-sized messages

Naming

 Processes that want to communicate must have a way to refer to each other. They can use

either direct or indirect communication.

1. Direct Communication

 Each process that wants to communicate must explicitly name the recipient or

sender of the communication.

 A communication link in this scheme has the following properties:

i.A link is established automatically between every pair of processes that

want to communicate. The processes need to know only each other's

identity to communicate.

ii.A link is associated with exactly two processes.

CS8493 OPERATING SYSTEMS UNIT -II

iii.Exactly one link exists between each pair of processes.

 There are two ways of addressing namely

 Symmetry in addressing

 Asymmetry in addressing

 In symmetry in addressing, the send and receive primitives are defined as:

send(P, message) Send a message to process P

receive(Q, message) Receive a message from Q

 In asymmetry in addressing , the send & receive primitives are defined as:

send (p, message)  send a message to process p

receive(id, message)  receive message from any process, id is set to the

name of the process with which communication has taken place

2. Indirect Communication

 With indirect communication, the messages are sent to and received from mailboxes, or

ports.

 The send and receive primitives are defined as follows:

send (A, message) Send a message to mailbox A.

receive (A, message) Receive a message from mailbox A.

A communication link has the following properties:

i. A link is established between a pair of processes only if both members of

the pair have a shared mailbox.

ii. A link may be associated with more than two processes.

iii. A number of different links may exist between each pair of

communicating processes, with each link corresponding to one mailbox

3. Buffering

 A link has some capacity that determines the number of message that can reside in it

temporarily. This property can be viewed as a queue of messages attached to the link.

 There are three ways that such a queue can be implemented.

 Zero capacity : Queue length of maximum is 0. No message is waiting in a queue. The

sender must wait until the recipient receives the message. (message system with no

buffering)

 Bounded capacity: The queue has finite length n. Thus at most n messages can reside in

it.

 Unbounded capacity: The queue has potentially infinite length. Thus any number of

messages can wait in it. The sender is never delayed

4. Synchronization

 Message passing may be either blocking or non-blocking.

1. Blocking Send - The sender blocks itself till the message sent by it is received by

the receiver.

2. Non-blocking Send - The sender does not block itself after sending the message

but continues with its normal operation.

3. Blocking Receive - The receiver blocks itself until it receives the message.

4. Non-blocking Receive – The receiver does not block itself.

CS8493 OPERATING SYSTEMS UNIT -II

THREADS - OVERVIEW

 A thread is the basic unit of CPU utilization.

 It is sometimes called as a lightweight process.

 It consists of a thread ID ,a program counter, a register set and a stack.

 It shares with other threads belonging to the same process its code section , data section, and

resources such as open files and signals.

 A traditional or heavy weight process has a single thread of control.

 If the process has multiple threads of control, it can do more than one task at a time.

Benefits of multithreaded programming

 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

User thread and Kernel threads

User threads

 Supported above the kernel and implemented by a thread library at the user level.

 Thread creation, management and scheduling are done in user space.

 Fast to create and manage

 When a user thread performs a blocking system call, it will cause the entire

process to block even if other threads are available to run within the application.

 Example: POSIX Pthreads, Mach C-threads and Solaris 2 UI-threads.

Kernel threads

 Supported directly by the OS.

 Thread creation , management and scheduling are done in kernel space.

 Slow to create and manage

CS8493 OPERATING SYSTEMS UNIT -II

 When a kernel thread performs a blocking system call ,the kernel schedules

another thread in the application for execution.

 Example: Windows NT, Windows 2000 , Solaris 2,BeOS and Tru64 UNIX

support kernel threads.

MULTITHREADING MODELS

1. Many-to-One

2. One-to-One

3. Many-to-Many

1. Many-to-One:

 Many user-level threads mapped to single kernel thread.

 Used on systems that does not support kernel threads.

Many-to-One Model

2.One-to-One:

 Each user-level thread maps to a kernel thread.

 Examples

 - Windows 95/98/NT/2000

 - OS/2

One-to-one Model

3.Many-to-Many Model:

 Allows many user level threads to be mapped to many kernel threads.

 Allows the operating system to create a sufficient number of kernel threads.

 Solaris 2

 Windows NT/2000

CS8493 OPERATING SYSTEMS UNIT -II

Many-to-Many Model

Threading Issues:

1. fork() and exec() system calls.

A fork() system call may duplicate all threads or duplicate only the thread that invoked

fork().

If a thread invoke exec() system call ,the program specified in the parameter to exec will

replace the entire process.

2. Thread cancellation.

It is the task of terminating a thread before it has completed .

A thread that is to be cancelled is called a target thread.

There are two types of cancellation namely

1. Asynchronous Cancellation – One thread immediately terminates the target thread.

2. Deferred Cancellation – The target thread can periodically check if it should

terminate , and does so in an orderly fashion.

3. Signal handling

1. A signal is a used to notify a process that a particular event has occurred.

2. A generated signal is delivered to the process.

a. Deliver the signal to the thread to which the signal applies.

b. Deliver the signal to every thread in the process.

c. Deliver the signal to certain threads in the process.

d. Assign a specific thread to receive all signals for the process.

3. Once delivered the signal must be handled.

a. Signal is handled by

i. A default signal handler

ii. A user defined signal handler

4. Thread pools

Creation of unlimited threads exhausts system resources such as CPU time or memory.

Hence we use a thread pool.

In a thread pool, a number of threads are created at process startup and placed in the pool.

When there is a need for a thread the process will pick a thread from the pool and assign it a

task. After completion of the task, the thread is returned to the pool.

5. Thread specific data

CS8493 OPERATING SYSTEMS UNIT -II

Threads belonging to a process share the data of the process. However each thread might

need its own copy of certain data known as thread-specific data.

MULTI-CORE PROGRAMMING

 A concurrent system supports more than one task by allowing all the tasks to make progress.

 A system is parallel if it can perform more than one task simultaneously.

 Before the advent of SMP and multi-core architectures, most computer systems had only a

single processor.

 CPU schedulers were designed to provide the illusion of parallelism by rapidly switching

between processes. Such processes were running concurrently but not in parallel.

Parallel execution on a multi-core system

 Modern Intel CPUs frequently support two threads per core, while the Oracle T4 CPU

supports eight threads per core.

Programming Challenges:

Multi-core architecture presents programming challenges to the system programmers and

application programmers to make better use of the multiple computing cores. The challenges are

1. Identifying parallel tasks: This involves examining applications to find areas that can be

divided into separate, concurrent tasks.

2. Balance: While identifying tasks that can run in parallel, programmers must also ensure that

the tasks perform equal work of equal value.

3. Data splitting: The data accessed and manipulated by the tasks must be divided to run on

separate cores.

4. Data dependency: When one task depends on data from another, programmers must ensure

that the execution of the tasks is synchronized to accommodate the data dependency.

5. Testing and debugging: Testing and debugging such concurrent programs is inherently more

difficult than testing and debugging single-threaded applications.

Types of Parallelism

 In general, there are two types of parallelism: Data parallelism and Task parallelism.

 Data parallelism focuses on distributing subsets of the same data across multiple computing

cores and performing the same operation on each core.

CS8493 OPERATING SYSTEMS UNIT -II

Example: In a dual core system, summing the contents of an array of size N .On a single-core

system, one thread would simply sum the elements [0] . . . [N − 1]. On a dual-core system,

however, thread A, running on core 0, could sum the elements [0] . . . [N/2 − 1] while thread

B, running on core 1, could sum the elements [N/2] ...[N − 1]. The two threads would be

running in parallel on separate computing cores.

 Task parallelism involves distributing not data but tasks (threads) across multiple computing

cores. Each thread is performing a unique operation. Different threads may be operating on

the same data, or they may be operating on different data.

WINDOWS 7 -THREAD AND SMP MANAGEMENT

 Windows Threads:

 Windows implements the Windows API, which is the primary API for the family of

Microsoft operating systems (Windows 98, NT, 2000, and XP, as well as Windows 7).

 A Windows application runs as a separate process, and each process may contain one or

more threads.

 The general components of a thread include:

1. A thread ID uniquely identifying the thread

2. A register set representing the status of the processor

3. A user stack, employed when the thread is running in user mode, and a

4. A kernel stack, employed when the thread is running in kernel mode

5. A private storage area used by various run-time libraries and dynamic link

libraries (DLLs) The register set, stacks, and private storage area are

known as the context of the thread.

 The primary data structures of a thread include:

1. ETHREAD — Executive Thread Block

2. KTHREAD — Kernel Thread Block

3. TEB — Thread Environment Block

 The key components of the ETHREAD include a pointer to the process to which the thread

belongs and the address of the routine in which the thread starts control. The ETHREAD

also contains a pointer to the corresponding KTHREAD.

 The KTHREAD includes scheduling and synchronization information for the thread. In

addition, the KTHREAD includes the kernel stack (used when the thread is running in

kernel mode) and a pointer to the TEB.

 The ETHREAD and the KTHREAD exist entirely in kernel space; this means that only the

kernel can access them. The TEB is a user-space data structure that is accessed when the

thread is running in user mode. Among other fields, the TEB contains the thread identifier, a

user-mode stack, and an array for thread-local storage.

PROCESS SYNCHRONIZATION

CS8493 OPERATING SYSTEMS UNIT -II

 Concurrent access to shared data may result in data inconsistency.

 Maintaining data consistency requires mechanisms to ensure the orderly execution of

cooperating processes.

 Shared-memory solution to bounded-butter problem allows at most n – 1 items in buffer

at the same time. A solution, where all N buffers are used is not simple.

 Suppose that we modify the producer-consumer code by adding a variable counter,

initialized to 0 and increment it each time a new item is added to the buffer

 Race condition: The situation where several processes access – and manipulate shared

data concurrently. The final value of the shared data depends upon which process finishes

last.

 To prevent race conditions, concurrent processes must be synchronized.
Example:

Consider the bounded buffer problem , where an integer variable counter, initialized to 0 is added .

counter is incremented every time we add a new item to the buffer and is decremented every time we

remove one item from the buffer.

The code for the producer process can be modified as follows:

while (true)

{

/* produce an item in next produced */
while (counter == BUFFER SIZE)

; /* do nothing */

buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

counter++;
 }

The code for the consumer process can be modified as follows:

while (true)
{

while (counter == 0)

; /* do nothing */
next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

counter--;

/* consume the item in next consumed */
}

Let the current value of counter be 5. If producer process and consumer process execute

the statements counter++ and counter—concurrently then the value of counter may be 4,5

or 6 which is incorrect. To explain this further, counter ++ may be implemented in

machine language as follows:

register1 = counter

register1 = register1 + 1

 counter = register1

 and counter - - may be implemented as follows:

CS8493 OPERATING SYSTEMS UNIT -II

register2 = counter

register2 = register2 - 1

 counter = register2

The concurrent execution of counter ++ and counter - - is equivalent to a sequential

execution of the statement are interleaved in some arbitrary order. One such interleaving

is given below:

T0: producer execute register1 = counter {register1 = 5}

T1: producer execute register1 = register1 + 1 {register1 = 6}

T2: consumer execute register2 = counter {register2 = 5}

T3: consumer execute register2 = register2 − 1 {register2 = 4}

T4: producer execute counter = register1 {counter = 6}

 T5: consumer execute counter = register2 {counter = 4}

A situation like this, where several processes access and manipulate the same data concurrently

and the outcome of the execution depends on the particular order in which the access takes place,

is called a race condition.

 To guard against the race condition above, we need to ensure that only one process at a time can

be manipulating the variable counter.

THE CRITICAL-SECTION PROBLEM

 A critical section is the portion of a program that accesses shared data.

 Each process has a code segment, called critical section, in which the shared data is

accessed.

 To ensure synchronization, no two processes is should be allowed to execute in their

critical sections at the same time.

Requirements to be satisfied for a Solution to the Critical-Section Problem:

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there exist some processes

that wish to enter their critical section, then the selection of the processes that will enter

the critical section next cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its

critical section and before that request is granted.

 General structure of process Pi

 do {

critical section

entry section

exit section

CS8493 OPERATING SYSTEMS UNIT -II

 remainder section

} while (1);

 Two general approaches are used to handle critical sections in operating systems:

preemptive kernels and non-preemptive kernels.

 A preemptive kernel allows a process to be preempted while it is running in kernel mode.

 A non-preemptive kernel does not allow a process running in kernel mode to be

preempted; a kernel-mode process will run until it exits kernel mode, blocks, or

voluntarily yields control of the CPU.

 Obviously, a non-preemptive kernel is essentially free from race conditions on kernel

data structures, as only one process is active in the kernel at a time.

 We cannot say the same about preemptive kernels, so they must be carefully designed to

ensure that shared kernel data are free from race conditions.

 Preemptive kernels are especially difficult to design for SMP architectures, since in these

environments it is possible for two kernel-mode processes to run simultaneously on

different processors.

MUTEX LOCKS

 Mutex(Mutual Exclusion) lock is a simple software tool that solves the critical section

problem.

 The mutex lock is used to protect critical regions and thus prevent race conditions.

 A process must acquire the lock before entering a critical section; it releases the lock

when it exits the critical section.

 The acquire() function acquires the lock, and the release() function releases the lock.

 A mutex lock has a boolean variable available whose value indicates if the lock is

available or not.

 If the lock is available, a call to acquire() succeeds, and the lock is then considered

unavailable.

 A process that attempts to acquire an unavailable lock is blocked until the lock is

released.

 The definition of acquire() is as follows:

acquire() {

while (!available)

; /* busy wait */

available = false;;

}

 Solution to the critical-section problem using mutex locks.

do {

acquire lock

critical section

CS8493 OPERATING SYSTEMS UNIT -II

release lock

remainder section

} while (true);

The definition of release() is as follows:

release() {

available = true;

}

 Calls to either acquire() or release() must be performed atomically.

 The main disadvantage of the implementation given here is that it requires busy waiting.

 mutex lock is also called a spinlock because the process “spins” while waiting for the lock to

become available.

 Advantage of Spinlocks is that no context switch is required when a process must wait on a

lock.

 When locks are expected to be held for short times, spinlocks are useful.

SEMAPHORES

 It is a synchronization tool that is used to generalize the solution to the critical section

problem.

 A Semaphore S is an integer variable that can only be accessed via two indivisible (atomic)

operations namely

1. wait or P operation (to test)

2. signal or V operation (to increment)

 wait (s)

 {

while(s0);

 s--;

}

 signal (s)

 {

 s++;

 }

Mutual Exclusion Implementation using semaphore

do

{

 critical section

wait(mutex);

signal(mutex)

;

CS8493 OPERATING SYSTEMS UNIT -II

 remainder section

 } while (1);

 Semaphore Implementation

 The semaphore discussed so far requires a busy waiting. That is if a process is in critical-

section, the other process that tries to enter its critical-section must loop continuously in the

entry code.

 To overcome the busy waiting problem, the definition of the semaphore operations wait and

signal should be modified.

 When a process executes the wait operation and finds that the semaphore value is not

positive, the process can block itself. The block operation places the process into a waiting

queue associated with the semaphore.

 A process that is blocked waiting on a semaphore should be restarted when some other

process executes a signal operation. The blocked process should be restarted by a wakeup

operation which put that process into ready queue.

 To implemented the semaphore, we define a semaphore as a record as:

typedef struct {

int value;

struct process *L;

} semaphore;

 Assume two simple operations:

1. block suspends the process that invokes it.

2. wakeup(P) resumes the execution of a blocked process P.

 Semaphore operations now defined as

 wait(S)

 {

S.value--;

if (S.value < 0) {

add this process to S.L;

block;

}

signal(S)

{

S.value++;

if (S.value <= 0) {

remove a process P from S.L;

wakeup(P);

}

Deadlock & starvation:

Example: Consider a system of two processes, P0 & P1 each accessing two semaphores, S & Q,

set to the value 1.

 P0 P1

 Wait (S) Wait (Q)

CS8493 OPERATING SYSTEMS UNIT -II

 Wait (Q) Wait (S)

 . .

 . .

 . .

 Signal(S) Signal(Q)

 Signal(Q) Signal(S)

 Suppose that P0 executes wait(S), then P1 executes wait(Q). When P0 executes wait(Q),

it must wait until P1 executes signal(Q).Similarly when P1 executes wait(S), it must wait

until P0 executes signal(S). Since these signal operations cannot be executed, P0 & P1

are deadlocked.

 Another problem related to deadlock is indefinite blocking or starvation, a situation

where a process wait indefinitely within the semaphore. Indefinite blocking may occur if

we add or remove processes from the list associated with a semaphore in LIFO order.

Types of Semaphores
 Counting semaphore – any positive integer value

 Binary semaphore – integer value can range only between 0 and 1

MONITORS

 A monitor is a synchronization construct that supports mutual exclusion and the ability to

wait /block until a certain condition becomes true.

 A monitor is an abstract datatype that encapsulates data with a set of functions to operate

on the data.

Characteristics of Monitor

 The local variables of a monitor can be accessed only by the local functions.

 A function defined within a monitor can only access the local variables of a monitor and its

formal parameter.

 Only one process may be active within the monitor at a time.

Syntax of a Monitor

monitor monitor-name

{

// shared variable declarations

function P1 (…) { …. }

…

function Pn (…) {……}

initialization code (….) {

}

}

CS8493 OPERATING SYSTEMS UNIT -II

Schematic view of a monitor

Monitor with condition variables

 Instead of lock-based protection, monitors use a shared condition variable for

synchronization and only two operations wait() and signal() can be applied on the

condition variable.

condition x, y;

x.wait (); // a process that invokes the operation is suspended.

x.signal (); //resumes one of the suspended processes(if any)

The Dining Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The philosophers share a

circular table surrounded by five chairs, each belonging to one philosopher. In the center of the

table is a bowl of rice, and the table is laid with five single chopsticks When a philosopher

thinks, she does not interact with her colleagues. From time to time, a philosopher gets hungry

and tries to pick up the two chopsticks that are closest to her (the chopsticks that are between her

and her left and right neighbors). A philosopher may pick up only one chopstick at a time.

Obviously, she cannot pick up a chopstick that is already in the hand of a neighbor. When a

hungry philosopher has both her chopsticks at the same time, she eats without releasing the

chopsticks. When she is finished eating, she puts down both chopsticks and starts thinking again.

CS8493 OPERATING SYSTEMS UNIT -II

Solution to Dining Philosophers Problem

 Each philosopher, before starting to eat, must invoke the operation pickup() followed by eating and

finally invoke putdown().

 This solution ensures that no two neighbors are eating simultaneously and that no

deadlocks will occur. However, with this solution it is possible for a philosopher to starve

to death.

Implementing a Monitor using a semaphore

 For each condition variable x, we introduce a semaphore x_sem and an integer variable

x_count, both initialized to 0.

 The operation x.wait() is implemented as:

CS8493 OPERATING SYSTEMS UNIT -II

 The operation x.signal() is implemented as:

Resuming Processes within a Monitor

 If several processes are suspended on condition x, then on resuming we have to

determine which process is to be resumed.

 One solution is to use FCFS ordering.

 For priority based sheme, the conditional wait construct is x.wait(c)

where c is the priority number

CPU SCHEDULING

 CPU scheduling is the basis of multi-programmed operating systems.

 The objective of multiprogramming is to have some process running at all times, in order

to maximize CPU utilization.

 Scheduling is a fundamental operating-system function.

 Almost all computer resources are scheduled before use.

CPU-I/O Burst Cycle

 Process execution consists of a cycle of CPU execution and I/O wait.

 Processes alternate between these two states.

 Process execution begins with a CPU burst.

 That is followed by an I/O burst, then another CPU burst, then another I/O burst, and so

on.

 Eventually, the last CPU burst will end with a system request to terminate execution,

rather than with another I/O burst.

CS8493 OPERATING SYSTEMS UNIT -II

CPU Scheduler

 Whenever the CPU becomes idle, the operating system must select one of the processes

in the ready queue to be executed.

 The selection process is carried out by the short-term scheduler (or CPU scheduler).

 The ready queue is not necessarily a first-in, first-out (FIFO) queue. It may be a FIFO

queue, a priority queue, a tree, or simply an unordered linked list.

Preemptive Scheduling

 CPU scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state

2. When a process switches from the running state to the ready state

3. When a process switches from the waiting state to the ready state

4. When a process terminates

 Under 1 & 4 scheduling scheme is non preemptive.

 Otherwise the scheduling scheme is preemptive.

Non-preemptive Scheduling

 In non preemptive scheduling, once the CPU has been allocated a process, the process

keeps the CPU until it releases the CPU either by termination or by switching to the

waiting state.

 This scheduling method is used by the Microsoft windows environment.

Dispatcher

 The dispatcher is the module that gives control of the CPU to the process selected by the

short-term scheduler.

CS8493 OPERATING SYSTEMS UNIT -II

 This function involves:

1. Switching context

2. Switching to user mode

3. Jumping to the proper location in the user program to restart that program

Scheduling Criteria

1. CPU utilization: The CPU should be kept as busy as possible. CPU utilization may

range from 0 to 100 percent. In a real system, it should range from 40 percent (for a

lightly loaded system) to 90 percent (for a heavily used system).

2. Throughput: It is the number of processes completed per time unit. For long processes,

this rate may be 1 process per hour; for short transactions, throughput might be 10

processes per second.

3. Turnaround time: The interval from the time of submission of a process to the time of

completion is the turnaround time. Turnaround time is the sum of the periods spent

waiting to get into memory, waiting in the ready queue, executing on the CPU, and doing

I/O.

4. Waiting time: Waiting time is the sum of the periods spent waiting in the ready queue.

5. Response time: It is the amount of time it takes to start responding, but not the time that

it takes to output that response.

CPU Scheduling Algorithms

1. First-Come, First-Served Scheduling

2. Shortest Job First Scheduling

3. Priority Scheduling

4. Round Robin Scheduling

First-Come, First-Served Scheduling

 The process that requests the CPU first is allocated the CPU first.

 It is a non-preemptive scheduling technique.

 The implementation of the FCFS policy is easily managed with a FIFO queue.

Example:

Process Burst Time

 P1 24

 P2 3

 P3 3

CS8493 OPERATING SYSTEMS UNIT -II

 If the processes arrive in the order PI, P2, P3, and are served in FCFS order, we get the

result shown in the following Gantt chart:

Gantt Chart

Average waiting time = (0+24+27) / 3 = 17 ms

Average Turnaround time = (24+27+30) / 3 = 27 ms

 The FCFS algorithm is particularly troublesome for time – sharing systems, where it

is important that each user get a share of the CPU at regular intervals.

Shortest Job First Scheduling

 It is a non-preemptive scheduling technique.

 The CPU is assigned to the process that has the smallest next CPU burst.

 If two processes have the same length next CPU burst, FCFS scheduling is used to break

the tie.

Example:

Process Burst Time

P1 6

P2 8

P3 7

P4 3

 Gantt Chart

Average waiting time is (3 + 16 + 9 + 0)/4 = 7 ms

Average turnaround time = (3+9+16+24) / 4 = 13 ms

Shortest Remaining Time First Scheduling

 It is a preemptive scheduling technique.

 Preemptive SJF is known as shortest remaining time first

Example :

Process Arrival Time Burst Time

 P1 0 8

CS8493 OPERATING SYSTEMS UNIT -II

P2 1 4

P3 2 9

P4 3 5

Waiting Time Calculation

P1 : 10 – 1 = 9

P2 : 1 – 1 = 0

P3 : 17 – 2 = 15

P4 : 5 – 3 = 2

Average waiting time = (9+0+15+2) / 4 = 6.5 ms

Priority Scheduling

 A priority is associated with each process, and the CPU is allocated to the process with the

highest priority.(smallest integer  highest priority).

Example :

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Average waiting time =8.2 ms

 Priority Scheduling can be preemptive or non-preemptive.

 Drawback  Starvation – low priority processes may never execute.

 Solution  Aging – It is a technique of gradually increasing the priority of processes that

wait in the system for a long time.

Round-Robin Scheduling

 The round-robin (RR) scheduling algorithm is designed especially for timesharing

systems.

 It is similar to FCFS scheduling, but preemption is added to switch between processes.

 A small unit of time, called a time quantum (or time slice), is defined.

 The ready queue is treated as a circular queue.

Example:

Process Burst Time

P1 24

P2 3

P3 3

CS8493 OPERATING SYSTEMS UNIT -II

Time Quantum = 4 ms.

Waiting time

P1 = 26 – 20 = 6

P2 = 4

P3 = 7 (6+4+7 / 3 = 5.66 ms)

Average waiting time is 17/3 = 5.66 milliseconds.

 The performance of the RR algorithm depends heavily on the size of the time–quantum.

 If time-quantum is very large (infinite) then RR policy is same as FCFS policy.

 If time quantum is very small, RR approach is called processor sharing and appears to the

users as though each of n process has its own processor running at 1/n the speed of real

processor.

Multilevel Queue Scheduling

 It partitions the ready queue into several separate queues .

 The processes are permanently assigned to one queue, generally based on some property

of the process, such as memory size, process priority, or process type.

 There must be scheduling between the queues, which is commonly implemented as a

fixed-priority preemptive scheduling.

 For example the foreground queue may have absolute priority over the background

queue.

 Example of a multilevel queue scheduling algorithm with five queues

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

 Each queue has absolute priority over lower-priority queue.

CS8493 OPERATING SYSTEMS UNIT -II

Multilevel Feedback Queue Scheduling

 It allows a process to move between queues.

 The idea is to separate processes with different CPU-burst characteristics.

 If a process uses too much CPU time, it will be moved to a lower-priority queue.

 This scheme leaves I/O-bound and interactive processes in the higher-priority queues.

 Similarly, a process that waits too long in a lower priority queue may be moved to a

higher-priority queue.

 This form of aging prevents starvation.

Example:

 Consider a multilevel feedback queue scheduler with three queues, numbered from 0 to 2.

 The scheduler first executes all processes in queue 0.

 Only when queue 0 is empty will it execute processes in queue 1.

 Similarly, processes in queue 2 will be executed only if queues 0 and 1 are empty.

 A process that arrives for queue 1 will preempt a process in queue 2.

 A process that arrives for queue 0 will, in turn, preempt a process in queue 1.

 A multilevel feedback queue scheduler is defined by the following parameters:

1. The number of queues

CS8493 OPERATING SYSTEMS UNIT -II

2. The scheduling algorithm for each queue

3. The method used to determine when to upgrade a process to a higher priority

queue

4. The method used to determine when to demote a process to a lower-priority

queue

5. The method used to determine which queue a process will enter when that

process needs service

DEADLOCKS

Definition: A process requests resources. If the resources are not available at that time, the

process enters a wait state. Waiting processes may never change state again because the

resources they have requested are held by other waiting processes. This situation is called a

deadlock.

A process must request a resource before using it, and must release resource after using it.

1. Request: If the request cannot be granted immediately then the requesting process must

wait until it can acquire the resource.

2. Use: The process can operate on the resource

3. Release: The process releases the resource.

Deadlock Characterization

Four Necessary conditions for a deadlock

1. Mutual exclusion: At least one resource must be held in a non sharable mode. That is only

one process at a time can use the resource. If another process requests that resource, the

requesting process must be delayed until the resource has been released.

2. Hold and wait: A process must be holding at least one resource and waiting to acquire

additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted.

4. Circular wait: P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that

is held by P2...Pn-1.

Resource-Allocation Graph

 It is a directed graph with a set of vertices V and a set of edges E.

 V is partitioned into two types:

1. nodes P = {p1, p2,..pn}

2. Resource type R ={R1,R2,...Rm}

 Pi -->Rj - request => request edge

 Rj-->Pi - allocated => assignment edge.

 Pi is denoted as a circle and Rj as a square.

 Rj may have more than one instance represented as a dot within the square.

Sets P,R and E.

P = { P1,P2,P3}

R = {R1,R2,R3,R4}

E= {P1->R1, P2->R3, R1->P2, R2->P1, R3->P3 }

CS8493 OPERATING SYSTEMS UNIT -II

 Resource instances

One instance of resource type R1,Two instance of resource type R2,One instance

of resource type R3,Three instances of resource type R4.

Process states

Process P1 is holding an instance of resource type R2, and is waiting for an instance of resource

type R1.

Resource Allocation Graph with a deadlock

Process P2 is holding an instance of R1 and R2 and is waiting for an instance of resource type

R3.Process P3 is holding an instance of R3.

P1->R1->P2->R3->P3->R2->P1

P2->R3->P3->R2->P2

Methods for handling Deadlocks

1. Deadlock Prevention

2. Deadlock Avoidance

3. Deadlock Detection and Recovery

Deadlock Prevention:

 This ensures that the system never enters the deadlock state.

 Deadlock prevention is a set of methods for ensuring that at least one of the necessary

conditions cannot hold.

 By ensuring that at least one of these conditions cannot hold, we can prevent the

occurrence of a deadlock.

CS8493 OPERATING SYSTEMS UNIT -II

1. Denying Mutual exclusion

 Mutual exclusion condition must hold for non-sharable resources.

 Printer cannot be shared simultaneously shared by prevent processes.

 Sharable resource - example Read-only files.

 If several processes attempt to open a read-only file at the same time, they can be granted

simultaneous access to the file.

 A process never needs to wait for a sharable resource.

2. Denying Hold and wait

 Whenever a process requests a resource, it does not hold any other resource.

 One technique that can be used requires each process to request and be allocated all its

resources before it begins execution.

 Another technique is before it can request any additional resources, it must release all the

resources that it is currently allocated.

 These techniques have two main disadvantages :

o First, resource utilization may be low, since many of the resources may be

allocated but unused for a long time.

o We must request all resources at the beginning for both protocols. starvation is

possible.

3. Denying No preemption

 If a process is holding some resources and requests another resource that cannot be

immediately allocated to it. (that is the process must wait), then all resources currently

being held are preempted.(ALLOW PREEMPTION)

 These resources are implicitly released.

 The process will be restarted only when it can regain its old resources.

4. Denying Circular wait

 Impose a total ordering of all resource types and allow each process to request for

resources in an increasing order of enumeration.

 Let R = {R1,R2,...Rm} be the set of resource types.

 Assign to each resource type a unique integer number.

 If the set of resource types R includes tapedrives, disk drives and printers.

F(tapedrive)=1,

F(diskdrive)=5,

F(Printer)=12.

 Each process can request resources only in an increasing order of enumeration.

Deadlock Avoidance:

 Deadlock avoidance request that the OS be given in advance additional information

concerning which resources a process will request and use during its life time. With this

information it can be decided for each request whether or not the process should wait.

 To decide whether the current request can be satisfied or must be delayed, a system must

consider the resources currently available, the resources currently allocated to each

process and future requests and releases of each process.

 Safe State

A state is safe if the system can allocate resources to each process in some order and still

CS8493 OPERATING SYSTEMS UNIT -II

avoid a dead lock.

 A deadlock is an unsafe state.

 Not all unsafe states are dead locks

 An unsafe state may lead to a dead lock

 Two algorithms are used for deadlock avoidance namely;

1. Resource Allocation Graph Algorithm - single instance of a resource type.

2. Banker’s Algorithm – several instances of a resource type.

Resource allocation graph algorithm

 Claim edge - Claim edge Pi---> Rj indicates that process Pi may request resource Rj at

some time, represented by a dashed directed edge.

 When process Pi request resource Rj, the claim edge Pi -> Rj is converted to a request

edge.

 Similarly, when a resource Rj is released by Pi the assignment edge Rj -> Pi is reconverted

to a claim edge Pi -> Rj

 The request can be granted only if converting the request edge Pi -> Rj to an assignment

edge Rj -> Pi does not form a cycle.

 If no cycle exists, then the allocation of the resource will leave the system in a safe state.

 If a cycle is found, then the allocation will put the system in an unsafe state.

Banker's algorithm

 Available: indicates the number of available resources of each type.

 Max: Max[i, j]=k then process Pi may request at most k instances of resource type Rj

 Allocation : Allocation[i. j]=k, then process Pi is currently allocated K instances of

resource type Rj

 Need : if Need[i, j]=k then process Pi may need K more instances of resource type Rj

 Need [i, j]=Max[i, j]-Allocation[i, j]

Safety algorithm

CS8493 OPERATING SYSTEMS UNIT -II

1. Initialize work := available and Finish [i]:=false for i=1,2,3 .. n

2. Find an i such that both

 a. Finish[i]=false

 b. Needi<= Work

 if no such i exists, goto step 4

3. work :=work+ allocationi;

 Finish[i]:=true

 goto step 2

4. If finish[i]=true for all i, then the system is in a safe state

Resource Request Algorithm

Let Requesti be the request from process Pi for resources.

1. If Requesti<= Needi goto step2, otherwise raise an error condition, since the process has

exceeded its maximum claim.

2. If Requesti <= Available, goto step3, otherwise Pi must wait, since the resources are not

available.

3. Available := Availabe-Requesti;

 Allocationi := Allocationi + Requesti

 Needi := Needi - Requesti;

 Now apply the safety algorithm to check whether this new state is safe or not.

 If it is safe then the request from process Pi can be granted.

Deadlock detection

(i) Single instance of each resource type

 If all resources have only a single instance, then we can define a deadlock detection

algorithm that use a variant of resource-allocation graph called a wait for graph.

 Resource Allocation Graph

 Wait for Graph

CS8493 OPERATING SYSTEMS UNIT -II

(ii) Several Instances of a resource type

Available : Number of available resources of each type

Allocation : number of resources of each type currently allocated to each process

Request : Current request of each process

If Request [i,j]=k, then process Pi is requesting K more instances of resource type Rj.

1. Initialize work := available

 Finish[i]=false, otherwise finish [i]:=true

2. Find an index i such that both

 a. Finish[i]=false

 b. Requesti<=work

 if no such i exists go to step4.

3. Work:=work+allocationi

 Finish[i]:=true

 goto step2

4. If finish[i]=false

 then process Pi is deadlocked

Deadlock Recovery

1. Process Termination

1. Abort all deadlocked processes.

2. Abort one deadlocked process at a time until the deadlock cycle is eliminated.

 After each process is aborted , a deadlock detection algorithm must be invoked to

determine where any process is still dead locked.

2. Resource Preemption

Preemptive some resources from process and give these resources to other processes until the

deadlock cycle is broken.

 i. Selecting a victim: which resources and which process are to be preempted.

 ii. Rollback: if we preempt a resource from a process it cannot continue with its normal

execution. It is missing some needed resource. we must rollback the process to some safe state,

and restart it from that state.

 iii. Starvation : How can we guarantee that resources will not always be preempted from

the same process.

UNIT - III STORAGE MANAGEMENT

Main Memory-Contiguous Memory Allocation, Segmentation, Paging, 32 and 64 bit architecture Examples; Virtual

Memory- Demand Paging, Page Replacement, Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

MAIN MEMORY:

MEMORY HARDWARE:

 Memory consists of a large array of bytes, each with its own address. The CPU fetches instructions from

memory according to the value of the program counter.

 Main memory and the registers built into the processor itself are the only general-purpose storage that the CPU

can access directly.

 Registers that are built into the CPU are generally accessible within one cycle of the CPU clock.

 A memory access may take many cycles of the CPU clock. In such cases, the processor normally needs to

stall, since it does not have the data required to complete the instruction.

 The remedy is to add fast memory between the CPU and main memory, typically on the CPU chip for fast

access called as CACHE.

 MEMORY PROTECTION:

 For proper system operation we must protect the operating system from access by user processes.

 Each process has a separate memory space. Separate per-process memory space protects the processes from

each other.

 The hardware protection of memory is provided by two registers

o Base Register

o Limit Register

 The base register holds the smallest legal physical memory address, called the starting address of the

process.

 The Limit register specifies the size of range of the process.
 If the base register holds300040 and the limit register is 120900, then the program can legally access all

addresses from 300040 through 420939

 Protection of memory space is accomplished by having the CPU hardware compare every address generated in

user mode with the registers.

 Any attempt by a program executing in user mode to access operating-system memory or other users’ memory

results in a trap to the operating system, resulting in addressing error.

 The base and limit registers can be loaded only by the operating system into the CPU hardware.

 This scheme prevents a user program from modifying the code or data structures of either the operating system

or other users.

 The address generated by the CPU for a process should lie between the Base address of the process and base +

Limit of the process, Else the hardware sends an interrupt to the OS.

ADDRESS BINDING:

 Address binding is the process of mapping the program's logical or virtual addresses to corresponding physical

or main memory addresses.

 Addresses in the source program are generally symbolic.

 A compiler typically binds these symbolic addresses to relocatable addresses.

 The linkage editor or loader in turn binds the relocatable addresses to absolute addresses

 Each binding is a mapping from one address space to another .

The binding of instructions and data to memory addresses can be done in three ways.

1) Compile time. If you know at compile time where the process will reside in memory, then absolute code can be

generated.

2) Load time. If it is not known at compile time where the process will reside in memory, then the compiler must

generate relocatable code.

3) Execution time. If the process can be moved during its execution from one memory segment to another, then

binding must be delayed until run time.

LOGICAL VERSUS PHYSICAL ADDRESS SPACE:

 An address generated by the CPU is commonly referred to as a logical address. which is also called as virtual

address

 The set of all logical addresses generated by a program is a logical address space.

 An address seen by the memory unit—that is, the one loaded into the memory-address register of the

memory—is commonly referred to as a physical address.

 The set of all physical addresses corresponding to these logical addresses is a physical address space.

 The run-time mapping from virtual to physical addresses is done by a device called the memory-management

unit (MMU).

 The base register is also called as relocation register.

 The value in the relocation register is added to every address generated by a user process at the time the

address is sent to memory.

 For example, if the base is at 14000, then an attempt by the user to address location 0 is dynamically relocated

to location 14000; an access to location 346 is mapped to location 14346

DYNAMIC LOADING:
 Dynamic Loading is the process of loading a routine only when it is called or needed during runtime.

 Initially all routines are kept on disk in a relocatable load format.

 The main program is loaded into memory and is executed. When a routine needs to call another routine, the

calling routine first checks to see whether the other routine has been loaded. If it has not, the relocatable

linking loader is called to load the desired routine into memory.

 The advantage of dynamic loading is that a routine is loaded only when it is needed.

 This method is particularly useful when large amounts of code are needed to handle infrequently occurring

cases, such as error routines.

DYNAMIC LINKING AND SHAREDLIBRARIES:
 Dynamically linked libraries are system libraries that are linked to user programs when the programs are in

execution.

 In Dynamic linking the linking of system libraries are postponed until execution time.

 Static Linking combines the system libraries to the user program at the time of compilation.

 Dynamic linking saves both the disk space and the main memory space.

 The libraries can be replaced by a new version and all the programs that reference the library will use the new

version. This system is called as Shared libraries which can be done with dynamic linking.

SWAPPING:
 A process must be in memory to be executed.

 A process can be swapped temporarily out of memory to a backing store and then brought back into

memory for continued execution. This process is called as Swapping.
 Swapping allows the total physical address space of all processes to exceed the real physical memory of the

system, and increases the degree of multiprogramming in a system.

 Swapping involves moving processes between main memory and a backing store. The backing store is

commonly a fast disk.

EXAMPLE: Consider a multiprogramming environment with Round robin Scheduling. When the quantum time of a

process expires the memory manager will swap out the process just finished and swap another process into the memory

space.

The system maintains a ready queue consisting of all processes whose memory images are on the backing store or in

memory and are ready to run.

Whenever the CPU scheduler decides to execute a process, it calls the dispatcher. The dispatcher checks to see whether

the next process in the queue is in memory.

If it is not, and if there is no free memory region, the dispatcher swaps out a process currently in memory and swaps in

the desired process.

 The context-switch time in such a swapping system is fairly high.

 The major part of the swap time is transfer time. The total transfer time is directly proportional to the amount

of memory swapped.

 If we want to swap a process, we must be sure that it is completely idle. A process that is waiting for any event

such as I/O Operation to occur should not be swapped.

 A variant of swapping policy is used for priority based scheduling algorithms. If a higher priority process

arrives and want service the memory manager can then swap the lower priority process and then load and

execute the higher priority process.

 When the higher priority process finishes then the lower priority process can be swapped back in. This is also

called as Roll in and Roll out.

CONTIGUOUS MEMORY ALLOCATION:
 The main memory must accommodate both the operating system and the various user processes

 The memory is usually divided into two partitions: one for the resident operating system and one for the user

processes.

 In Multiprogramming several user processes to reside in memory at the same time.

 The OS need to decide how to allocate available memory to the processes that are in the input queue waiting to

be brought into memory.

 In contiguous memory allocation, each process is contained in a single section of memory that is

contiguous to the section containing the next process.

MEMORY PROTECTION:
 We can prevent a process from accessing memory of other process.

 If we have a system with a relocation register together with a limit register we accomplish our goal.

 The relocation register contains the value of the smallest physical address; the limit register contains the range

of logical addresses

 The MMU maps the logical address dynamically by adding the value in the relocation register.

 This mapped address is sent to memory.

 When the CPU scheduler selects a process for execution, the dispatcher loads the relocation and limit registers

with the correct values as part of the context switch.

 Every address generated by a CPU is checked against these registers, we can protect both the operating system

and the other users’ programs

MEMORY ALLOCATION:

In Contiguous memory allocation the memory can be allocated in two ways

1) Fixed partition scheme

2) Variable partition scheme

Fixed partition scheme:
 One of the simplest methods for allocating memory is to divide memory into several fixed-sized

 Partitions. Each partition may contain exactly one process.

 Thus, the degree of multiprogramming is bound by the number of partitions.

 In this multiple partition method, when a partition is free, a process is selected from the input

 queue and is loaded into the free partition.

 When the process terminates, the partition becomes available for another process.

 INTERNAL FRAGMENTATION: In fixed size partitions, each process is allocated with a partition,

irrespective of its size. The allocated memory for a process may be slightly larger than requested

memory; this memory that is wasted internal to a partition, is called as internal fragmentation.

Variable Partition scheme:
 In the variable-partition scheme, the operating system keeps a table indicating which parts of memory are

available and which are occupied.

 Initially, all memory is available for user processes and is considered one large block of available memory, a

hole.

 When a process is allocated space, it is loaded into memory, and it can then compete for CPU time. When a

process terminates, it releases its memory, which the operating system may then fill with another process from

the input queue.

 Os will have a list of available block sizes and an input queue. The operating system can order the input queue

according to a scheduling algorithm.

 Memory is allocated to processes until, finally, the memory requirements of the next process cannot be

satisfied—that is, no available block of memory (or hole) is large enough to hold that process.

 When a process arrives and needs memory, the system searches the set for a hole that is large enough for this

process.

 If the hole is too large, it is split into two parts. One part is allocated to the arriving process; the other is

returned to the set of holes.

 When a process terminates, it releases its block of memory, which is then placed back in the set of holes. If the

new hole is adjacent to other holes, these adjacent holes are merged to form one larger hole.

 The system may need to check whether there are processes waiting for memory and whether this newly freed

and recombined memory could satisfy the demands of any of these waiting processes.

 This procedure is a particular instance of the general dynamic storage allocation problem

There are many solutions to this problem.

 First fit: Allocate the first hole that is big enough.

 Best fit: Allocate the smallest hole that is big enough.

 Worst fit: Allocate the largest hole.
Both the first-fit and best-fit strategies suffer from external fragmentation.

EXTERNAL FRAGMENTATION: As processes are loaded and removed from memory, the free memory space is

broken into little pieces. External fragmentation exists when there is enough total memory space to satisfy a

request but the available spaces are not contiguous, so that the memory cannot be allocated to the process.

COMPACTION: One solution to the problem of external fragmentation is compaction. The goal is to shuffle the

memory contents so as to place all free memory together in one large block.

50 PERCENT RULE: The analysis of first fit, reveals that given N allocated blocks, another 0.5 N blocks will be lost

to fragmentation. That is, one-third of memory may be unusable! This property is known as the 50-percent rule.

NON CONTIGUOUS MEMORY ALLOCATION:
The solution to the external-fragmentation problem is to permit the logical address space of the processes to be

noncontiguous, thus allowing a process to be allocated physical memory wherever memory is available.

Two complementary techniques achieve this solution:

 segmentation

 paging

1. SEGMENTATION:

Segmentation is a memory-management scheme that supports the programmer view of memory.

A logical address space is a collection of segments.

Each segment has a name and a length.

The logical addresses specify both the segment name and the offset within the segment. Each address is specified by

two quantities: a segment name and an offset

Segment-number, offset>.

A C compiler might create separate segments for the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

SEGMENTATION HARDWARE:

 The programmer can refer to objects in the program by a two-dimensional address (segment number and

offset); the actual physical memory a one dimensional sequence of bytes.

 The two-dimensional user-defined addresses should be mapped into one-dimensional physical addresses.

 The mapping of logical address to physical address is done by a table called segment table.

 Each entry in the segment table has a segment base and a segment limit.

 The segment base contains the starting physical address where the segment resides in memory

 The segment limit specifies the length of the segment.

 A logical address consists of two parts: a segment number, s, and an offset into that segment, d.

 The segment number is used as an index to the segment table. The offset d of the logical address must be

between 0 and the segment limit.

 If it is not between 0 and limit then hardware trap to the operating system (logical addressing attempt beyond

end of segment).

 When an offset is legal, it is added to the segment base to produce the address in physical memory of the

desired byte.

 The segment table is an array of base–limit register pairs.

 Segmentation can be combined with paging.

Example: Consider five segments numbered from 0 through 4. The segment table has a separate entry for each

segment, giving the beginning address of the segment in physical memory (or base) and the length of that segment (or

limit).

 The Segment 2 is 400 bytes long and begins at location 4300. Thus, a reference to byte 53 of segment 2 is

mapped onto location 4300 + 53 = 4353.

 A reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 = 4052.

 A reference to byte 1222 of segment 0 would result in a trap to the operating system, as this segment is only

1,000 bytes long.

2. PAGING:
 Paging involves breaking physical memory into fixed-sized blocks called frames and breaking logical memory

into blocks of the same size called pages.

 Paging avoids external fragmentation and the need for compaction, whereas segmentation does not.

 When a process is to be executed, its pages are loaded into any available memory frames

PAGING HARDWARE:

 Every address generated by the CPU is divided into two parts: a page number (p) and a page offset (d).

 The page number is used as an index into a page table.

 The page table contains the base address of each page in physical memory.

 This base address is combined with the page offset to define the physical memory address that is sent to the

memory unit.

The page size is defined by the hardware. The size of a page is a power of 2, varying between 512 bytes and 1 GB per

page.

If the size of the logical address space is 2m, and a page size is 2n bytes, then the high-order m− n bits of a logical

address designate the page number, and the n low-order bits designate the page offset.

The logical address is given by

Here p is an index into the page table and d is the displacement within the page.

PAGING MODEL:

PAGING EXAMPLE:

 Consider the memory with the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a physical

memory of 32 bytes

 Logical address 0 is page 0, offset 0. Indexing into the page table, we find that page 0 is in frame 5. Thus,

logical address 0 maps to physical address 20 [= (5 × 4) + 0].

 Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 × 4) + 3].

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame 6.

 Thus, logical address 4 maps to physical address 24 [= (6 × 4) + 0].

FREE FRAME LIST:

 Each page of the process needs one frame. Thus, if the process requires n pages, at least n frames must be

available in memory.

 If n frames are available, they are allocated to this arriving process.

 The operating system is managing physical memory and knows the allocation details of physical memory—

which frames are allocated, which frames are available, how many total frames there are, and so on.

 This information is generally kept in a data structure called a frame table.

HARDWARE SUPPORT:

 The hardware implementation of the page table can be done in several ways. The page table is implemented as

a set of dedicated registers if the size of the page table is too small.

 If the size of the page table is too large then the page table is kept in main memory and a page table base

register is used to point to the page table.

 When the page table is kept in main memory then two memory accesses are required to access a byte.

 One for accessing the page table entry, another one for accessing the byte.

 Thus the overhead of accessing the main memory increases.

 The standard solution to this problem is to use a special, small, fast lookup hardware cache called a translation

look-aside buffer (TLB).

 Each entry in the TLB consists of two parts: a key (or tag) and a value.

 The TLB contains only a few of the page-table entries.

 When a logical address is generated by the CPU, its page number is presented to the TLB. If the page number

is found (TLB HIT), its frame number is immediately available and is used to access memory.

 If the page number is not in the TLB (TLB miss), a memory reference to the page table must be made. When

the frame number is obtained, we can use it to access memory.

 The percentage of times that the page number of interest is found in the TLB is called the hit ratio.

 The access time of a byte is said to be effective when the TLB hit ratio is high.

 Thus the effective access time is given by

Effective access time = TLB hit ratio* Memory access time +TLB miss ratio* (2*memory access time)

PROTECTION:

 Memory protection in a paged environment is accomplished by protection bits associated with each frame.

 One bit can define a page to be read–write or read-only. When the physical address is being computed, the

protection bits can be checked to verify that no writes are being made to a read-only page

 One additional bit is generally attached to each entry in the page table: a valid–invalid bit. When this bit is set

to valid, the associated page is in the process’s logical address space and is thus a legal.

 When the bit is set to invalid, the page is not in the process’s logical address space.

 Page-table length register (PTLR),is used to indicate the size of the page table. This value is checked against

every logical address to verify that the address is in the valid range for the process

SHARED PAGES:

 An advantage of paging is the possibility of sharing common code.

 If the code is reentrant code (or pure code), however, it can be shared.

 Reentrant code is non-self-modifying code: it never changes during execution. Thus, two or more processes

can execute the same code at the same time

EXAMPLE: Consider three processes that share a page editor which is of three pages. Each process has its own data

page.

Only one copy of the editor need be kept in physical memory. Each user’s page table maps onto the same physical

copy of the editor, but data pages are mapped onto different frames.

STRUCTURE OF PAGE TABLE:
The structure of page table includes

 Hierarchical paging

 Hashed page table

 Inverted page table.

 HIERARCHIAL PAGING:

 In Computer a system that has a 32 bit logical address space the page table becomes too large. Each process

may need upto 4MB of Physical address space for the page table alone.

 One simple solution to this problem is to divide the page table into smaller pieces. One way is to use a two-

level paging algorithm, in which the page table itself is also paged.

 Consider the system with a 32-bit logical address space and a page size of (2 12)4 KB.

 A logical address is divided into a page number consisting of 20 bits and a page offset consisting of 12 bits.

 The page number is further divided into a 10-bit page number and a 10-bit page offset.

 Here p1 is an index into the outer page table and p2 is the displacement within the page of the inner page table.

 Address translation works from the outer page table inward, this scheme is also known as a forward mapped

page table.

HASHED PAGE TABLES:
 A common approach for handling address spaces larger than 32 bits is to use a hashed page table, with the

hash value being the virtual page number.

 Each entry in the hash table contains a linked list of elements that hash to the same location

 Each element consists of three fields:

 virtual page number,

 value of the mapped page frame

 pointer to the next element in the linked list

 The virtual page number in the virtual address is hashed into the hash table. The virtual page number is

compared with field 1 in the first element in the linked list.

 If there is a match, the corresponding page frame (field 2) is used to form the desired physical address.

 If there is no match, subsequent entries in the linked list are searched for a matching virtual page number.

 A variation to hashed page table is clustered page tables, which are similar to hashed page tables except that

each entry in the hash table refers to several pages (such as 16) rather than a single page.

INVERTED PAGE TABLES:
 Each process has an associated page table. The page table has one entry for each page that the process is using.

 The table is sorted by virtual address, the operating system calculate where in the table the associated physical

address entry is located and to use that value directly.

 One of the drawbacks of this method is that each page table may consist of millions of entries.

 To solve this problem, we can use an inverted page table.

 An inverted page table has one entry for each frame of memory. Each entry consists of the virtual address of

the page stored in that real memory location; with information about the process that owns the page.

 Thus, only one page table is in the system, and it has only one entry for each page of physical memory.

 Each Logical address in the system consists of a triple :< process-id, page-number, offset>.

 Each inverted page-table entry is a pair <process-id, page-number>

 When a memory reference occurs, part of the virtual address, consisting of <process-id,page number>,

 is presented to the memory subsystem. The inverted page table is then searched for a match. If a match is

found—say, at entry i—then the physical address <i, offset> is generated..

INTEL 32 AND 64-BIT ARCHITECTURES [SEGMENTATION WITH PAGING]
 Memory management in IA-32 systems is divided into two components segmentation and paging.

 The CPU generates logical addresses, which are given to the segmentation unit.

 The segmentation unit produces a linear address for each logical address.

 The linear address is then given to the paging unit, which in turn generates the physical address in main

memory.

 Thus, the segmentation and paging units form the equivalent of the memory-management unit

IA-32 Segmentation:
 The IA-32 architecture allows a segment to be as large as 4 GB, and the maximum number of segments per

process is 16 K.

 The logical address space of a process is divided into two partitions. Information about the process that are

private to the process is kept in the local descriptor table (LDT);

 The information that is shared among other processes is kept in the global descriptor table (GDT).

 Each entry in the LDT and GDT consists of an 8-byte segment descriptor with detailed information about a

particular segment, including the base location and limit of that segment.

 The logical address is a pair (selector, offset), where the selector is a 16-bit number:

 s designates the segment number, g indicates whether the segment is in the GDT or LDT, and p deals

 with protection.

 The offset is a 32-bit number specifying the location of the byte.

 The segment registers points to the appropriate entry in the LDT or GDT.

 The base and limit information about the segment is used to generate a linear address.

IA -32 PAGING:
 The IA-32 architecture allows a page size of either 4 KB or 4 MB.

 For 4-KB pages, IA-32 uses a two-level paging scheme in which the division of the 32-bit linear address is as

follows.

 The 10 high-order bits reference an entry in the outermost page table, which IA-32 terms the page directory.

 The page directory entry points to an inner page table that is indexed by the contents of the innermost 10 bits in

the linear address.

 Finally, the low-order 12 bits refer to the offset in the 4-KB page pointed to in the page table.

 Intel adopted a page address extension (PAE), which allows 32-bit processors to access a physical

address space larger than 4 GB
 PAE also increased the page-directory and page-table entries from 32 to 64 bits in size, which allowed the base

address of page tables and page frames to extend from 20 to 24 bits

 The 10 high-order bits reference an entry in the outermost page table, which IA-32 terms the page directory.

 The page directory entry points to an inner page table that is indexed by the contents of the innermost 10 bits in

the linear address.

 Finally, the low-order 12 bits refer to the offset in the 4-KB page pointed to in the page table.

 Intel adopted a page address extension (PAE), which allows 32-bit processors to access a physical

address space larger than 4 GB
 PAE also increased the page-directory and page-table entries from 32 to 64 bits in size, which allowed the base

address of page tables and page frames to extend from 20 to 24 bits

VIRTUAL MEMORY:
 Virtual memory is a memory management technique that allows the execution of processes that are not

completely in memory.

 In some cases during the execution of the program the entire program may not be needed, such as error

conditions, menu selection options etc.

 The virtual address space of a process refers to the logical view of how a process is stored in memory.

 The heap will grow upward in memory as it is used for dynamic memory allocation.

 The stack will grow downward in memory through successive function calls .

 The large blank space (or hole) between the heap and the stack is part of the virtual address space but will

require actual physical pages only if the heap or stack grows.

 Virtual address spaces that include holes are known as sparse address spaces.
 Sparse address space can be filled as the stack or heap segments grow or if we wish to dynamically link

libraries

 Virtual memory allows files and memory to be shared by two or more processes through page sharing

ADVANTAGES:
 One major advantage of this scheme is that programs can be larger than physical memory

 Virtual memory also allows processes to share files easily and to implement shared memory.

 Increase in CPU utilization and throughput.

 Less I/O would be needed to load or swap user programs into memory

DEMAND PAGING:

 Demand paging is the process of loading the pages only when they are demanded by the process during

execution. Pages that are never accessed are thus never loaded into physical memory.
 A demand-paging system is similar to a paging system with swapping where processes reside in secondary

memory

 When we want to execute a process, we swap it into memory. Rather than swapping the entire process into

memory we use a lazy swapper that never swaps a page into memory unless that page will be needed.

 Lazy swapper is termed to as pager in demand paging.

 When a process is to be swapped in, the pager guesses which pages will be used before the process is swapped

out again. Instead of swapping in a whole process, the pager brings only those pages into memory.

 Os need the hardware support to distinguish between the pages that are in memory and the pages that are on

the disk. The valid–invalid bit scheme can be used for this purpose.

 If the bit is set to ―valid,‖ the associated page is both legal and in memory.

 If the bit is set to ―invalid,‖ the page either is not valid or is valid but is currently on the disk.

PAGE FAULT: If the process tries to access a page that was not brought into memory, then it is called as a page fault.

Access to a page marked invalid causes a page fault.

The paging hardware, will notice that the invalid bit is set, causing a trap to the operating system.

PROCEDURE FOR HANDLING THE PAGE FAULT:
1. Check an internal table (usually kept with the process control block) for this process to determine whether the

reference was a valid or an invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid but we have not yet brought in that page, we

now page it in.

3. Find a free frame

4. Schedule a disk operation to read the desired page into the newly allocated frame.

5. When the disk read is complete, we modify the internal table kept with the process and the page table to indicate that

the page is now in memory.

6. Restart the instruction that was interrupt. Though it had always been in memory.

PURE DEMANDPAGING: The process of executing a program with no pages in main memory is called as pure

demand paging. This never brings a page into memory until it is required.

The hardware to support demand paging is the same as the hardware for paging and swapping:

 Page table. This table has the ability to mark an entry invalid through a valid–invalid bit or a special value of

protection bits.

 Secondary memory. This memory holds those pages that are not present in main memory. The secondary

memory is usually a high-speed disk. It is known as the swap device, and the section of disk used for this

purpose is known as swap space.

PERFORMANCE OF DEMAND PAGING:

 Demand paging can affect the performance of a computer system.

 The effective access time for a demand-paged memory is given by

 effective access time = (1 − p) × ma + p × page fault time.
 The memory-access time, denoted ma, ranges from 10 to 200 nanoseconds.

 If there is no page fault then the effective access time is equal to the memory access time.

 If a page fault occurs, we must first read the relevant page from disk and then access the desired word.

 There are three major components of the page-fault service time:

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process

 With an average page-fault service time of 8 milliseconds and a memory access time of 200 nanoseconds, the

effective access time in nanoseconds is

Effective access time = (1 − p) × (200) + p (8 milliseconds)

= (1 − p) × 200 + p × 8,000,000

= 200 + 7,999,800 × p.

 Effective access time is directly proportional to the page-fault rate.

PAGE REPLACEMENT:

NEED FOR PAGE REPLACEMENT:
 Page replacement is basic to demand paging

 If a page requested by a process is in memory, then the process can access it. If the requested page is not in

main memory, then it is page fault.

 When there is a page fault the OS decides to load the pages from the secondary memory to the main memory.

It looks for the free frame. If there is no free frame then the pages that are not currently in use will be swapped

out of the main memory, and the desired page will be swapped into the main memory.

 The process of swapping a page out of main memory to the swap space and swapping in the desired page

into the main memory for execution is called as Page Replacement.

STEPS IN PAGE REPLACEMENT:
1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select a victim frame.

c. Write the victim frame to the disk; change the page and frame tables accordingly.

3. Read the desired page into the newly freed frame; change the page and frame tables.

4. Continue the user process from where the page fault occurred.

 If no frames are free, two page transfers (one out and one in) are required. This situation effectively doubles

the page-fault service time and increases the effective access time accordingly.

 This overhead can be reduced by using a modify bit (or dirty bit).

 When this scheme is used, each page or frame has a modify bit associated with it in the hardware.

 MODIFY BIT: The modify bit for a page is set by the hardware whenever any byte in the page is written into,

indicating that the page has been modified.

 When we select a page for replacement, we examine its modify bit. If the bit is set, we know that the page has

been modified since it was read in from the disk. In this case, we must write the page to the disk.

 If the modify bit is not set, however, the page has not been modified since it was read into memory. In this

case, we need not write the memory page to the disk: it is already there.

PAGE REPLACEMENT ALGORITHMS:
 If we have multiple processes in memory, we must decide how many frames to allocate to each process; and

when page replacement is required, we must select the frames that are to be replaced.

 The string of memory references made by a process is called a reference string.

There are many different page-replacement algorithms that includes

 FIFO page Replacement

 Optimal Page Replacement

 LRU Page Replacement

 LRU Approximation page Replacement algorithm

 Counting Based Page Replacement Algorithm

 Page Buffering Algorithm

 FIFO PAGE REPLACEMENT:
 The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm.

 A FIFO replacement algorithm replaces the oldest page that was brought into main memory.

EXAMPLE: Consider the Reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with three

frames.

 The three frames are empty initially.

 The first three references (7, 0, 1) cause page faults and are brought into these empty frames.

 The algorithm has 15 faults.

 Page 0 is the next reference and 0 is already in memory, we have no fault for this reference.

 The first reference to 3 results in replacement of page 0, since it is now first in line.

 Because of this replacement, the next reference, to 0, will fault. Page 1 is then replaced by page 0. The process

continues until all the pages are referenced.

Advantages:
 The FIFO page-replacement algorithm is easy to understand and program

Disadvantages:
 The Performance is not always good.

 It Suffers from Belady’s Anomaly.

BELADY’S ANOMALY: The page fault increases as the number of allocated memory frame increases. This

unexpected result is called as Belady’s Anomaly.

OPTIMAL PAGE REPLACEMENT
 This algorithm has the lowest page-fault rate of all algorithms and will never suffer from Belady’s anomaly

 Optimal page replacement algorithm Replace the page that will not be used for the longest period of time

EXAMPLE: Consider the Reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with three

frames.

 The Optimal replacement algorithm produces Nine faults

 The first three references cause faults that fill the three empty frames.

 The reference to page 2 replaces page 7, because page 7 will not be used until reference 18, whereas page 0

will be used at 5, and page 1 at 14.

 The reference to page 3 replaces page 1, as page 1 will be the last of the three pages in memory to be

referenced again.

Advantages:
 optimal replacement is much better than a FIFO algorithm

Disadvantage:
 The optimal page-replacement algorithm is difficult to implement, because it requires future knowledge of the

reference string.

LRU PAGE REPLACEMENT
 The Least Recently used algorithm replaces a page that has not been used for a longest period of time.

 LRU replacement associates with each page the time of that page’s last use.

 It is similar to that of Optimal page Replacement looking backward in time, rather than forward.

EXAMPLE: Consider the Reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with three

frames.

 The LRU algorithm produces twelve faults

 The first three references cause faults that fill the three empty frames.

 The reference to page 2 replaces page 7, because page 7 has not been used for a longest period of time, when

we look backward.

 The Reference to page 3 replaces page 1, because page 1 has not been used for a longest period of time.

 When the reference to page 4 occurs, however, LRU replacement sees that, of the three frames in memory,

page 2 was used least recently.

 Thus, the LRU algorithm replaces page 2, not knowing that page 2 is about to be used.

 When it then faults for page 2, the LRU algorithm replaces page 3, since it is now the least recently used of the

three pages in memory.

Advantages:
 The LRU policy is often used as a page-replacement algorithm and is considered to be good.

 LRU replacement does not suffer from Belady’s anomaly.

Disadvantage:
 The problem is to determine an order for the frames defined by the time of last use.

 Two implementations are feasible:

• Counters. We associate with each page-table a time-of-use field and add to the CPU a logical clock or counter. The

clock is incremented for every memory reference. Whenever a reference to a page is made, the contents of the clock

register are copied to the time-of-use field in the page-table entry for that page. So we can find the ―time‖ of the last

reference to each page.

• Stack. Another approach to implementing LRU replacement is to keep a stack of page numbers. Whenever a page is

referenced, it is removed from the stack and put on the top. In this way, the most recently used page is always at the top

of the stack and the least recently used page is always at the bottom

STACK ALGORITHM:

A stack algorithm is an algorithm for which it can be shown that the set of pages in memory for n frames is always a

subset of the set of pages that would be in memory with n

+ 1 frames.

LRU APPROXIMATION PAGE REPLACEMENT ALGORITHM:
 The system provides support to the LRU algorithm in the form of a bit called Reference bit.

REFERENCE BIT:

The reference bit for a page is set by the hardware whenever that page is referenced (either a read or a write to any byte

in the page).

 Reference bits are associated with each entry in the page table.

 Initially, all bits are cleared (to 0) by the operating system. As a user process executes, the bit associated with

each page referenced is set (to 1) by the hardware.

 After some time, we can determine which pages have been used and which have not been used by examining

the reference bits.

 This information is the basis for many page-replacement algorithms that approximate LRU replacement.

a) Additional-reference-bits algorithm

 The additional ordering information can be gained by recording the reference bits at regular intervals. We can

keep an 8-bit byte for each page in a table in memory.

 At regular intervals (say, every 100 milliseconds), a timer interrupt transfers control to the operating system.

 These 8-bit shift registers contain the history of page use for the last eight time periods.

 If the shift register contains 00000000, for example, then the page has not been used for eight time periods.

 A page that is used at least once in each period has a shift register value of 11111111.

 A page with a history register value of 11000100 has been used more recently than one with a value of

01110111.

 Thus the page with the lowest number is the LRU page, and it can be replaced.

b) Second-Chance Algorithm:

 The basic algorithm of second-chance replacement is a FIFO replacement algorithm.

 When a page has been selected, however, we inspect its reference bit.

 If the value is 0, we proceed to replace this page; but if the reference bit is set to 1, we give the page a second

chance and move on to select the next FIFO page.

 When a page gets a second chance, its reference bit is cleared, and its arrival time is reset to the current time.

Thus, a page that is given a second chance will not be replaced until all other pages have been replaced

 One way to implement the second-chance algorithm is as a circular queue.

 A pointer indicates which page is to be replaced next. When a frame is needed, the pointer advances until it

finds a page with a 0 reference bit.

 Once a victim page is found, the page is replaced, and the new page is inserted in the circular queue in that

position

c. Enhanced Second-Chance Algorithm
 We can enhance the second-chance algorithm by considering the reference bit and the modify as an ordered

pair

 The order is {Reference bit, Modify bit}

 we have the following four possible classes:

 0, 0) neither recently used nor modified—best page to replace

 0, 1) not recently used but modified—not quite as good

 1, 0) recently used but clean—probably will be used again soon

 1, 1) recently used and modified—probably will be used again soon, and the page will be need to be written

out to disk before it can be replaced

 Here we give preference to those pages that have been modified in order to reduce the number of I/Os required.

Thus the modified pages will not be replaced before writing it to the disk.

COUNTING-BASED PAGE REPLACEMENT
 We can keep a counter of the number of references that have been made to each page.

This method includes two schemes

 Least frequently used (LFU) page-replacement: The least frequently used (LFU) page-

replacement algorithm requires that the page with the smallest count be replaced. The reason for this

selection is that an actively used page should have a large reference count.

 Most frequently used (MFU) page-replacement algorithm: The most frequently used (MFU) page-

replacement algorithm is based on the argument that the page with the smallest count was probably

just brought in and has yet to be used.

PAGE BUFFERING ALGORITHM:
 systems commonly keep a pool of free frames

 When a page fault occurs, a victim frame is chosen as and the desired page is read into a free frame from the

pool before the victim is written out.

 This procedure allows the process to restart as soon as possible, without waiting for the victim page to be

written out. When the victim is later written out, its frame is added to the free-frame pool.

 Whenever the paging device is idle, a modified page is selected and is written to the disk. Its modify bit is then

reset.

 This scheme increases the probability that a page will be clean when it is selected for replacement

ALLOCATION OF FRAMES:

 Allocation of frames deals with how the operating system allocates the fixed amount of free memory among

the various processes.

 Consider a single-user system with 128 KB of memory composed of pages 1 KB in size.

 This system has 128 frames. The operating system may take 35 KB, leaving 93 frames for the user process.

 Under pure demand paging, all 93 frames would initially be put on the free-frame list. When a user process

started execution, it would generate a sequence of page faults.

 The first 93 page faults would all get free frames from the free-frame list. When the free-frame list was

exhausted, a page-replacement algorithm would be used to select one of the 93 in-memory pages to be replaced

with the 94th, and so on.

 When the process terminated, the 93 frames would once again be placed on the free-frame list.

 Operating system allocates all its buffer and table space from the free-frame list.

 When this space is not in use by the operating system, it can be used to support user paging.

a) Minimum Number of Frames

OS cannot allocate more than the total number of available frames (unless there is page sharing). It must also allocate

at least a minimum number of frames as required by the process.

 The reason for allocating at least a minimum number of frames involves performance. As the number of

frames allocated to each process decreases, the page-fault rate increases, slowing process execution.

 Consider a machine in which all memory-reference instructions may reference only one memory address. We

need at least one frame for the instruction and one frame for the memory reference.

 If one-level indirect addressing is allowed (for example, a load instruction on page 16 can refer to an address

on page 0, which is an indirect reference to page 23), then paging requires at least three frames per process.

 The worst-case scenario occurs in computer architectures that allow multiple levels of indirection.

 To overcome this difficulty, we must place a limit on the levels of indirection.

 When the first indirection occurs, a counter is set to the maximum number of indirections allowed; the counter

is then decremented for each successive indirection for this instruction. If the counter is decremented to 0, a

trap occurs.

 The minimum number of frames is defined by the computer architecture and the maximum number is defined

by the amount of available physical memory.

b) Allocation Algorithms
The Operating system makes use of various allocation algorithms to allocate the frames to the user process.

 Equal Allocation

 Proportional Allocation

EQUAL ALLOCATION:

 The easiest way to split m frames among n processes is to give everyone an equal share, m/n frames.

 If there are 93 frames and five processes, each process will get 18 frames. The three leftover frames can be

used as a free-frame buffer pool. This scheme is called equal allocation.

DISADVANTAGE:

 Consider a system with a 1-KB frame size. If a small student process of 10 KB and an interactive database of

127 KB are the only two processes running in a system with 62 free frames, each process will be allocated with

31 frames.

 The student process does not need more than 10 frames, so the other 21 are wasted.

PROPORTIONAL ALGORITHM:

 The Os allocates the available memory to each process according to its size.

 Let the size of the virtual memory for process pi be si , given by

 If the total number of available frames is m, we allocate ai frames to process pi, where ai is approximately ai =

si/S × m.
 Consider a system with a 1-KB frame size. If a small student process of 10 KB and an interactive database of

127 KB are the only two processes running in a system with 62 free frames.

 we would split 62 frames between two processes, one of 10 pages and one of 127 pages, by allocating 4 frames

and 57 frames, respectively, since 10/137 × 62 ≈ 4, and 127/137 × 62 ≈ 57.

 Thus both processes share the available frames according to their ―needs,‖ rather than equally.

 A high-priority process is treated the same as a low-priority process.

 we may want to give the high-priority process more memory to speed its execution, to the detriment of low-

priority processes.

 One solution is to use a proportional allocation scheme wherein the ratio of frames depends not on the relative

sizes of processes but rather on the priorities of processes or on a combination of size and priority.

c) Global versus Local Allocation
 Another important factor in the way frames are allocated to the various processes is page replacement.

Page-replacement algorithms are divided into two broad categories:

o global replacement
o local replacement.

 Global replacement allows a process to select a replacement frame from the set of all frames, even if that frame

is currently allocated to some other process;

 Local replacement requires that each process select from only its own set of allocated frames.

EXAMPLE: consider an allocation scheme where in we allow high-priority processes to select frames from low-

priority processes for replacement.

 A process can select a replacement from among its own frames or the frames of any lower-priority process.

This approach allows a high-priority process to increase its frame allocation

 One problem with a global replacement algorithm is that a process cannot control its own page-fault rate. The

set of pages in memory for a process depends not only on the paging behavior of that process but also on the

paging behavior of other processes.

 In local replacement, the set of pages in memory for a process is affected by the paging behavior of only that

process.

d) Non-Uniform Memory Access
 In some systems, a given CPU can access some sections of main memory faster than it can access others.

These performance differences are caused by how CPUs and memory are interconnected in the system.

 A system is made up of several system boards, each containing multiple CPUs and some memory.

 The CPUs on a particular board can access the memory on that board with less delay than they can access

memory on other boards in the system.

 The systems in which the memory access time are uniform is called as Uniform memory access.

 Systems in which memory access times vary significantly are known collectively as non-uniform memory

access (NUMA) systems, and they are slower than systems in which memory and CPUs are located on the

same motherboard.

 Managing which page frames are stored at which locations can significantly affect performance in NUMA

systems.

 If we treat memory as uniform in such a system, CPUs may wait significantly longer for memory access.

 The goal is to have memory frames allocated ―as close as possible‖ to the CPU on which the process is

running so that the memory access can be faster.

 In NUMA systems the scheduler tracks the last CPU on which each process ran. If the scheduler tries to

schedule each process onto its previous CPU, and the memory-management system tries to allocate frames for

the process close to the CPU on which it is being scheduled, then improved cache hits and decreased memory

access times will result.

THRASHING:

 If the process does not have the number of frames it needs to support pages in active use, it will quickly

page-fault. At this point, it must replace some page. If all its pages are in active use, it must replace a

page that will be needed again right away. So it quickly faults again, and again, and again, replacing

pages that it must bring back in immediately. This high paging activity is called thrashing.
 A process is thrashing if it is spending more time paging than executing.

Causes of Thrashing:
 The operating system monitors CPU utilization If CPU utilization is too low; we increase the degree of

multiprogramming by introducing a new Process to the system.

 Now suppose that a process enters a new phase in its execution and needs more frames. It starts faulting and

taking frames away from other processes.

 A global page-replacement algorithm is used; it replaces pages without regard to the process to which they

belong.

 These processes need those pages, however, and so they also fault, taking frames from other processes. These

faulting processes must use the paging device to swap pages in and out. As processes wait for the paging

device, CPU utilization decreases.

 The CPU scheduler sees the decreasing CPU utilization and increases the degree of multiprogramming as a

result. The new process tries to get started by taking frames from running processes, causing more page faults

and a longer queue for the paging device.

 As a result, CPU utilization drops even further, and the CPU scheduler tries to increase the degree of

multiprogramming even more. Thrashing has occurred, and system throughput plunges.

 At this point, to increase CPU utilization and stop thrashing, we must decrease the degree of Multi

programming.

 We can limit the effects of thrashing by using a local replacement algorithm. With local replacement, if one

process starts thrashing, it cannot steal frames from another process, so the page fault of one process does not

affect the other process.

 To prevent thrashing, we must provide a process with as many frames as it needs. The Os need to know how

many frames are required by the process.

 The working-set strategy starts by looking at how many frames a process is actually using. This approach

defines the locality model of process execution.

 A locality is a set of pages that are actively used together. A program is generally composed of several

different localities, which may overlap.

 Suppose we allocate enough frames to a process to accommodate its current locality. It will fault for the pages

in its locality until all these pages are in memory; then, it will not fault again until it changes localities.

 If we do not allocate enough frames to accommodate the size of the current locality, the process will thrash,

since it cannot keep in memory all the pages that it is actively using.

Working-Set Model

 The working-set model is based on the assumption of locality.

 This model uses a parameter Δ to define the working-set window.

 The idea is to examine the most recent Δ page references.

 The set of pages in the most recent Δ page references is the working set.

 If a page is in active use, it will be in the working set.

 If it is no longer being used, it will drop from the working set Δ time units after its last reference.

EXAMPLE: Consider the sequence of memory references shown. If Δ = 10 memory references, then the working set

at time t1 is {1, 2, 5, 6, 7}. By time t2, the working set has changed to {3, 4}.

 If Δ is too small, it will not encompass the entire locality;

 If Δ is too large, it may overlap several localities.

 If Δ is infinite, the working set is the set of pages touched during the process execution.

 The most important property of the working set, then, is its size. If we compute the working-set size, WSSi , for

each process in the system, we can then consider that

 Here D is the total demand for frames.

 Thus, process i needs WSSi frames. If the total demand is greater than the total number of available frames (D>

m), thrashing will occur, because some processes will not have enough frames.

 If there are enough extra frames, another process can be initiated.

 If the sum of the working-set sizes increases, exceeding the total number of available frames, the operating

system selects a process to suspend.

 This working-set strategy prevents thrashing while keeping the degree of multiprogramming as high as

possible.

Page-Fault Frequency
 The page fault frequency is calculated by the total number of faults to the total number of references.

Page fault frequency = No. of page Faults / No. of References
 Thrashing has a high page-fault rate. Thus, we want to control the page-fault rate.

 When it is too high, we know that the process needs more frames.

 Conversely, if the page-fault rate is too low, then the process may have too many frames.

 Establish an upper and lower bounds on the desired page-fault rate.

 If the actual page-fault rate exceeds the upper limit, we allocate the process another frame.

 If the page-fault rate falls below the lower limit, we remove a frame from the process.

 Thus, we can directly measure and control the page-fault rate to prevent thrashing.

 If the page-fault rate increases and no free frames are available, we must select some process and swap it out to

backing store.

 The freed frames are then distributed to processes with high page-fault rates

ALLOCATING KERNEL MEMORY
 When a process running in user mode requests additional memory, pages are allocated from the list of free

page frames maintained by the kernel.

 If a user process requests a single byte of memory, internal fragmentation will result, as the process will be

granted an entire page frame.

 Kernel memory is often allocated from a free-memory pool different from the list used to satisfy ordinary user-

mode processes. There are two primary reasons for this:

 The kernel requests memory for data structures of varying sizes, some of which are less than a page in size

 Certain hardware devices interact directly with physical memory and consequently may require memory

residing in physically contiguous pages.

We examine two strategies for managing free memory that is assigned to kernel processes:

 Buddy system

 Slab allocation

Buddy Systems:
The buddy system allocates memory from a fixed-size segment consisting of physically contiguous pages.

Memory is allocated from this segment using a power-of-2 allocator, which satisfies requests in units sized as a power

of 2 (4 KB, 8 KB, 16 KB, and so forth).

EXAMPLE: Assume the size of a memory segment is initially 256 KB and the kernel requests 21 KB of memory. The

segment is initially divided into two buddies—which we will call AL and AR—each 128 KB in size.

One of these buddies is further divided into two 64-KB buddies— BL and BR. However, the next-highest power of 2

from 21 KB is 32 KB so either BL or BR is again divided into two 32-KB buddies, CL and CR.

One of these Buddies is used to satisfy the request.

Advantage: COALESCING: An advantage of the buddy system is how quickly adjacent buddies can be combined to

form larger segments using a technique known as coalescing.

Disadvantage: It Leads to Internal Fragmentation.

The obvious drawback to the buddy system is that rounding up to the next highest power of 2 is very likely to cause

fragmentation within allocated segments.

Slab Allocation
 A slab is made up of one or more physically contiguous pages.

 There is a single cache for each unique kernel data structure.

Example: A separate cache for the data structure representing process descriptors, a separate cache for file objects, a

separate cache for semaphores.

A cache consists of one or more slabs.

 The slab-allocation algorithm uses caches to store kernel objects

 When a cache is created, a number of objects—which are initially marked as free—are allocated to the cache.

 Initially, all objects in the cache are marked as free. When a new object for a kernel data structure is needed,

the allocator can assign any free object from the cache to satisfy the request. The object assigned from the

cache is marked as used..

 In Linux, a slab may be in one of three possible states:

1. Full. All objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

 The slab allocator first attempts to satisfy the request with a free object in a partial slab. If none exists, a free

object is assigned from an empty slab. If no empty slabs are available, a new slab is allocated from contiguous

physical pages and assigned to a cache.

Advantages: The slab allocator provides two main benefits:

i) No memory is wasted due to fragmentation.

ii) Memory requests can be satisfied quickly.

OS EXAMPLES:
CASE STUDY: How Windows and Solaris implement virtual memory.

1. Windows:
 Windows implements virtual memory using demand paging with clustering.

 Clustering handles page faults by bringing in not only the faulting page but also several pages following

the faulting page.
 When a process is first created, it is assigned a working-set minimum and maximum.

 The working-set minimum is the minimum number of pages the process is guaranteed to have in memory.

 If sufficient memory is available, a process may be assigned as many pages as its working-set maximum.

 The virtual memory manager maintains a list of free page frames.

 Associated with this list is a threshold value that is used to indicate whether sufficient free memory is

available.

 If a page fault occurs for a process that is below its working-set maximum, the virtual memory manager

allocates a page from this list of free pages.

 If a process that is at its working-set maximum incurs a page fault, it must select a page for replacement using

a local LRU page-replacement policy.

 When the amount of free memory falls below the threshold, the virtual memory manager uses a tactic known

as automatic working-set trimming to restore the value above the threshold.

 If a process has been allocated more pages than its working-set minimum, the virtual memory Manager

removes pages until the process reaches its working-set minimum.

2.Solaris:
 In Solaris, when a thread incurs a page fault, the kernel assigns a page to the faulting thread from the list of

free pages it maintains.

 Associated with this list of free pages is a parameter—lotsfree—that represents a threshold to begin paging.

 The lotsfree parameter is typically set to 1/64 the size of the physical memory. Four times per second, the

kernel checks whether the amount of free memory is less than lotsfree.

 If the number of free pages falls below lotsfree, a process known as a pageout starts up.

 The front hand of the clock scans all pages in memory, setting the reference bit to 0.

 Later, the back hand of the clock examines the reference bit for the pages in memory, appending each page

whose reference bit is still set to 0 to the free list and writing to disk its contents if modified.

 Solaris maintains a cache list of pages that have been ―freed‖ but have not yet been overwritten.

 The free list contains frames that have invalid contents. Pages can be reclaimed from the cache list if they are

accessed before being moved to the free list.

CS8493-Operating System

UNIT - IV FILE SYSTEMS AND I/O SYSTEMS
Mass Storage system – Overview of Mass Storage Structure, Disk Structure, Disk Scheduling and Management, swap
space management; File-System Interface - File concept, Access methods, Directory Structure, Directory organization,
File system mounting, File Sharing and Protection; File System Implementation- File System Structure, Directory
implementation, Allocation Methods, Free Space Management, Efficiency and Performance, Recovery; I/O Systems –
I/O Hardware, Application I/O interface, Kernel I/O subsystem, Streams, Performance.

MASS STORAGE STRUCTURE- OVERVIEW

Main memory is usually too small to store all needed programs and data permanently.
Main memory is a volatile storage device that loses its contents when power is turned off or otherwise lost.
Thus, most computer systems provide secondary storage as an extension of main memory. The main requirement

for secondary storage is that it be able to hold large quantities of data permanently.
The most common secondary-storage device is a magnetic disk, which provides storage for both programs and

data.
Most of the secondary storage devices are internal to the computer such as the hard disk drive, the tape disk drive

and even the compact disk drive and floppy disk drive.








 Magnetic Disks
Magnetic disks provide the bulk of secondary storage for modern computer systems.
Each disk platter has a flat circular shape, like a CD. Common platter diameters range from 1.8 to 3.5 inches.


The two surfaces of a platter are covered with a magnetic material. We store information by recording it

magnetically on the platters.
A read–write head ―flies‖ just above each surface of every platter. The heads are attached to a disk arm that

moves all the heads as a unit.
The surface of a platter is logically divided into circular tracks, which are subdivided into sectors.

CYLINDER: The set of tracks that are at one arm position makes up a cylinder.

 The storage capacity of common disk drives is measured in gigabytes. When the disk is in use, a drive motor spins

it at high speed. Most drives rotate 60 to 250 times per second, specified in terms of rotations per minute.


 

CS8493-Operating System

 Disk speed has two parts.

The transfer rate is the rate at which data flow between the drive and the computer.
The positioning time, or random-access time

SEEK TIME: The time necessary to move the disk arm to the desired cylinder, is called the seek time.
ROTATIONAL LATENCY: The time necessary for the desired sector to rotate to the disk head, called

the rotational latency.

HEAD CRASH:

The disk read write head has a danger that the head will make contact with the disk surface. Although the
disk platters are coated with a thin protective layer, the head will sometimes damage the magnetic
surface. This accident is called a head crash.

A disk drive is attached to a computer by a set of wires called an I/O bus. Several kinds of buses are
available, including advanced technology attachment (ATA), serial ATA (SATA), eSATA
universal serial bus (USB), and fibre channel (FC).

The data transfers on a bus are carried out by special electronic processors called controllers. The host
controller is the controller at the computer end of the bus.

A disk controller is built into each disk drive. To perform a disk I/O operation, the computer places a
command into the host controller, typically using memory-mapped I/O ports

Magnetic Tapes:

Magnetic tape was used as an early secondary-storage medium.

It is relatively permanent and can hold large quantities of data.

Its access time is slow compared with that of main memory and magnetic disk.

In addition, random access to magnetic tape is about a thousand times slower than random access to
magnetic disk, so tapes are not very useful for secondary storage.

Tapes are used mainly for backup, for storage of infrequently used information, and as a medium for
transferring information from one system to another.

Disk Structure
 Magnetic disk drives are addressed as large one-dimensional arrays of logical blocks, where the

logical block is the smallest unit of transfer.

 The size of a logical block is usually 512 bytes, although some disks can be low-level formatted to
have a different logical block size, such as 1,024 bytes.

 The one-dimensional array of logical blocks is mapped onto the sectors of the disk sequentially.
Sector 0 is the first sector of the first track on the outermost cylinder.

 The number of sectors per track is not constant on some drives.

 For the disks that use constant linear velocity (CLV), the density of bits per track is uniform.

 In constant angular velocity (CAV) the density of bits decreases from inner tracks to outer tracks to
keep the data rate constant.

Disk Attachment

 Computers access disk storage in the following ways

 Host attached Storage
 Network Attached Storage

 Storage Area Network.
 HOST ATTACHED STORAGE: Host-attached storage is storage accessed through local I/O ports.

The typical desktop PC uses an I/O bus architecture called IDE or ATA.

 NETWORK ATTACHED STORAGE: A network-attached storage (NAS) device is a special-
purpose storage system that is accessed remotely over a data network .Clients access network-
attached storage via a remote-procedure-call interface such as NFS for UNIX systems or CIFS for
Windows machines.

CS8493-Operating System

 STORAGE AREA NETWORK: A storage-area network (SAN) is a private network connecting servers and

storage units.

DISK SCHEDULING:
Whenever a process needs I/O to or from the disk, it issues a system call to the operating system. The request

specifies several pieces of information:

 Whether this operation is input or output

 What the disk address for the transfer is

 What the memory address for the transfer is

 What the number of sectors to be transferred is
Disk Scheduling: If the desired disk drive and controller are available, the request can be serviced immediately. If

the drive or controller is busy, any new requests for service will be placed in the queue of pending requests for
that drive. When one request is completed, the operating system chooses which pending request to service
next. This is called as Disk Scheduling.

Disk Components:

The two major components of the hard disk are Seek time and Rotational Latency.

Seek time: The seek time is the time for the disk arm to move the heads to the cylinder containing the desired

sector.

Rotational latency: The rotational latency is the additional time for the disk to rotate the desired sector to the

disk head.

Disk bandwidth: The disk bandwidth is the total number of bytes transferred, divided by the total time between
the first request for service and the completion of the last transfer.

Disk Scheduling Algorithms:

First Come First Serve

Shortest Seek Time First

Scan Algorithm


Circular Scan Algorithm


Look Algorithm


Circular Look Algorithm



 FCFS Scheduling:
The simplest form of disk scheduling is, of course, the first-come, first-served (FCFS) algorithm.

This algorithm is easy to implement but it generally does not provide the fastest service.

Example: Consider, for example, Given a disk with 200 cylinders and a disk queue with requests 98, 183, 37, 122, 14,
124, 65, 67, for I/O to blocks on cylinders. Disk head is initially at 53.

CS8493-Operating System

If the disk head is initially at cylinder 53, it will first move from 53 to 98, then to 183, 37, 122, 14, 24, 65, and
finally to 67.



The total head movements is Head Movements = (53-98)+(98-183)+((183-37)+(122-14)+(14-124)+(124-65)+(65-
67) = 640 Head Movements.

Disadvantage:

The request from 122 to 14 and then back to 124 increases the total head movements.


If the requests for cylinders 37 and 14 could be serviced together, before or after the requests for 122 and 124, the
total head movement could be decreased and performance could be thereby improved.



 SSTF Scheduling:

The shortest-seek-time-first (SSTF) algorithm selects the request with the least seek time from the current head
position. It chooses the pending request closest to the current head position.

Example: Consider, for example, Given a disk with 200 cylinders and a disk queue with requests 98, 183, 37, 122, 14,
124, 65, 67, for I/O to blocks on cylinders. Disk head is initially at 53.

The closest request to the initial head position (53) is at cylinder 65.


Once we are at cylinder 65, the next closest request is at cylinder 67.


From there, the request at cylinder 37 is closer than the one at 98, so 37 is served next.


Continuing, we service the request at cylinder 14, then 98, 122, 124, and finally 183.


This scheduling method results in a total head movement of only 236 cylinders


SSTF algorithm gives a substantial improvement in performance.

CS8493-Operating System

Disadvantage:
SSTF may cause starvation of some requests.

STARVATION: Suppose that we have two requests in the queue, for cylinders 14 and 186, and while the request from

14 is being serviced, a new request near 14 arrives. This new request will be serviced next, making the request at 186
wait. While this request is being serviced, another request close to 14 could arrive. In theory, a continual stream of
requests near one another could cause the request for cylinder 186 to wait indefinitely.

3) SCAN Scheduling:
In the SCAN algorithm, the disk arm starts at one end of the disk and moves toward the other end, servicing requests
as it reaches each cylinder, until it gets to the other end of the disk

At the other end, the direction of head movement is reversed, and servicing continues.

The head continuously scans back and forth across the disk.

The SCAN algorithm is sometimes called the elevator algorithm.
Example: Consider, for example, Given a disk with 200 cylinders and a disk queue with requests 98, 183, 37, 122, 14,
124, 65, 67, for I/O to blocks on cylinders. Disk head is initially at 53.

Assuming that the disk arm is moving toward 0 the head will next service 37 and then 14.

At cylinder 0, the arm will reverse and will move toward the other end of the disk, servicing the requests at 65, 67, 98,
122, 124, and 183.

request arriving just behind the head will have to wait until the arm moves to the end of the disk, reverses direction,
and comes back.
 Circular SCAN Algorithm:

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a more uniform wait time.

CS8493-Operating System

C-SCAN moves the head from one end of the disk to the other, servicing requests along the way. When the head

reaches the other end, however, it immediately returns to the beginning of the disk without servicing any
requests on the return trip.



The C-SCAN scheduling algorithm essentially treats the cylinders as a circular list that wraps around from the final cylinder to
the first one.



Example: Consider, for example, Given a disk with 200 cylinders and a disk queue with requests 98, 183, 37, 122, 14,
124, 65, 67, for I/O to blocks on cylinders. Disk head is initially at 53.

 LOOK scheduling:
The LOOK algorithm is the same as the SCAN algorithm in that it also services the requests on both directions of

the disk head, but it ―Looks" ahead to see if there are any requests pending in the direction of head
movement.

If no requests are pending in the direction of head movement, then the disk head traversal will be reversed to the
opposite direction and requests on the other direction can be served.

In LOOK scheduling, the arm goes only as far as final requests in each direction and then reverses direction
without going all the way to the end.

Consider an example, given a disk with 200 cylinders (0-199), suppose we have 8 pending requests: 98, 183, 37, 122,
14, 124, 65, 67 and that the read/write head is currently at cylinder 53. In order to complete these requests, the arm will
move in the increasing order first and then will move in decreasing order after reaching the end. So, the order in which
it will execute is 65, 67, 98, 122, 124, 183, 37, and 14.

Note :(Draw the Diagram and calculate the head movements for the previous example)

 C-LOOK Scheduling:
This is just an enhanced version of C-SCAN.

Arm only goes as far as the last request in each direction, then reverses direction immediately, without servicing all
the way to the end of the disk and then turns the next direction to provide the service.

Note :(Draw the Diagram and calculate the head movements for the previous example)

DISK MANAGEMENT:
The operating system is responsible for disk management.

The Major Responsibility includes

-block recovery.

CS8493-Operating System

1. Disk Formatting:

The Disk can be formatted in two ways,
Physical or Low level Formatting,

Logical Or High Level Formatting

Physical or Low level Formatting:
Before a disk can store data, it must be divided into sectors that the disk controller can read and write. This process

is called low-level formatting, or physical formatting.

Low-level formatting fills the disk with a special data structure for each sector.

The data structure for a sector typically consists of a header, a data area (usually 512 bytes in size), and a trailer.

The Header contains the Sector Number and the Trailer contains the Error correction code.

When the controller writes a sector of data during normal I/O, the ECC is updated with a value calculated from all
the bytes in the data area.

When the sector is read, the ECC is recalculated and compared with the stored value. If the stored and calculated
numbers are different, this mismatch indicates that the data area of the sector has become corrupted and that
the disk sector may be bad. It then reports a recoverable soft error.

Logical Formatting Or High Level Formatting:
The operating record its own data structures on the disk during Logical formatting.

It does so in two steps.

The first step is to partition the disk into one or more groups of cylinders.

The operating system can treat each partition as though it were a separate disk.

For instance, one partition can hold a copy of the operating system’s executable code, while another holds user

files.

The second step is logical formatting, or creation of a file system. In this step, the operating system stores the
initial file-system data structures onto the disk.

These data structures may include maps of free and allocated space and an initial empty directory.

CLUSTERS: To increase efficiency, most file systems group blocks together into larger chunks, frequently called

clusters.
RAW DISK: Some operating systems give special programs the ability to use a disk partition as a large sequential
array of logical blocks, without any file-system data structures. This array is sometimes called the raw disk, and I/O to
this array is termed raw I/O.

 Boot Block
The Process of Starting a computer System by loading the Operating system in the main memory is called as

System Booting.

This is done by a initial program called as Bootstrap program initializes all aspects of the system, from CPU
registers to device controllers and the contents of main memory, and then starts the operating system.

The bootstrap is stored in read-only memory (ROM).The Problem here is that changing this bootstrap code
requires changing the ROM hardware chips.

To overcome this most systems store a tiny bootstrap loader program in the boot ROM whose only job is to bring
in a full bootstrap program from disk.

The full bootstrap program can be changed easily: a new version is simply written onto the disk.

BOOT DISK: The full bootstrap program is stored in the ―boot blocks‖ at a fixed location on the disk. A disk that
has a boot partition is called a boot disk or system disk.

The code in the boot ROM instructs the disk controller to read the boot blocks into memory and then starts
executing that code which in turn loads the entire Operating System.

EXAMPLE: Boot Process in Windows.

BOOT PARTITION: Windows allows a hard disk to be divided into partitions, and one partition called as the

boot partition contains the operating system and device drivers.

CS8493-Operating System

The Windows system places its boot code in the first sector on the hard disk, which it terms the master boot

record, or MBR.

Booting begins by running code that is resident in the system’s ROM memory. This code directs the system to read
the boot code from the MBR.

Once the system identifies the boot partition, it reads the first sector from that partition and continues with the
remainder of the boot process, which includes loading the various subsystems and system services.

 Bad Blocks
A bad block is a damaged area of magnetic storage media that cannot reliably be used to store and retrieve data.

Depending on the disk and controller in use, these blocks are handled in a variety of ways.

One strategy is to scan the disk to find bad blocks while the disk is being formatted. Any bad blocks that are
discovered are flagged as unusable so that the file system does not allocate them.

In Some systems the controller maintains a list of bad blocks on the disk. This can be handled in two ways

 Sector Sparing
 Sector Slipping

SECTOR SPARING: Low-level formatting also sets aside spare sectors not visible to the operating system. The

controller can be told to replace each bad sector logically with one of the spare sectors. This scheme is known as sector
sparing or forwarding.

Example:

The operating system tries to read logical block 87.

The controller calculates the ECC and finds that the sector is bad. It reports this finding to the operating system.

The next time the system is rebooted, a special command is run to tell the controller to replace the bad sector with a

spare.


After that, whenever the system requests logical block 87, the request is translated into the replacement sector’s
address by the controller.

SECTOR SLIPPING: The Process of moving all the sectors down one position from the bad sector is called as sector
slipping.
Example: If the logical block 17 becomes defective and the first available spare follows sector 202. Sector slipping

then remaps all the sectors from 17 to 202, moving them all down one spot. That is, sector 202 is copied into the spare,
then sector 201 into 202, then 200 into 201, and so on, until sector 18 is copied into sector 19. Slipping the sectors in
this way frees up the space of sector 18 so that sector 17 can be mapped to it.

FILE SYSTEM STORAGE:
The File System provides the mechanism for on-line storage of and access to both data and programs of the

operating system and all the users of the computer system.

The file system consists of two distinct parts:

 a collection of files, each storing related data,
 a directory structure, which organizes and provides information about all the files in the system.

CS8493-Operating System

FILE CONCEPTS:
A file is defined as a named collection of related information that is stored on secondary storage device.

Many different types of information may be stored in a file such as source or executable programs, numeric or text
data, photos, music, video, and so on.

A file has a certain defined structure, which depends on its type.

Types of Files: A text file is a sequence of characters organized into lines.

A source file is a sequence of functions, each of which is further organized as declarations followed by executable
statements.

An executable file is a series of code sections that the loader can bring into memory and execute.

FILE ATTRIBUTES:
A file’s attributes vary from one operating system to another but typically consist of these:

 Name. The file name is the information kept in human readable form.
 Identifier. This unique tag, usually a number, identifies the file within the file system

 Type. This information is needed for systems that support different types of files.

 Location. This information is a pointer to a device and to the location of the file on that device.

 Size. The current size of the file (in bytes, words, or blocks)

 Protection. Access-control information determines who can do reading, writing, executing
 Time, date, and user identification. This information may be kept for creation, last modification, and last

use.

FILE OPERATIONS:
 A file is an abstract data type.

 The operating system can provide system calls to create, write, read, reposition, delete, and truncate
files. The Basic Operations on a file includes

 Creating a File

 Writing a File

 Reading a File
 Repositioning within a File
 Deleting a file
 Truncating a file

 Creating a file: OS first finds space in the file system for the file. Second, an entry for the new file must be made in

the directory.
 Writing a file. To write a file, we make a system specifying both the name of the file and the information to be written
to the file. The system must keep a write pointer to the location in the file where the next write is to take place.
 Reading a file. To read from a file, we use a system call that specifies the name of the file. The system needs to keep a
read pointer to the location in the file where the next read is to take place.

Current File Position Pointer: Because a process is usually either reading from or writing to a file, the current
operation location can be kept as a per-process current file- position pointer.
 Repositioning within a file. The directory is searched for the appropriate entry, and the current-file-position pointer is
repositioned to a given value. This file operation is also known as files seek.
 Deleting a file. To delete a file, we search the directory for the named file.
 Truncating a file. The user may want to erase the contents of a file but keep its attributes

Open File Table:

Most of the file operations involve searching the directory for the entry associated with the named file.

The operating system keeps a table, called the open-file table, containing information about all open files.

When a file operation is requested, the file is specified via an index into this table, so no searching is required.

When the file is no longer being actively used, it is closed by the process, and the operating system removes its
entry from the open-file table.

CS8493-Operating System

 The open-file table also has an open count associated with each file to indicate how many processes have the file

open Each close() decreases this open count, and when the open count reaches zero, the file is no longer in use,
and the file’s entry is removed from the open-file table.

 When several processes may open the file , the operating system uses two levels of internal tables:

 A per-process table
 A system-wide table.

 The per process table tracks all files that a process has open. It information regarding the process’s use of the file
such as the current file pointer, access rights.

 The system-wide table contains process-independent information, such as the location of the file on disk, access
dates, and file size.

FILE LOCKS:
 File locks allow one process to lock a file and prevent other processes from gaining access to it. File locks are

useful for files that are shared by several processes.

 Shared Lock
 Exclusive Lock

 A shared lock is similar to a reader lock in that several processes can acquire the lock concurrently.

 An exclusive lock behaves like a writer lock; only one process at a time can acquire such a lock.

 Operating systems may provide either mandatory or advisory file-locking mechanisms.

 If a lock is mandatory, then once a process acquires an exclusive lock, the operating system will prevent any other
process from accessing the locked file.

 If a lock is advisory then the Operating System will allow the process to access the locked file.
 A common technique for implementing file types is to include the type as part of the file name.

 The name is split into two parts—a name and an extension, usually separated by a period or a dot.

 The system uses the extension to indicate the type of the file and the type of operations that can be done on that

file.

 Example: Java compilers expect source files to have a .java extension, and the Microsoft Word word processor
expects its files to end with a .doc or .docx extension.

file type usual extension Function

Executable exe, com, bin or none ready-to-run machine-language program

Object obj, o Compiled, machine language, not linked

source code c, cc, java, perl, asm source code in various languages

Batch bat, sh Commands to the command interpreter

Markup xml, html, tex textual data, documents

word processor xml, rtf, docx various word-processor formats

Library lib, a , so, dll Libraries of routines for programmers

point or view gif, pdf, jpg ASCII or binary file in a format for printing or

 viewing

Archive rar, zip, tar related files grouped into one file, sometimes

 compressed, for archiving or storage

Multimedia mpeg, mov, mp3, mp4,avi binary file containing audio or A/V information

FILE ACCESS METHODS:
Files store information. When it is used, this information must be accessed and read into computer memory. The
information in the file can be accessed in several ways.

 Sequential access Method
 Direct Access method
 Indexed access method

CS8493-Operating System

Sequential access Method: The simplest access method is sequential access. Information in the file is processed in
order, one record after the other.
Example: Editors and compilers usually access files in Sequential manner.

 A read operation—read next ()—reads the next portion of the file and automatically advances a file pointer, which
tracks the I/O location.

 Similarly, the write operation—write next ()—appends to the end of the file and advances to the end of the newly
written material (the new end of file).

Direct Access Method:

 A file is made up of fixed-length logical records that allow programs to read and write records rapidly in no
particular order.

 The file is viewed as a numbered sequence of blocks or records.

 Direct-access files are of great use for immediate access to large amounts of information.

 EXAMPLE: Databases are often of this type. When a query concerning a particular subject arrives, we compute
which block contains the answer and then read that block directly to provide the desired information.

 For the direct-access method, the file operations must be modified to include the block number as a parameter.
Thus, we have read (n), where n is the block number, write (n) rather than write next ().

RELATIVE BLOCK NUMBER: The block number provided by the user to the operating system is normally a

relative block number
sequential access implementation for direct access

reset cp

read_next read cp;

 cp = cp + 1;

write_next write cp;

 cp = cp + 1;

Indexed Access Methods:
 These methods generally involve the construction of an index for the file.

 The index, like an index in the back of a book, contains pointers to the various blocks.

 To find a record in the file, we first search the index and then use the pointer to access the file directly and to find
the desired record.

 With large files, the index file itself may become too large to be kept in memory.

 One solution is to create an index for the index file. The primary index file contains pointers to secondary index
files, which point to the actual data items

FILE SYSTEM MOUNTING:
 File System Mounting is defined as the process of attaching an additional file system to the currently accessible

file system of a computer. A file system is a hierarchy of directories that is used to organize files on a
computer or storage media.

 The operating system is given the name of the device and the mount point

 Mount Point: It is the location within the file structure where the file system is to be attached. A mount point is an
empty directory.

CS8493-Operating System

Example: A file system containing a user’s home directories might be mounted as /home. To access the directory

structure within that file system, we could precede the directory names with /home, as in /home/Jane. Mounting that
file system under /users would result in the path name /users/Jane, which we could use to reach the same directory.

DIRECTORY AND DISK STRUCTURE
 The Operating System divides the hard disk into various partitions and stores its File System in each

Partition.

 Any entity containing a file system is generally known as a volume.

 Each volume that contains a file system must also contain information about the files in the system. This
information is kept in entries in a device directory or volume table of contents.

 The device directory records information—such as name, location, size, and type—for all files on that

volume.

The directory translates file names into their directory entries. Operations that are to be performed on a directory
includes

 Search for a file

 Create a File

 Delete a file

 List a Directory

 Rename a File

 List a directory

 Traverse the file system.
 Single level Directory

 Two Level Directory

 Tree Structured Directory

CS8493-Operating System

 Acyclic Graph directory

 General Graph directory.

 Single level Directory:
 The simplest directory structure is the single-level directory. All files are contained in the same directory.

 When the system has more than one user, the files created by different users should have unique names
because all the files will be stored under a single directory

 When the number of files increases the user may find it difficult to remember the names of all the files

 Two Level directory:
 In the two-level directory structure, each user has his own directory called user file directory.

 The UFDs have similar structures, but each lists only the files of a single user.

 When a user job starts or a user logs in, the system’s master file directory (MFD) is searched.

 The MFD is indexed by user name or account number, and each entry points to the UFD for that user.

 When a user refers to a particular file, only his own UFD is searched. Thus, different users may have files
with the same name, as long as all the file names within each UFD are unique.

 To create a file for a user, the operating system searches only that user’s UFD to check whether another file
of that name exists.

 To delete a file, the operating system searches the local UFD; thus, it cannot accidentally delete another
user’s file that has the same name.

Advantage: The two-level directory structure solves the name-collision problem.
Disadvantage: It isolates one user from another user. It’s a major disadvantage when the users want to cooperate on

some task and to access one another’s files.
Some systems simply do not allow local user files to be accessed by other users.

If access is to be permitted, one user must have the ability to name a file in another user’s directory.

PATH NAME: A user name and a file name define a path name.

A two-level directory can be similar to that of a tree structure of height 2. The root of the tree is the MFD. Its direct
Childs are the UFDs. The Childs of the UFDs are the files themselves. The files are the leaves of the tree.



 Tree structured directory:
Tree structured directory is an expansion of two level directory extended to a tree of arbitrary height.

It allows users to create their own subdirectories and to organize their files.

The tree has a root directory, and every file in the system has a unique path name.

The current directory should contain most of the files that are of current need to the process.

CS8493-Operating System

Path names can be of two types:
Absolute path name

Relative path name

An absolute path name begins at the root and follows a path down to the specified file.

A relative path name defines a path from the current directory.

Users can be allowed to access the files of other users by specifying the path name.

A directory (or subdirectory) contains a set of files or subdirectories.

A bit in each directory entry defines the entry as a file (0) or as a subdirectory (1).
FILE DELETION: If a directory is empty, its entry in the directory that contains it can simply be deleted.

If the directory to be deleted is not empty and contains several files or subdirectories. One of two approaches can
be taken.

Some systems will not delete a directory unless it is empty. Thus, to delete a directory, the user must first delete all
the files in that directory.

If when a request is made to delete a directory, all that directory’s files and subdirectories are also to be deleted.



 Acyclic Graph Directories:
 An acyclic graph is a graph with no cycles.

 It allows directories to share subdirectories and files

 The same file or subdirectory may be in two different directories.

 With a shared file, only one actual file exists, so any changes made by one person are immediately visible to

the other.

 All the files the user wants to share can be put into one directory. The UFD of each team member will
contain this directory of shared files as a subdirectory.

SHARED FILE IMPLEMENTATION:
Shared files and subdirectories can be implemented in several ways.

 The first way is to create a new directory entry called a link. A link is effectively a pointer to another file or
subdirectory.

 When a reference to a file is made, we search the directory. If the directory entry is marked as a link, then
the name of the real file is included in the link information.

 We resolve the link by using that path name to locate the real file.

 Another common approach to implementing shared files is simply to duplicate all information about them in
both sharing directories.

CS8493-Operating System

 A major problem with duplicate directory entries is maintaining consistency when a file is mod


FILE DELETION:
 One method is to remove the file whenever anyone deletes it, but this action may leave dangling pointers

to the now-nonexistent file.

 The second method is the deletion of a link. It does not affect the original file; only the link is removed.

 Another approach to deletion is to preserve the file until all references to it are deleted.

 We could keep a list of all references to a file.

 When a link or a copy of the directory entry is established, a new entry is added to the file-reference list.
When a link or directory entry is deleted, we remove its entry on the list. The file is deleted when its file-
reference list is empty.



 General Graph Directory:
 If we start with a two-level directory and allow users to create subdirectories, a tree-structured directory

results.

 Adding new files and subdirectories to an existing tree-structured directory preserves the tree-structured

nature.

 When we add links, the tree structure is destroyed, resulting in a simple graph structure.

 If cycles are allowed to exist in the directory, we want to avoid searching any component twice, to
improve the performance.

With acyclic-graph directory structures, a value of 0 in the reference count means that there are no more references

to the file or directory, and the file can be deleted.

However, when cycles exist, the reference count may not be 0 even when it is no longer possible to refer to a
directory or file. In this case we use Garbage collection.

Garbage collection:
This scheme is used to determine when the last reference has been deleted and the disk space can be reallocated.

CS8493-Operating System

Garbage collection involves traversing the entire file system, marking everything that can be accessed.


Then, a second pass collects everything that is not marked onto a list of free space.


FILE SHARING AND PROTECTION:
File Sharing:
File sharing is very important for users who want to cooperate their files with each other and to reduce

the effort required to achieve a computing goal.

Multiple users share files. When multiple users are allowed to share files, then there is a need to extend
sharing to
multiple file systems, including remote file systems.

File sharing includes
Multiple users

Remote File Systems

 Client server model

 Distributed Information systems

 Failure Modes

Consistency semantics

 Unix Semantics

 Session Semantics

 Immutable Shared File Semantics

 Multiple Users:
The system with multiple users can either allow a user to access the files of other users by default or

require that a user specifically grant access to the files.

To implement sharing and protection, the system must maintain more file and directory attributes than are
needed on a single-user system.

The systems uses the concepts of file owner (or user) and group for File sharing.

The owner is the user who can change attributes and grant access and who has the most control over the
file.

The group attribute defines a subset of users who can share access to the file.

The owner and group IDs of a given file are stored with the other file attributes.

When a user requests an operation on a file, the user ID can be compared with the owner attribute to
determine if the requesting user is the owner of the file.

If he is not the owner of the file, the group IDs can be compared. The result indicates which permissions

are applicable.

The system then applies those permissions to the requested operation and allows or denies it.

 Remote File Systems:
Networking allows the sharing of resources across a campus or even around the world.

The first implemented method for remote file systems involves manually transferring files between
machines via programs like FTP.

The second major method uses a distributed file system (DFS) in which remote directories is visible
from a local machine.

The third method is the World Wide Web where the browser is needed to gain access to the remote files.

Client Server Model:

 Remote file systems allow a computer to mount one or more file systems from one or more

remote machines.

 The machine containing the files is the server, and the machine seeking access to the files is the
client.

 The server declares that a resource is available to clients and specifies exactly which resource is
shared by which clients.

 A server can serve multiple clients, and a client can use multiple servers.

 A client can be specified by a network name or other identifier, such as an IP address but these
can be spoofed, or imitated.

 As a result of spoofing, an unauthorized client could be allowed access to the server.

 In the case of UNIX and its network file system (NFS), authentication takes place via the client
networking information.

CS8493-Operating System

 The user’s IDs on the client and server must match. If they do not, the server will be unable to

determine access rights to files.

Distributed Information Systems
 Distributed information systems, also known as distributed naming services, provide unified

access to the information needed for remote computing.

 The domain name system (DNS) provides host-name-to-network-address translations for the

entire Internet.

 Distributed information systems provide user name/password/user ID/group ID space for a

distributed facility.

 In the case of Microsoft’s common Internet file system (CIFS), network information is used in
conjunction with user authentication to create a network login that the server uses to decide
whether to allow or deny access to a requested file system.

 Microsoft uses active directory as a distributed naming structure to provide a single name space
for users. Once established, the distributed naming facility is used by all clients and servers to
authenticate users.

 LDAP: lightweight directory-access protocol (LDAP) is a secure distributed naming
mechanism.

Failure Modes:
 Local file systems can fail for a variety of reasons that includes

 Failure of the disk containing the file system,
 Corruption of the directory structure or other disk-management information
 Disk-controller failure,
 Cable failure,
 Host-adapter failure
 User or system-administrator failure

 Remote file systems have more failure modes because of the complexity of network systems and
the required interactions between remote machines.

 The failure semantics are defined and implemented as part of the remote-file-system protocol.

 Termination of all operations can result in users’ losing data.

 To implement the recovery from failure, some kind of state information may be maintained on
both the client and the server.

 If both server and client maintain knowledge of their current activities and open files, then they
can recover from a failure.



 Consistency Semantics:
Consistency semantics represent a criterion for evaluating any file system that supports file sharing.

The semantics specify how multiple users of a system are to access a shared file simultaneously.

They specify when modifications of data by one user will be observable by other users. These semantics
are typically implemented as code with the file system.

Consistency semantics are directly related to the process synchronization algorithms.

A series of file accesses attempted by a user to the same file is always enclosed between the open() and

close() operations.

The series of accesses between the open() and close() operations makes up a file session

The Examples Of Consistency semantics includes

 Unix Semantics
 Session Semantics
 Immutable shared File Semantics
i) Unix Semantics:
 The UNIX file system uses the following consistency semantics.

 Writes to an open file by a user are visible immediately to other users who have this file open.
 One mode of sharing allows users to share the pointer of current location into the file. Thus,

the advancing of the pointer by one user affects all sharing users
ii) Session Semantics:
 The Andrew file system uses the following consistency semantics:



CS8493-Operating System

 Writes to an open file by a user are not visible immediately to other users that have the same

file open.
 Once a file is closed, the changes made to it are visible only in sessions starting later. Already

open instances of the file do not reflect these changes.
 Immutable Shared File Semantics:
 The Immutable Shared file system uses the following consistency semantics

 Once a file is declared as shared by its creator, it cannot be modified.
 An immutable file has two key properties: its name may not be reused, and its contents may

not be altered
 An immutable file signifies that the contents of the file are fixed.

 Protection mechanisms provide controlled access by limiting the types of file access that can be made.

Access is permitted or denied depending on several factors, one of which is the type of access
requested.

 File Protection is also defined as the process of protecting the file of a user from unauthorized access or
any other physical damage.

Goals of Protection:

 To prevent malicious misuse of the system by users or programs. See chapter 15 for a more thorough
coverage of this goal.
 To ensure that each shared resource is used only in accordance with system policies, which may be
set either by system designers or by system administrators.

 To ensure that errant programs cause the minimal amount of damage possible.

Types of Access:

 The need to protect files is a direct result of the ability to access files.

 Systems that do not permit access to the files of other users do not need
protection Several different types of operations may be controlled:

 Read. Read from the file.

 Write. Write or rewrite the file.

 Execute. Load the file into memory and execute it.

 Append. Write new information at the end of the file.

 Delete. Delete the file and free its space for possible reuse.

 List. List the name and attributes of the file.

These higher-level functions may be implemented by a system program that makes lower-level system calls.

Access control:

 The most common approach to the protection problem is to make access dependent on the identity of the
user.

 Different users may need different types of access to a file or directory.

 The general scheme to implement identity dependent access is to associate with each file and directory an
access-control list (ACL) specifying user names and the types of access allowed for each user.

 When a user requests access to a particular file, the operating system checks the access list associated

with that file.

 If that user is listed for the requested access, the access is allowed. Otherwise, a protection violation
occurs, and the user job is denied access to the file.

 The main problem with access lists is their length.

 This technique has two undesirable consequences:

 Constructing such a list may be a tedious and unrewarding task, especially if we do not know in advance
the list of users in the system.

 The directory entry, previously of fixed size, now must be of variable size, resulting in more complicated
space management

 To reduce the length of the access-control list, many systems recognize three classifications of users in
connection with each file:

 Owner. The user who created the file is the owner.
 Group. A set of users who are sharing the file and need similar access

CS8493-Operating System

 Universe. All other users in the system constitute the universe
EXAMPLE: consider a person, Sara, who is writing a new book. She has hired three graduate students

(Jim, Dawn, and Jill) to help with the project. The text of the book is kept in a file named book.tex

The protection associated with this file is as follows:

Sara should be able to invoke all operations on the file.

Jim, Dawn, and Jill should be able only to read and write the file; they should not be allowed to delete the
file.

All other users should be able to read, but not write, the file.


 In the UNIX system, groups can be created and modified only by the manager of the facility

 Three fields are needed to define protection. Each field is a collection of bits, and each bit either allows
or prevents the access associated with it.

 The UNIX system defines three fields of 3 bits each—rwx where r controls read access, w controls write
access, and x controls execution.

 A separate field is kept for the file owner, for the file’s group, and for all other users.

 In this scheme, 9 bits per file are needed to record protection information.

 Thus, for our example, the protection fields for the file book.tex are as follows

 For the owner Sara, all bits are set;
 For the group text, the r and w bits are set;
 For the universe, only the r bit is set.

 Windows users typically manage access-control lists via the Graphical User Interface .

Password Protection:
 Another approach to the protection problem is to associate a password with each file.

 Access to each file can be controlled with the help of passwords.

 If the passwords are chosen randomly and changed often, this scheme may be effective in limiting

access to a file.

 Disadvantages: The number of passwords that a user needs to remember may become large.

 If only one password is used for all the files, then once it is discovered, all files are accessible;
protection is on an all-or-none basis.

 In a multilevel directory structure, we need to protect not only individual files but also collections
of files in subdirectories;

CS8493-Operating System

 We need to provide a mechanism for directory protection. The directory operations that must be

protected are somewhat different from the file operations. We want to control the creation and
deletion of files in a directory.

FILE SYSTEM STRUCTURE:
 The file system provides the mechanism for on-line storage and access to file contents, including data

and programs.

 The file system resides permanently on secondary storage, which is designed to hold a large amount of

data permanently.

 Disks provide most of the secondary storage on which file systems are maintained. Two characteristics
make them convenient for this purpose:

 A disk can be rewritten in place; it is possible to read a block from the disk, modify the block,
and write it back into the same place.

 A disk can access directly any block of information it contains. Thus, it is simple to access any
file either sequentially or randomly, and switching from one file to another requires only
moving the read– write heads and waiting for the disk to rotate.

 A file system poses two quite different design problems.

 The first problem is defining how the file system should look to the user. This task involves defining a
file and its attributes, the operations allowed on a file, and the directory structure files.

 The second problem is creating algorithms and data structures to map the logical file system onto the
physical secondary-storage devices.

 The file system itself is generally composed of many different levels .

I/O Control:

 The I/O control level consists of device drivers and interrupts handlers to transfer information
between the main memory and the disk system.

 The device driver usually writes specific bit patterns to special locations in the I/O controller’s
memory to tell the controller which device location to act on and what actions to take.

Basic File System:
 The basic file system needs only to issue generic commands to the appropriate device driver to

read and write physical blocks on the disk.

 Each physical block is identified by its numeric disk address.

 This layer also manages the memory buffers and caches that hold various file-system, directory,

and data blocks

 A block in the buffer is allocated before the transfer of a disk block can occur

 Caches are used to hold frequently used file-system metadata to improve performance


CS8493-Operating System

File Organization Module:
 The file-organization module knows about files and their logical blocks, as well as physical

blocks.

 The file-organization module can translate logical block addresses to physical block addresses for
the basic file system to transfer.

 The file-organization module also includes the free-space manager, which tracks unallocated
blocks and provides these blocks to the file-organization module when requested.

Logical File System:
 The logical file system manages metadata information

 The logical file system manages the directory structure to provide the file-organization module
with the information it needs.

 It maintains file structure via file-control blocks

 A file control block (FCB) (an inode in UNIX file systems) contains information about the file,
including ownership, permissions, and location of the file contents.

Advantages of Layered File system :
 When a layered structure is used for file-system implementation, duplication of code is minimized

 Each file system can then have its own logical file-system and file-organization modules
Disadvantages: The use of layering, including the decision about how many layers to use and what each
layer should do, is a major challenge in designing new systems.

EXAMPLE FILE SYSTEMS:

 UNIX uses the UNIX file system (UFS), which is based on the Berkeley Fast File System (FFS).

 Windows supports disk file-system formats of FAT, FAT32, and NTFS (or Windows NT File System),
as well as CD-ROM and DVD file-system formats.

 Although Linux supports over forty different file systems, the standard Linux file system is known as the
extended file system, with the most common versions being ext3 and ext4.
 On-disk and in-memory structures are used to implement a file system.

 These structures vary depending on the operating system and the file system


 The On Disk Structure of File system Provides the details such as

 Boot Control Block
 Volume Control Block
 Directory Structure
 File Control Block

 A boot control block (per volume) can contain information needed by the system to boot an

operating system from that volume.

 If the disk does not contain an operating system, this block can be empty.

 In UFS (Unix File System), it is called the boot block. In NTFS (New Technology File System),
it is the partition boot sector.

Volume Control Block:
 volume control block (per volume) contains volume (or partition) details, such as the number of

blocks in the partition, the size of the blocks, a free-block count and free-block pointers, and a
free-FCB count and FCB pointers.

 In UFS, this is called a superblock. In NTFS, it is stored in the master file table.

Directory Structure:

 A directory structure (per file system) is used to organize the files.

 In UFS, this includes file names and associated inode numbers. In NTFS, it is stored in the master

file table.

CS8493-Operating System

File Control Block:
 A per-file FCB contains many details about the file.

 It has a unique identifier number to allow association with a directory entry.

 In NTFS, this information is actually stored within the master file table, which uses a relational
database structure, with a row per file.

 

 

 The in memory Structure of File system provides the details such as

 An in-memory mount table
 An in-memory directory-structure cache

 The system-wide open-file table

 The per-process open-file table

 Buffers hold file-system blocks
 An in-memory mount table contains information about each mounted volume.

 An in-memory directory-structure cache holds the directory information of recently accessed
directories.

 The system-wide open-file table contains a copy of the FCB of each open file, as well as other
information

 The per-process open-file table contains a pointer to the appropriate entry in the system-wide
open-file table, as well as other information.

 Buffers hold file-system blocks when they are being read from disk or written to disk.

 To create a new file, an application program calls the logical file system. To create a new file, it

allocates a new FCB.

 The system then reads the appropriate directory into memory, updates it with the new file name
and FCB, and writes it back to the disk.

Example: A file has been created, and it can be used for I/O.It must be opened to perform I/O.

 The open() call passes a file name to the logical file system. The open () system call first searches
the system-wide open-file table to see if the file is already in use by another process.

 If it is, a per-process open-file table entry is created pointing to the existing system-wide open-file
table.

 If the file is not already open, the directory structure is searched for the given file name.

 Once the file is found, the FCB is copied into a system-wide open-file table in memory.

 Next, an entry is made in the per-process open-file table, with a pointer to the entry in the system-
wide open-file table and some other fields.

CS8493-Operating System

 When a process closes the file, the per-process table entry is removed, and the system-wide

entry’s open count is decremented.

PARTITIONING AND MOUNTING:
 A disk can be sliced into multiple partitions, or a volume can span multiple partitions on multiple

disks

 Each partition can be either ―raw,‖ containing no file system, or ―cooked,‖ containing a file

system.

 Raw disk is used where no file system is appropriate.

 Boot information can be stored in a separate partition,

 The boot loader in turn knows enough about the file-system structure to be able to find and load
the kernel and start it executing.

 Many systems can be dual-booted, allowing us to install multiple operating systems on a single
system.

 The root partition, which contains the operating-system kernel and sometimes other system files,
is mounted at boot time.

 Microsoft Windows–based systems mount each volume in a separate name space, denoted by a

letter and a colon.

VIRTUAL FILE SYSTEMS:
 Modern operating systems must concurrently support multiple types of file systems. Virtual

File Systems allow multiple types of file systems to be integrated into a directory structure.

 Implementing multiple types of file systems requires writing directory and file routines for each
type.

 Users can access files contained within multiple file systems on the local disk or even on file
systems available across the network.

 Thus, the file-system implementation consists of three major layers

 File System Interface
 Virtual File System

 Remote File System Protocol

CS8493-Operating System

 The first layer is the file-system interface, based on the open(), read(), write(), and close() calls and on

file descriptors

 The second layer is called the virtual file system (VFS) layer. The VFS layer serves two important
functions:

 It separates file-system-generic operations from their implementation by defining a clean VFS
interface.

 It provides a mechanism for uniquely representing a file throughout a network. The VFS is based
on a file-representation structure, called a vnode that contains a numerical designator for a
network-wide unique file.

 Thus, the VFS distinguishes local files from remote ones, and local files are further distinguished
according to their file-system types.

 The layer implementing the file-system type or the remote-file-system protocol is the third layer of the

architecture.
EXAMPLE: VFS architecture in Linux

 The four main object types defined by the Linux VFS are:

 The inode object, which represents an individual file
 The file object, which represents an open file

 The superblock object, which represents an entire file system

 The dentry object, which represents an individual directory entry
 For each of these four object types, the VFS defines a set of operations that may be implemented.

 Every object of one of these types contains a pointer to a function table. The function table lists the
addresses of the actual functions that implement the defined operations for that particular object.

 int open(. . .)—Open a file.
 int close(...)—Close an already-open file.
 ssize t read(. . .)—Read from a file.
 ssize t write(. . .)—Write to a file.
 int mmap(. . .)—Memory-map a file.

 Thus, the VFS software layer can perform an operation on one of these objects by calling the appropriate
function from the object’s function table, without having to know in advance exactly what kind of object
it is dealing with.

FILE / DISK ALLOCATION TECHNIQUES:

 Many files are stored on the same disk. The File System allocates space to these files so that disk
space is utilized effectively and files can be accessed quickly.

 Three major methods of allocating disk space are,

 Contiguous Allocation
 Linked Allocation

 

CS8493-Operating System

 Indexed Allocation

 Contiguous Allocation:
 Contiguous allocation requires that each file occupy a set of contiguous blocks on the disk.

 Disk addresses define a linear ordering on the disk.

 It supports both direct and sequential access. For direct access to block i of a file that starts at
block b, we can immediately access block b + i.

 If the file is n blocks long and starts at location b, then it occupies blocks b, b + 1, b + 2... b + n −
1.

 The directory entry for each file indicates the address of the starting block and the length of the
area allocated for this file.

Advantages:
 The number of disk seeks required for accessing contiguously allocated files is minimal.

 Contiguous allocation of a file is defined by the disk address and length of the first block.

 Accessing a file that has been allocated contiguously is easy.
 One difficulty is finding space for a new file.

 Contiguous memory allocation suffers from the problem of external fragmentation.

EXTERNAL FRAGMENTATION: As files are allocated and deleted, the free disk space is broken into
little pieces. The total available space may not be enough to satisfy a request. Storage is fragmented into a
number of holes, none of which is large enough to store the data.

SOLUTION: One strategy for preventing external fragmentation is to copy an entire file system onto
another disk. The original disk is then freed completely, creating one large contiguous free space .We then
copy the files back onto the original disk by allocating contiguous space from this one large hole. This is

called as Compaction.
 Another Problem with contiguous allocation is determining how much space is needed for a file.

 Even if the total amount of space needed for a file is known in advance, preallocation may be

inefficient.
 To minimize these drawbacks, some operating systems use a contiguous chunk of space that is

allocated initially.
 If that amount proves not to be large enough, another chunk of contiguous space, known as an

extent, is added.


 Linked allocation:
 Linked allocation solves all problems of contiguous allocation

 With linked allocation, each file is a linked list of disk blocks; the disk blocks may be scattered

anywhere on the disk.

 The directory contains a pointer to the first and last blocks of the file. If each block is 512 bytes in
size, and a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

 Each directory entry has a pointer to the first disk block of the file.

CS8493-Operating System

 A write to the file causes the free-space management system to find a free block, and this new

block is written to and is linked to the end of the file.

 To read a file, we simply read blocks by following the pointers from block to block.

Advantages:
 There is no external fragmentation with linked allocation, and any free block on the free-space list

can be used to satisfy a request.

 The size of a file need not be declared when the file is created.

 A file can continue to grow as long as free blocks are available
 It is inefficient to support a direct-access capability for linked-allocation files.

 It requires more disk space for storing the pointers.

 Solution: The usual solution to this problem is to collect blocks into multiples, called clusters,
and to allocate clusters rather than blocks.

 An important variation on linked allocation is the use of a file-allocation table (FAT).

 A section of disk at the beginning of each volume contains the table.

 The table has one entry for each disk block and is indexed by block number.

 The FAT is used in much the same way as a linked list. The directory entry contains the block
number of the first block of the file.

 The table entry indexed by that block number contains the block number of the next block in the
file. This chain continues until it reaches the last block.

 Indexed Allocation
 In Indexed allocation each file has its own index block, which is an array of disk-block addresses.

The directory contains the address of the index block

 The ith entry in the index block points to the ith block of the file.

 To find and read the ith block, we use the pointer in the ith index-block entry.

 When the file is created, all pointers in the index block are set to null.

 When the ith block is first written, a block is obtained from the free-space manager, and its
address is put in

CS8493-Operating System

Advantages:
 Indexed allocation supports direct access

 It does not suffer from External fragmentation. because any free block on the disk can satisfy a request

for more Space

 Indexed allocation does suffer from wasted space
 The Pointer overhead of the index block is generally greater than the pointer overhead of linked

allocation

 Every file must have an index block, so we want the index block to be as small as possible.

 Mechanisms for implementing the index block includes:

 Linked scheme.
 Multilevel index
 Combined scheme.

 An index block is normally one disk block. Thus, it can be read and written directly by itself.

 To allow for large files, we can link together several index blocks.

 Example: An index block might contain a small header giving the name of the file and a set of the first
100 disk-block addresses.

 The next address is a pointer to another index block.

 Multilevel index representation uses a first-level index block to point to a set of second-level index

blocks, which in turn point to the file blocks.

 To access a block, the operating system uses the first-level index to find a second-level index block and
then uses that block to find the desired data block.

 This approach could be continued to a third or fourth level, depending on the desired maximum file size.

CS8493-Operating System

Combined scheme:
Combined scheme is a combination of both linked and multilevel implementation.

EXAMPLE: Consider a UNIX-based file systems, which keeps 15 pointers of the index block in the

file’s inode(FAT).

The first 12 of these pointers point to direct blocks; that is, they contain addresses of blocks that contain

data of the file.

The next three pointers point to indirect blocks.

 The first points to a single indirect block, which is an index block containing not data but
the addresses of blocks that do contain data.

 The second points to a double indirect block, which contains the address of a block that
contains the addresses of blocks that contain pointers to the actual data blocks.

 The last pointer contains the address of a triple indirect block.

FREE SPACE MANAGEMENT:
A number of files can be created and deleted by the user in a secondary storage device.

Since disk space is limited, we need to reuse the space from deleted files for new files.

FREE SPACE LIST:

To keep track of free disk space, the system maintains a free-space list. The free-space list records all
free disk blocks—those not allocated to some file or directory.

To create a file, we search the free-space list for the required amount of space and allocate that space to

the new file.

This space is then removed from the free-space list.

When a file is deleted, its disk space is added to the free-space list.

The Free space list can be implemented in the following ways

 Bit Vector or Bit Map
 Linked list
 Groping
 Counting
 Space maps

 Bit Vector:
The free-space list is implemented as a bit map or bit vector.

Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.

Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17,

CS8493-Operating System

18, 25, 26, and 27 are free and the rest of the blocks are allocated.

Free-space bit map:

01111001111110001100000011100000...

One technique for finding the first free block on a system that uses a bit-vector is to sequentially check
each word in the bit map to see whether that value is not 0.

The first non-0 word is scanned for the first 1 bit, which is the location of the first free block. The
calculation of the block number is (number of bits per word) × (number of 0-value words) + offset
of first 1 bit.

Advantages:
The main advantage of this approach is its relative simplicity and its efficiency in finding the first free

block or n consecutive free blocks on the disk.
Bit vectors are inefficient unless the entire vector is kept in main memory.

If the disk size constantly increases, the problem with bit vectors will continue to increase.



 Linked list:
Linked list implementation link together all the free disk blocks, keeping a pointer to the first free block

in a special location on the disk and caching it in memory.

This first block contains a pointer to the next free disk block, and so on

Example: Blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 in the disk were free and the rest
of the blocks were allocated.

We would keep a pointer to block 2 as the first free block. Block 2 would contain a pointer to block 3,
which would point to block 4, which would point to block 5, which would point to block 8, and so on

Disadvantages:
This scheme is not efficient; to traverse the list, we must read each block, which requires substantial I/O

time.

 Grouping:
A modification of the free-list approach stores the addresses of n free blocks in the first free block.

The first n−1 of these blocks are actually free. The last block contains the addresses of other n free

blocks, and so on.

The addresses of a large number of free blocks can now be found quickly.

 Counting:
Free space list keep the address of the first free block and the number (n) of free contiguous blocks that

follow the first block.

CS8493-Operating System

Each entry in the free-space list then consists of a disk address and a count.

This method of tracking free space is similar to the extent method of allocating blocks.

These entries can be stored in a balanced tree, rather than a linked list, for efficient lookup, insertion, and

deletion.

 Space maps:
Oracle’s ZFS file system creates Meta slabs to divide the space on the device into chunks of manageable

size.

A given volume may contain hundreds of Meta slabs. Each Meta slab has an associated space map.

ZFS uses the counting algorithm to store information about free blocks.

A space map uses log-structured file-system techniques to record the information about the free blocks.

The space map is a log of all block activity (allocating and freeing), in time order, in counting format.

When ZFS decides to allocate or free space from a Meta slab, it loads the associated space map into
memory in a balanced-tree structure, indexed by offset, and replays the log into that structure.

The in-memory space map is then an accurate representation of the allocated and free space in the Meta
slab.

I/O SYSTEMS: 

The role of the operating system in computer I/O is to manage and control I/O operations and I/O
devices. This is met by a combination of hardware device controllers and software device driver
techniques.

Computers operate a great many kinds of devices. These devices are grouped under various categories

that includes

 Storage devices – Disks and Tapes

 Transmission devices – Networks cards, modems, Bluetooth
 Human Interface devices – Monitor, Keyboard, Mouse, Printer.

A device communicates with a computer system by sending signals over a cable.

PORT: The device communicates with the machine via a connection point called a port.

BUS: If devices share a common set of wires, the connection is called a bus. A bus is a set of wires and a
rigidly defined protocol that specifies a set of messages that can be sent on the wires.

DAISY CHAIN: When device A has a cable that plugs into device B, and device B has a cable that
plugs into device C, and device C plugs into a port on the computer, this arrangement is called a daisy
chain. A daisy chain usually operates as a bus.

PCI – Peripheral Component Interconnect
SCSI – Small Computer Systems Interface
IDE – Integrated Drive Electronics

A PCI bus (the common PC system bus) connects the processor–memory subsystem to fast devices

An expansion bus connects relatively slow devices, such as the keyboard and serial and USB ports.

A Device controller is a collection of electronics that can operate a port, a bus, or a device.

The processor gives commands and data to a controller to accomplish an I/O transfer.

The controller has one or more registers for data and control signals. The processor communicates with
the controller by reading and writing bit patterns in these registers.

CS8493-Operating System

MEMORY MAPPED I/O: The CPU executes I/O requests using the standard data-transfer instructions to
read and write the device-control registers at their mapped locations in physical memory.

An I/O port typically consists of four registers, called the status, control, data-in, and data-out registers.

 The data-in register is read by the host to get input.
 The data-out register is written by the host to send output.
 The status register contains that indicate states, such as whether the current command has

completed, whether a byte is available to be read from the data-in register, and whether a device
error has occurred.

 The control register can be written by the host to start a command or to change the mode of a
device.

POLLING:

HANDSHAKING: It is a protocol for interaction between the host and a controller.

The controller indicates its state through the busy bit in the status register.

The controller sets the busy bit when it is busy working and clears the busy bit when it is ready to accept
the next command.

The host signals its wishes via the command-ready bit in the command register.

The host sets the command-ready bit when a command is available for the controller to execute.

 POLLING: The host repeatedly reads the busy bit until that bit becomes clear. This process is called as
polling or busy waiting.
 The host sets the write bit in the command register and writes a byte into the data-out register.

 The host sets the command-ready bit.

 When the controller notices that the command-ready bit is set, it sets the busy bit.
 The controller reads the command register and sees the write command. It reads the data-out register to get
the byte and does the I/O to the device.
 The controller clears the command-ready bit, clears the error bit in the status register to indicate that the
device I/O succeeded, and clears the busy bit to indicate that it is finished.

INTERUPPTS:
An interrupt is a signal to the kernel (i.e., the core of the operating system) that an event has occurred,

and this result in changes in the sequence of instructions that is executed by the CPU.

The CPU hardware has a wire called the interrupt-request line that the CPU senses after executing

every instruction.

When the CPU detects that a controller has asserted a signal on the interrupt-request line, the CPU
performs a state save and jumps to the interrupt-handler routine at a fixed address in memory.

CS8493-Operating System

 The device controller raises an interrupt by asserting a signal on the interrupt request line, the CPU

catches the interrupt and dispatches it to the interrupt handler, and the handler clears the interrupt by
servicing the device.

In a modern operating system, we need more sophisticated interrupt-handling features
 We need the ability to suspend interrupt handling during critical processing.
 We need an efficient way to dispatch to the proper interrupt handler for a device without first polling all the
devices to see which one raised the interrupt.
 We need multilevel interrupts, so that the operating system can distinguish between high- and low-priority
interrupts and can respond with the appropriate degree of urgency.

Most CPUs have two interrupt request lines.

 Non Maskable Interrupt

 Maskable Interrupt


 The Non maskable interrupts are those that cannot be ignored by the processor. It is reserved for events

such as unrecoverable memory errors.

 The Maskable interrupts are those that can be ignored by the processor. The maskable interrupt is used by
device controllers to request service.

 Interrupt vector: The interrupt mechanism accepts an address—a number that selects a specific
interrupt-handling routine from a small set. This address is an offset in a table called the interrupt
vector.

 The purpose of a vectored interrupt mechanism is to reduce the need for a single interrupt handler to
search all possible sources of interrupts to determine which one needs service.

 Interrupt Chaining: A common way to solve this problem is to use interrupt chaining, in which each
element in the interrupt vector points to the head of a list of interrupt handlers.

 The interrupt mechanism also implements a system of interrupt priority levels.

 These levels enable the CPU to suspend the handling of low-priority interrupts without masking all
interrupts and makes it possible for a high priority interrupt to preempt the execution of a low-priority
interrupt.

 The interrupt mechanism is also used to handle a wide variety of exceptions, such as dividing by 0,
accessing a protected or nonexistent memory address, or attempting to execute a privileged instruction
from user mode.

EXAMPLE: A page fault is an exception that raises an interrupt. The interrupt suspends the current process
and jumps to the page-fault handler in the kernel.

This handler saves the state of the process, moves the process to the wait queue, performs page-cache
management, schedules an I/O operation to fetch the page, schedules another process to resume
execution, and then returns from the interrupt.

Interrupts can also be used to manage the flow of control within the kernel.

CS8493-Operating System

 Thus interrupts are used throughout modern operating systems to handle asynchronous events and to trap

to supervisor-mode routines in the kernel.

DIRECT MEMORY ACCESS:
 In Programmed I/O, when the processor is executing a program and encounters an instruction relating to

I/O, it executes that instruction by issuing a command to the appropriate I/O module. The I/O module
performs the requested action and takes no action to alert the processor and it does not interrupt the
processor. The processor periodically checks the status of the I/O module until it finds that the
operation is complete. This burdens the CPU.

 Many computers avoid burdening the main CPU with Programmed I/O by offloading some of this work
to a special-purpose processor called a direct-memory-access (DMA) controller.

 To initiate a DMA transfer, the host writes a DMA command block into memory.

 This block contains a pointer to

 The source of a transfer,
 A pointer to the destination of the transfer,
 A count of the number of bytes to be transferred.

 The CPU writes the address of this command block to the DMA controller, then goes on with other work.

 The DMA controller proceeds to operate the memory bus directly, placing addresses on the bus to
perform transfers without the help of the main CPU.

Handshaking between the DMA controller and the device controller:
 Handshaking between the DMA controller and the device controller is performed via a pair of

wires called

DMA-request and DMA-acknowledge.

 The device controller places a signal on the DMA-request wire when a word of data is available

for transfer.

 When the device controller receives the DMA-acknowledge signal, it transfers the word of data to
memory and removes the DMA-request signal.

 When the entire transfer is finished, the DMA controller interrupts the CPU.

 CYCLE STEALING: When the DMA controller seizes the memory bus, the CPU is prevented
from accessing main memory, although it can still access data items in its primary and secondary
caches.This is called as Cycle stealing.

 This cycle stealing can slow down the CPU computation, offloading the data-transfer work to a
DMA controller generally improves the total system performance.

 DIRECT VIRTUAL MEMORY ADDRESS: Some computer architectures use physical
memory addresses for DMA, but others perform direct virtual memory access (DVMA), using
virtual addresses that undergo translation to physical addresses.

 DVMA can perform a transfer between two memory-mapped devices without the intervention of
the CPU or the use of main memory.

 On protected-mode kernels, the operating system generally prevents processes from issuing
device commands directly.

CS8493-Operating System

 This direct access can be used to achieve high performance, since it can avoid kernel

communication, context switches, and layers of kernel software.

APPLICATION I/O INTERFACE:

 The operating system acts as an interface between the application programs and the I/O Devices.

 The interface involves abstraction, encapsulation, and software layering.

 The kernel modules called device drivers are internally custom-tailored to specific devices.

 The purpose of the device-driver layer is to hide the differences among device controllers from
the I/O subsystem of the kernel

 The kernels allows the existing I/O Subsystem for new devices to be compatible with an existing
host controller interface or they write device drivers to interface the new hardware to popular
operating systems.

Devices vary on many dimensions such as

 Character-stream or block
 Sequential or random access
 Synchronous or asynchronous
 Sharable or dedicated
 Speed of operation
 Read–write, read only, or write only
 Character-stream or block

 

 Character-stream or block: A character-stream device transfers bytes one by one, whereas a block
device transfers a block of bytes as a unit.

 Sequential or random access: A sequential device transfers data in a fixed order determined by the
device, whereas the user of a random-access device can instruct the device to seek to any of the available
data storage locations.

 Synchronous or asynchronous. A synchronous device performs data transfers with predictable response
times and an asynchronous device exhibits irregular or unpredictable response times.

 Sharable or dedicated. A sharable device can be used concurrently by several processes or threads; a
dedicated device cannot.

 Speed of operation. Device speeds range from a few bytes per second to a few gigabytes per second.

 Read–write, read only, or write only. Some devices perform both input and output, but others support
only one data transfer direction.

 For the application programs, many of these differences are hidden by the operating system, and the
devices are grouped into a few conventional types.

CS8493-Operating System

 Operating systems also provide special system calls to access a few additional devices, such as a time-of-

day clock and a timer.

 Some operating systems provide a set of system calls for graphical display, video, and audio devices.

 ESCAPE: Most operating systems also have an escape (or back door) that transparently passes arbitrary
commands from an application to a device driver.

 Block and Character Devices:
The block-device interface captures all the aspects necessary for accessing disk drives and other block-

oriented devices.

The device is expected to understand commands such as read () and write (). If it is a random-access
device, it is also expected to have a seek () command to specify which block to transfer next.

The read (), write (), and seek () system calls are the essential behaviors of block-storage devices, so that
applications are insulated from the low-level differences among those devices.

RAW I/O: The operating system itself, as well as special applications such as database management

Systems may prefer to access a block device as a simple linear array of blocks. This mode of access is

called raw I/O.

DIRECT I/O: operating system allows a mode of operation on a file that disables buffering and locking.
In the UNIX, this is called direct I/O.

A keyboard is an example of a device that is accessed through a character stream interface. The basic
system calls in this interface enable an application to get () or put () one character.



 Network devices:
Most operating systems provide a network I/O interface that is different from the read()–write()–seek()

interface used for disks, Because the performance and addressing characteristics of network I/O differ
significantly from those of disk I/O.

One interface available in many operating systems, including UNIX and Windows, is the network socket

interface.

Many other approaches to interprocess communication and network communication have also been

implemented

EXAMPLE: Windows provides one interface to the network interface card and a second interface to the
network protocols.



 Clocks and Timers:
Most computers have hardware clocks and timers that provide three basic functions:

 Give the current time.
 Give the elapsed time.

 Set a timer to trigger operation X at time T.
PROGRAMMABLE INTERVAL TIMER: The hardware to measure elapsed time and to trigger

operations is called a programmable interval timer.

It can be set to wait a certain amount of time and then generate an interrupt, and it can be set to do this
once or to repeat the process to generate periodic interrupts.

EXAMPLE: The scheduler uses this mechanism to generate an interrupt that will preempt a process at the
end of its time slice.

 Nonblocking and Asynchronous I/O:
When an application issues a blocking system call, the execution of the application is suspended.

The application is moved from the operating system’s run queue to a wait queue. After the system call
completes, the application is moved back to the run queue, where it is eligible to resume execution.

The physical actions performed by I/O devices are generally asynchronous.

Some user-level processes need nonblocking I/O. One example is a user interface that receives keyboard
and mouse input while processing and displaying data on the screen.

CS8493-Operating System

An alternative to a nonblocking system call is an asynchronous system call. An asynchronous call returns

immediately, without waiting for the I/O to complete.

The difference between nonblocking and asynchronous system calls is that a nonblocking read() returns
immediately with whatever data are available and an asynchronous read() call requests a transfer that
will be performed in its entirety but will complete at some future time.

 Vectored I/O:
Vectored I/O allows one system call to perform multiple I/O operations involving multiple locations.

EXAMPLE:

SCATTER – GATHER METHOD: A system call in UNIX accepts a vector of multiple buffers and
either reads from a source to that vector or writes from that vector to a destination. The same transfer
could be caused by several individual invocations of system calls.

KERNEL I/O SUBSYSTEM:

Kernels provide many services related to I/O. The I/O subsystem is also responsible for protecting
itself from errant processes and malicious users. The Services include

 I/O Scheduling

 Buffering

 Caching

 Spooling and device reservation

 Error Handling

 I/O Protection

 Kernel Data Structures

I/O Scheduling:

Scheduling can improve overall system performance, can share device access among processes, and can
reduce the average waiting time for I/O to complete.

EXAMPLE: A disk arm is near the beginning of a disk and that three applications issue blocking read
calls to that disk. Application 1 requests a block near the end of the disk, application 2 requests one
near the beginning, and application 3 requests one in the middle of the disk. The operating system can
reduce the distance that the disk arm travels by serving the applications in the order 2, 3, 1.
Rearranging the order of service in this way is the essence of I/O scheduling.

The OS must be able to keep track of many I/O requests at the same time. For this purpose, the operating
system might attach the wait queue to a device-status table.

CS8493-Operating System

Buffering:
 A buffer, of course, is a memory area that stores data being transferred between two devices or between a

device and an application

 Buffering is done for three reasons.

 One reason is to cope with a speed mismatch between the producer and consumer of a data
stream

 A second use of buffering is to provide adaptations for devices that have different data-

transfer sizes

COPY SEMANTICS: A third use of buffering is to support copy semantics for application I/O. With copy
semantics, the version of the data written to disk is guaranteed to be the version at the time of the application
system call, independent of any subsequent changes in the application’s buffer.

EXAMPLE: Consider a file that is being received via modem for storage on the hard disk. A buffer is
created in main memory to accumulate the bytes received from the modem. When an entire buffer of data has
arrived, the buffer can be written to disk in a single operation.

DOUBLE BUFFERING: The modem still needs a place to store additional incoming data, two buffers are
used. After the modem fills the first buffer, the disk write is requested. The modem then starts to fill the

second buffer while the first buffer is written to disk. By the time the modem has filled the second buffer, the
disk write from the first one should have completed, so the modem can switch back to the first buffer while

the disk writes the second one. This is called as double buffering.

Caching:
 A cache is a region of fast memory that holds copies of data. Access to the cached copy is more efficient

than access to the original

 The Instructions of the currently running process are stored on disk, cached in physical memory, and
copied again in the CPU’s secondary and primary caches.

 The difference between a buffer and a cache is that a buffer may hold the only existing copy of a data
item, whereas a cache, by definition, holds a copy on faster storage of an item that resides.

 A spool is a buffer that holds output for a device, such as a printer, that cannot accept interleaved data

streams. Spooling is a way of operating systems to coordinate concurrent output

 A printer can serve only one job at a time

 Several applications may wish to print their output concurrently, without having their output mixed
together.

 The operating system solves this problem by intercepting all output to the printer.

 Each application’s output is spooled to a separate disk file.

CS8493-Operating System

 When an application finishes printing, the spooling system queues the corresponding spool file for output

to the printer.

 The spooling system copies the queued spool files to the printer one at a time.

 The spool can be managed in two ways

 System daemon process
 In-kernel thread.

 Some operating systems (including VMS) provide support for exclusive device access by enabling a
process to allocate an idle device and to deallocate that device when it is no longer needed.

 An operating system that uses protected memory can guard against many kinds of hardware and

application errors.

 Devices and I/O transfers can fail when a network becomes overloaded, or when a disk controller
becomes defective. Operating systems can often compensate effectively for transient failures.

 A disk read() failure results in a read() retry, and a network send() error results in a resend(), if the

protocol so specifies.

 An I/O system call will return one bit of information about the status of the call, signifying either success

or failure.

 In the UNIX operating system, an additional integer variable named errno is used to return an error code
indicating the general nature of the failure.

EXAMPLE: A failure of a SCSI device is reported by the SCSI protocol in three levels of detail:
 Sense Key - Identifies the general nature of the failure

 Additional sense code - states the category of failure

 Additional sense-code qualifier -Specifies which command parameter was in error or which hardware
subsystem failed its self-test.

 A user process may attempt to disrupt the normal operation of a system by attempting to issue illegal I/O

instructions.

 To prevent users from performing illegal I/O, we define all I/O instructions to be privileged instructions.
Thus, users cannot issue I/O instructions directly.

 To do I/O, a user program executes a system call to request that the operating system perform I/O on its
behalf. The operating system, executing in monitor mode, checks that the request is valid and, if it is,
does the I/O requested. The operating system then returns to the user.

 Any memory-mapped and I/O port memory locations must be protected from user access by the memory-
protection system.

CS8493-Operating System

Kernel Data Structures:
 The kernel needs to keep state information about the use of I/O components which is done through a

variety of in-kernel data structures such as open file table, per process open file table, etc..

 The kernel uses many similar structures to track network connections, character-device communications,
and other I/O activities.

 To read a user file, the kernel needs to probe the buffer cache before deciding whether to perform a disk
I/O.

 To read a raw disk, the kernel needs to ensure that the request size is a multiple of the disk sector size and
is aligned on a sector boundary.

 An I/O request is converted into a message that is sent through the kernel to the I/O manager and then to
the device driver, each of which may change the message contents. For output, the message contains
the data to be written. For input, the message contains a buffer to receive the data

CS8493-Operating System

UNIT V CASE STUDY
Linux System - Design Principles, Kernel Modules, Process Management, Scheduling, Memory Management,

Input-Output Management, File System, Inter-process Communication; Mobile OS - iOS and Android -

Architecture and SDK Framework, Media Layer, Services Layer, Core OS Layer, File System.

Linux System
 Linux kernel forms the core of the Linux project, but other components make up a complete Linux

operating system. Whereas the Linux kernel is composed entirely of code written from scratch
specifically for the Linux project, much of the supporting software that makes up the Linux system is
not exclusive to Linux but is common to a number of UNIX-like operating systems.

 In particular, Linux uses many tools developed as part of Berkeley’s BSD operating system, MIT’s X
Window System, and the Free Software Foundation’s GNU project.

 This sharing of tools has worked in both directions.

 The main system libraries of Linux were originated by the GNU project, but the Linux community
greatly improved the libraries by addressing omissions, inefficiencies, and bugs. Other components,
such as the GNU C compiler (gcc), were already of sufficiently high quality to be used directly in
Linux.

 The network administration tools under Linux were derived from code first developed for 4.3 BSD, but
more recent BSD derivatives, such as FreeBSD, have borrowed code from Linux in return. Examples
of this sharing include the Intel floating-point-emulation math library and the PC sound-hardware
device drivers.

 The Linux system as a whole is maintained by a loose network of developers collaborating over the
Internet, with small groups or individuals having responsibility for maintaining the integrity of
specific components.

 A small number of public Internet file-transfer-protocol (FTP) archive sites act as de facto standard
repositories for these components.

 The File System Hierarchy Standard document is also maintained by the Linux community as a means
of ensuring compatibility across the various system components. This standard specifies the overall
layout of a standard Linux file system; it determines under which directory names configuration files,
libraries, system binaries, and run-time data files should be stored.

 Linux distributions, include much more than just the basic Linux system. They typically include extra

system-installation and management utilities, as well as precompiled and ready-to-install packages of
many of the common UNIX tools, such as news servers, web browsers, text-processing and editing
tools, and even games.

 The first distributions managed these packages by simply providing a means of unpacking all the files
into the appropriate places.

 One of the important contributions of modern distributions, however, is advanced package management.

 Today’s Linux distributions include a package-tracking database that allows packages to be installed,
upgraded, or removed painlessly.

 The SLS distribution, dating back to the early days of Linux, was the first collection of Linux packages
that was recognizable as a complete distribution. Although it could be installed as a single entity, SLS
lacked the package-management tools now expected of Linux distributions.

 The Slackware distribution represented a great improvement in overall quality, even though it also had
poor package management. In fact, it is still one of the most widely installed distributions in the
Linux community.

 Since Slackware’s release, many commercial and noncommercial Linux distributions have become
available.

Red Hat and Debian are particularly pop-ular distributions; the first comes from a commercial Linux
support company and the second from the free-software Linux community. 

 Other commercially supported versions of Linux include distributions from Canonical and SuSE, and
others too numerous to list here.

 There are too many Linux distributions in circulation for us to list all of them here. The variety of
distributions does not prevent Linux distributions from being compatible, however.

 The RPM package file format is used, or at least understood, by the majority of distributions, and
commercial applications distributed in this format can be installed and run on any distribution that
can accept RPM files.

CS8493-Operating System

Linux Licensing
 The Linux kernel is distributed under version 2.0 of the GNU General Public License (GPL), the terms of

which are set out by the Free Software Foundation.

 Linux is not public-domain software. Public domain implies that the authors have waived copyright
rights in the software, but copyright rights in Linux code are still held by the code’s various authors.
Linux is free software, however, in the sense that people can copy it, modify it, use it in any manner
they want, and give away (or sell) their own copies.

 The main implication of Linux’s licensing terms is that nobody using Linux, or creating a derivative of
Linux (a legitimate exercise), can distribute the derivative without including the source code.

 Software released under the GPL cannot be redistributed as a binary-only product. If you release software
that includes any components covered by the GPL, then, under the GPL, you must

 make source code available alongside any binary distributions. (This restriction does not prohibit making
or even selling binary software distributions, as long as anybody who receives binaries is also given
the opportunity to get the originating source code for a reasonable distribution charge.)

Design Principles
 In its overall design, Linux resembles other traditional, nonmicrokernel UNIX implementations. It is a

multiuser, preemptively multitasking system with a full set of UNIX-compatible tools.

 Linux’s file system adheres to traditional UNIX semantics, and the standard UNIX networking model is
fully implemented.

 The internal details of Linux’s design have been influenced heavily by the history of this operating

system’s development.

 Although Linux runs on a wide variety of platforms, it was originally developed exclusively on PC
architecture. A great deal of that early devel-opment was carried out by individual enthusiasts rather
than by well-funded development or research facilities, so from the start Linux attempted to squeeze
as much functionality as possible from limited resources.

 Today, Linux can run happily on a multiprocessor machine with many gigabytes of main memory and
many terabytes of disk space, but it is still capable of operating usefully in under 16 MB of RAM.

 As PCs became more powerful and as memory and hard disks became cheaper, the original, minimalist
Linux kernels grew to implement more UNIX functionality.

 Speed and efficiency are still important design goals, but much recent and current work on Linux has
concentrated on a third major design goal: standardization. One of the prices paid for the diversity of
UNIX implementations currently available is that source code written for one may not necessarily
compile or run correctly on another.

 Even when the same system calls are present on two different UNIX systems, they do not
necessarily behave in exactly the same way.

 The POSIX standards comprise a set of specifications for different aspects of operating-
system behavior. There are POSIX documents for common operating-system
functionality and for extensions such as process threads and real-time operations.

 Linux is designed to comply with the relevant POSIX documents, and at least two Linux
distributions have achieved official POSIX certification.

 Because it gives standard interfaces to both the programmer and the user, Linux presents
few surprises to anybody familiar with UNIX. We do not detail these interfaces here.
The sections on the programmer interface and user interface of BSD apply equally well
to Linux.

 By default, however, the Linux programming interface adheres to SVR4 UNIX semantics,
rather than to BSD behavior. A separate set of libraries is available to implement BSD
semantics in places where the two behaviors differ significantly.

 Many other standards exist in the UNIX world, but full certification of Linux with respect

to these standards is sometimes slowed because certification is often available only for
a fee, and the expense involved in certifying an operating system’s compliance with
most standards is substantial.

 However, supporting a wide base of applications is important for any operating system, so

implementation of standards is a major goal for Linux development, even if the
implementation is not formally certified.

 

CS8493-Operating System

 In addition to the basic POSIX standard, Linux currently supports the POSIX threading extensions

Pthreads and a subset of the POSIX extensions for real-time process control.

Components of a Linux System

 The Linux system is composed of three main bodies of code, in line with most traditional UNIX

implementations:

 Kernel. The kernel is responsible for maintaining all the important abstractions of the operating
system, including such things as virtual memory and processes.


 System libraries. The system libraries define a standard set of functions through which

applications can interact with the kernel. These functions implement much of the operating-
system functionality that does not need the full privileges of kernel code. The most important
system library is the C library, known as libc. In addition to providing the standard C library, libc
implements the user mode side of the Linux system call interface, as well as other critical system-
level interfaces.


 System utilities. The system utilities are programs that perform indi-vidual, specialized

management tasks. Some system utilities are invoked just once to initialize and configure some
aspect of the system. Others — known as daemons in UNIX terminology — run permanently,
handling such tasks as responding to incoming network connections, accepting logon requests
from terminals, and updating log files.


 Figure 5.1 illustrates the various components that make up a full Linux system.

 The most important distinction here is between the kernel and everything else. All the kernel code
executes in the processor’s privileged mode with full access to all the physical resources of the
computer.

 Linux refers to this privileged mode as kernel mode. Under Linux, no user code is built into the kernel.
Any operating-system-support code that does not need to run in kernel mode is placed into the
system libraries and runs in user mode.

 Unlike kernel mode, user mode has access only to a controlled subset of the system’s resources.
System Management User Processes User Utility Compilers

Programs Programs

System Shared Libraries

Linux Kernel Modules

Loaded kernel modules

Fig:5.1 Components of the Linux system

 Although various modern operating systems have adopted a message-passing architecture for their kernel
internals, Linux retains UNIX’s historical model: the kernel is created as a single, monolithic binary.
The main reason is performance.

 Because all kernel code and data structures are kept in a single address space, no context switches are
necessary when a process calls an operating-system function or when a hardware interrupt is
delivered. More-over, the kernel can pass data and make requests between various subsystems using
relatively cheap C function invocation and not more complicated inter-process communication (IPC).

 This single address space contains not only the core scheduling and virtual memory code but all kernel
code, including all device drivers, file systems, and networking code.

 Even though all the kernel components share this same melting pot, there is still room for modularity.

 In the same way that user applications can load shared libraries at run time to pull in a needed piece of
code, so the Linux kernel can load (and unload) modules dynamically at run time.

CS8493-Operating System

 The kernel does not need to know in advance which modules may be loaded they are truly independent

loadable components.

 The Linux kernel forms the core of the Linux operating system. It provides all the functionality necessary
to run processes, and it provides system services to give arbitrated and protected access to hardware
resources.

 The kernel implements all the features required to qualify as an operating system. On its own, however,
the operating system provided by the Linux kernel is not a complete UNIX system. It lacks much of
the functionality and behavior of UNIX, and the features that it does provide are not necessarily in the
format in which a UNIX application expects them to appear.

 The operating-system interface visible to running applications is not maintained directly by the kernel.
Rather, applications make calls to the system libraries, which in turn call the operating-system
services as necessary.

 The system libraries provide many types of functionality. At the simplest level, they allow applications to
make system calls to the Linux kernel. Making a system call involves transferring control from
unprivileged user mode to privileged kernel mode; the details of this transfer vary from architecture to
architecture.

 The libraries take care of collecting the system-call arguments and, if necessary, arranging those
arguments in the special form necessary to make the system call.

 The libraries may also provide more complex versions of the basic system calls. For example, the C
language’s buffered file-handling functions are all implemented in the system libraries, providing
more advanced control of file I/O than the basic kernel system calls.

 The libraries also provide routines that do not correspond to system calls at all, such as sorting
algorithms, mathematical functions, and string-manipulation routines. All the functions necessary to
support the running of UNIX or POSIX applications are implemented in the system libraries.



 The Linux system includes a wide variety of user-mode programs both system utilities and user utilities.
The system utilities include all the programs necessary to initialize and then administer the system,
such as those to set up networking interfaces and to add and remove users from the system.

 User utilities are also necessary to the basic operation of the system but do not require elevated privileges
to run. They include simple file-management utilities such as those to copy files, create directories,
and edit text files.

 One of the most important user utilities is the shell, the standard command-line interface on UNIX
systems. Linux supports many shells; the most common is the bourne-Again shell (bash).

Kernel Modules

 The Linux kernel has the ability to load and unload arbitrary sections of kernel code on demand. These
loadable kernel modules run in privileged kernel mode and as a consequence have full access to all
the hardware capabilities of the machine on which they run.

 In theory, there is no restriction on what a kernel module is allowed to do. Among other things, a kernel
module can implement a device driver, a file system, or a networking protocol.

 Kernel modules are convenient for several reasons. Linux’s source code is free, so anybody wanting to
write kernel code is able to compile a modified kernel and to reboot into that new functionality.
However, recompiling, relinking, and reloading the entire kernel is a cumbersome cycle to undertake
when you are developing a new driver.

 If you use kernel modules, you do not have to make a new kernel to test a new driver the driver can be
compiled on its own and loaded into the already running kernel. Of course, once a new driver is
written, it can be distributed as a module so that other users can benefit from it without having to
rebuild their kernels.

 This latter point has another implication. Because it is covered by the GPL license, the Linux kernel
cannot be released with proprietary components added to it unless those new components are also
released under the GPL and the source code for them is made available on demand.

 The kernel’s module interface allows third parties to write and distribute, on their own terms, device
drivers or file systems that could not be distributed under the GPL.

 Kernel modules allow a Linux system to be set up with a standard minimal kernel, without any extra
device drivers built in.

 Any device drivers that the user needs can be either loaded explicitly by the system at startup or loaded
automatically by the system on demand and unloaded when not in use.


 

CS8493-Operating System

 For example, a mouse driver can be loaded when a USB mouse is plugged into the system and unloaded

when the mouse is unplugged.

The module support under Linux has four components: 

 The module-management system allows modules to be loaded into memory and to
communicate with the rest of the kernel.

 The module loader and unloader, which are user-mode utilities, work with the module-
management system to load a module into memory.

 The driver-registration system allows modules to tell the rest of the kernel that a new driver
has become available.

 Aconflict-resolution mechanism allows different device drivers to reserve hardware resources
and to protect those resources from accidental use by another driver.

 Loading a module requires more than just loading its binary contents into kernel memory. The system

must also make sure that any references the module makes to kernel symbols or entry points are
updated to point to the correct locations in the kernel’s address space

 Linux deals with this reference updating by splitting the job of module loading into two separate
sections: the management of sections of module code in kernel memory and the handling of symbols
that modules are allowed to reference.

 Linux maintains an internal symbol table in the kernel. This symbol table does not contain the full set of
symbols defined in the kernel during the latter’s compilation; rather, a symbol must be explicitly
exported.

 The set of exported symbols constitutes a well-defined interface by which a module can interact with the
kernel.Although exporting symbols from a kernel function requires an explicit request by the
programmer, no special effort is needed to import those symbols into a module. A module writer just
uses the standard external linking of the C language.

 Any external symbols referenced by the module but not declared by it are simply marked as unresolved in
the final module binary produced by the compiler. When a module is to be loaded into the kernel, a
system utility first scans the module for these unresolved references.

 All symbols that still need to be resolved are looked up in the kernel’s symbol table, and the correct
addresses of those symbols in the currently running kernel are substituted into the module’s code.

 Only then is the module passed to the kernel for loading. If the system utility cannot resolve all
references in the module by looking them up in the kernel’s symbol table, then the module is rejected.

 The loading of the module is performed in two stages.

 First, the module-loader utility asks the kernel to reserve a continuous area of virtual kernel memory for
the module. The kernel returns the address of the memory allocated, and the loader utility can use this
address to relocate the module’s machine code to the correct loading address.

 A second system call then passes the module, plus any symbol table that the new module wants to export,
to the kernel. The module itself is now copied verbatim into the previously allocated space, and the
kernel’s symbol table is updated with the new symbols for possible use by other modules not yet
loaded.

 The final module-management component is the module requester. The kernel defines a communication
interface to which a module-management program can connect.

 With this connection established, the kernel will inform the management process whenever a process
requests a device driver, file system, or network service that is not currently loaded and will give the
manager the opportunity to load that service.

 The original service request will complete once the module is loaded. The manager process regularly
queries the kernel to see whether a dynamically loaded module is still in use and unloads that module
when it is no longer actively needed.

Driver Registration
 Once a module is loaded, it remains no more than an isolated region of memory until it lets the rest of the

kernel know what new functionality it provides.

 The kernel maintains dynamic tables of all known drivers and provides a set of routines to allow drivers
to be added to or removed from these tables at any time.

CS8493-Operating System

 The kernel makes sure that it calls a module’s startup routine when that module is loaded and calls the

module’s cleanup routine before that module is unloaded. These routines are responsible for
registering the module’s functionality.

 A module may register many types of functionality; it is not limited to only one type.

 For example, a device driver might want to register two separate mechanisms for accessing the device.
Registration tables include, among others, the following items:

 Device drivers. These drivers include character devices (such as printers, terminals, and mice),
block devices (including all disk drives), and network interface devices.


 File systems. The file system may be anything that implements Linux’s virtual file system calling

routines. It might implement a format for storing files on a disk, but it might equally well be a
network file system, such as NFS, or a virtual file system whose contents are generated on
demand, such as Linux’s /proc file system.

 Network protocols. A module may implement an entire networking protocol, such as TCP or
simply a new set of packet-filtering rules for a network firewall.

 Binary format. This format specifies a way of recognizing, loading, and executing a
new type of executable file.

Conflict Resolution
 Commercial UNIX implementations are usually sold to run on a vendor’s own hardware. One advantage

of a single-supplier solution is that the software vendor has a good idea about what hardware
configurations are possible.

 PC hardware, however, comes in a vast number of configurations, with large numbers of possible drivers
for devices such as network cards and video display adapters.

 The problem of managing the hardware configuration becomes more severe when modular device drivers
are supported, since the currently active set of devices becomes dynamically variable.

 Linux provides a central conflict-resolution mechanism to help arbitrate access to certain hardware
resources. Its aims are as follows:

 To prevent modules from clashing over access to hardware resources
 To prevent autoprobes — device-driver probes that auto-detect device configuration — from

interfering with existing device drivers
 To resolve conflicts among multiple drivers trying to access the same hardware — as, for

example, when both the parallel printer driver and the parallel line IP (PLIP) network driver try to
talk to the parallel port.

 To these ends, the kernel maintains lists of allocated hardware resources. The PC has a limited
number of possible I/O ports (addresses in its hardware I/O address space), interrupt lines, and
DMA channels. When any device driver wants to access such a resource, it is expected to reserve
the resource with.

Process Management
 A process is the basic context in which all user-requested activity is serviced within the operating system.
To be compatible with other UNIX systems, Linux must use a process model similar to those of other
versions of UNIX.

 Linux operates differently from UNIX in a few key places, however. In this section, we review the
traditional

UNIX process model and introduce Linux’s threading model.

The fork() and exec() Process Model
 The basic principle of UNIX process management is to separate into two steps two operations that are

usually combined into one: the creation of a new process and the running of a new program.

 A new process is created by the fork() system call, and a new program is run after a call to exec(). These

are two distinctly separate functions. We can create a new process with fork() without running a new
program the new subprocess simply continues to execute exactly the same program, at exactly the
same point, that the first (parent) process was running.

 In the same way, running a new program does not require that a new process be created first. Any process

may call exec() at any time. A new binary object is loaded into the process’s address space and the
new executable starts executing in the context of the existing process.

CS8493-Operating System

 This model has the advantage of great simplicity. It is not necessary to specify every detail of the

environment of a new program in the system call that runs that program.

 The new program simply runs in its existing environment. If a parent process wishes to modify the
environment in which a new program is to be run, it can fork and then, still running the original
executable in a child process, make any system calls it requires to modify that child process before
finally executing the new program.

 Under UNIX, then, a process encompasses all the information that the operating system must maintain to
track the context of a single execution of a single program.

 Under Linux, we can break down this context into a number of specific sections. Broadly, process
properties fall into three groups: the process identity, environment, and context.

Process Identity

 A process identity consists mainly of the following items:

 Process ID (PID). Each process has a unique identifier. The PID is used to specify the process to
the operating system when an application makes a system call to signal, modify, or wait for the
process. Additional identifiers associate the process with a process group (typically, a tree of
processes forked by a single user command) and login session.

 Credentials. Each process must have an associated user ID and one or more group IDs (user groups
are discussed in Section 11.6.2) that determine the rights of a process to access system resources
and files.

 Personality. Process personalities are not traditionally found on UNIX systems, but under Linux
each process has an associated personality identifier that can slightly modify the semantics of
certain system calls. Personalities are primarily used by emulation libraries to request that system
calls be compatible with certain varieties of UNIX.

 Namespace. Each process is associated with a specific view of the file-system hierarchy, called its

namespace. Most processes share a common namespace and thus operate on a shared file-system

hierarchy. Processes and their children can, however, have different namespaces, each with a
unique file-system hierarchy — their own root directory and set of mounted file systems.


 Most of these identifiers are under the limited control of the process itself. The process group and session
identifiers can be changed if the process wants to start a new group or session. Its credentials can be
changed, subject to appropriate security checks. However, the primary PID of a process is unchangeable
and uniquely identifies that process until termination.

Process Environment
A process’s environment is inherited from its parent and is composed of two null-terminated vectors: the

argument vector and the environment vector. The argument vector simply lists the command-line arguments

used to invoke the running program; it conventionally starts with the name of the program itself. The
environment vector is a list of “NAME=VALUE” pairs that associates named environment variables with

arbitrary textual values. The environment is not held in kernel memory but is stored in the process’s own
user-mode address space as the first datum at the top of the process’s stack.

The argument and environment vectors are not altered when a new process is created. The new child
process will inherit the environment of its parent. However, a completely new environment is set up when a
new program is invoked. On calling exec(), a process must supply the environment for the new program. The
kernel passes these environment variables to the next program, replacing the process’s current environment.
The kernel otherwise leaves the environment and command-line vectors alone — their interpretation is left
entirely to the user-mode libraries and applications.

The passing of environment variables from one process to the next and the inheriting of these variables

by the children of a process provide flexible ways to pass information to components of the user-mode

system software. Various important environment variables have conventional meanings to related parts of the

system software. For example, the TERM variable is set up to name the type of terminal connected to a

user’s login session. Many programs use this variable to determine how to perform operations on the user’s

display, such as moving the cursor and scrolling a region of text. Programs with multilingual support use the

LANG variable to determine the language in which to display system messages for programs that include

multilingual support.

CS8493-Operating System

The environment-variable mechanism custom-tailors the operating system on a per-process basis. Users
can choose their own languages or select their own editors independently of one another.

Process Context

The process identity and environment properties are usually set up when a process is created and not

changed until that process exits. A process may choose to change some aspects of its identity if it needs to do
so, or it may alter its environment. In contrast, process context is the state of the running program at any one

time; it changes constantly. Process context includes the following parts:
Scheduling context. The most important part of the process context is its scheduling context — the

information that the scheduler needs to suspend and restart the process. This information includes saved
copies of all the process’s registers. Floating-point registers are stored separately and are restored only when
needed. Thus, processes that do not use floating-point arithmetic do not incur the overhead of saving that
state. The scheduling context also includes information about scheduling priority and about any outstanding
signals waiting to be delivered to the process. A key part of the scheduling context is the process’s kernel
stack, a separate area of kernel memory reserved for use by kernel-mode code. Both system calls and
interrupts that occur while the process is executing will use this stack.

Accounting. The kernel maintains accounting information about the resources currently being consumed by
each process and the total resources consumed by the process in its entire lifetime so far.

File table. The file table is an array of pointers to kernel file structures representing open files. When making
file-I/O system calls, processes refer to files by an integer, known as a file descriptor (fd), that the kernel
uses to index into this table.

File-system context. Whereas the file table lists the existing open files, the file-system context applies to

requests to open new files. The file-system context includes the process’s root directory, current working
directory, and namespace.
Signal-handler table. UNIX systems can deliver asynchronous signals to a process in response to various
external events. The signal-handler table defines the action to take in response to a specific signal. Valid
actions include ignoring the signal, terminating the process, and invoking a routine in the process’s address
space.

Virtual memory context. The virtual memory context describes the full contents of a process’s private

address space; Linux provides the fork() system call, which duplicates a process without loading a new
executable image. Linux also provides the ability to create threads via the clone() system call. Linux does not
distinguish between processes and threads, however. In fact, Linux generally uses the term task — rather
than process or thread — when referring to a flow of control within a program. The clone() system call
behaves identically to fork(), except that it accepts as arguments a set of flags that dictate what resources are
shared between the parent and child (whereas a process created with fork() shares no resources with its
parent). The flags include:

flag Meaning

CLONE_FS File-system information is shared

CLONE_VM The same memory space is shared

CLONE_SIGHAND Signal Handlers are shared

CLONE_FILES The set of open files is shared

Thus, if clone() is passed the flags CLONE FS, CLONE VM, CLONE SIGHAND, and CLONE FILES, the
parent and child tasks will share the same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files. Using clone() in this fashion is
equivalent to creating a thread in other systems, since the parent task shares most of its resources with its
child task. If none of these flags is set when clone() is invoked, however, the associated resources are not
shared, resulting in functionality similar to that of the fork() system call.

The lack of distinction between processes and threads is possible because Linux does not hold a
process’s entire context within the main process data structure. Rather, it holds the context within
independent subcontexts. Thus, process’s file-system context, file-descriptor table, signal-handler table, and
virtual memory context are held in

CS8493-Operating System

separate data structures. The process data structure simply contains pointers to these other structures, so any number of
processes can easily share a subcontext by pointing to the same subcontext and incrementing a reference count.

The arguments to the clone() system call tell it which subcontexts to copy and which to share. The new process
is always given a new identity and a new scheduling context — these are the essentials of a Linux process. According
to the arguments passed, however, the kernel may either create new subcontext data structures initialized so as to be
copies of the parent’s or set up the new process to use the same subcontext data structures being used by the parent.
The fork() system call is nothing more than a special case of clone() that copies all subcontexts, sharing none.

Scheduling
Scheduling is the job of allocating CPU time to different tasks within an operating system. Linux, like all

UNIX systems, supports preemptive multitasking. In such a system, the process scheduler decides which process runs

and when.

Making these decisions in a way that balances fairness and performance across many different workloads is one of the
more complicated challenges in modern operating systems.

Normally, we think of scheduling as the running and interrupting of user processes, but another aspect of
scheduling is also important to Linux: the running of the various kernel tasks. Kernel tasks encompass both tasks that
are requested by a running process and tasks that execute internally on behalf of the kernel itself, such as tasks
spawned by Linux’s I/O subsystem.

Process Scheduling
Linux has two separate process-scheduling algorithms. One is a time-sharing algorithm for fair, preemptive

scheduling among multiple processes. The other is designed for real-time tasks, where absolute priorities are more
important than fairness.

The scheduling algorithm used for routine time-sharing tasks received a major overhaul with version 2.6 of the
kernel. Earlier versions ran a variation of the traditional UNIX scheduling algorithm. This algorithm does not provide

adequate support for SMP systems, does not scale well as the number of tasks on the system grows, and does not
maintain fairness among interactive tasks, particularly on systems such as desktops and mobile devices. The process

scheduler was first overhauled with version 2.5 of the kernel. Version 2.5 implemented a scheduling algorithm that
selects which task to run in constant time — known as O(1) regardless of the number of tasks or processors in the

system. The new scheduler also provided increased support for SMP, including processor affinity and load balancing.
These changes, while improving scalability, did not improve interactive performance or fairness and, in fact, made

these problems worse under certain workloads. Consequently, the process scheduler was overhauled a second time,
with Linux kernel version 2.6.

Completely Fair Scheduler (CFS).
The Linux scheduler is a preemptive, priority-based algorithm with two separate priority ranges: a real-time

range from 0 to 99 and a nice value ranging from 20 to 19. Smaller nice values indicate higher priorities. Thus, by
increasing the nice value, you are decreasing your priority and being “nice” to the rest of the system.

CFS is a significant departure from the traditional UNIX process scheduler. In the latter, the core variables in

the scheduling algorithm are priority and time slice. The time slice is the length of time — the slice of the processor

that a process is afforded. Traditional UNIX systems give processes a fixed time slice, perhaps with a boost or penalty

for high- or low-priority processes, respectively. A process may run for the length of its time slice, and higher-priority

processes run before lower-priority processes. It is a simple algorithm that many non-UNIX systems employ. Such

simplicity worked well for early time-sharing systems but has proved incapable of delivering good interactive

performance and fairness on today’s modern desktops and mobile devices.
CFS introduced a new scheduling algorithm called fair scheduling that eliminates time slices in the traditional

sense. Instead of time slices, all processes are allotted a proportion of the processor’s time. CFS calculates how long a

process should run as a function of the total number of runnable processes.
To start, CFS says that if there are N runnable processes, then each should be afforded 1/N of the processor’s

time. CFS then adjusts this allotment by weighting each process’s allotment by its nice value. Processes with the
default nice value have a weight of 1 their priority is unchanged. Processes with a smaller nice value (higher priority)

receive a higher weight, while processes with a larger nice value (lower priority) receive a lower weight. CFS then runs

CS8493-Operating System

each process for a “time slice” proportional to the process’s weight divided by the total weight of all runnable
processes.

To calculate the actual length of time a process runs, CFS relies on a configurable variable called target
latency, which is the interval of time during which every runnable task should run at least once. For example, assume

that the target latency is 10 milliseconds. Further assume that we have two runnable processes of the same priority.
Each of these processes has the same weight and therefore receives the same proportion of the processor’s time. In this
case, with a target latency of 10 milliseconds, the first process runs for 5 milliseconds, then the other process runs for 5
milliseconds, then the first process runs for 5 milliseconds again, and so forth. If we have 10 runnable processes, then
CFS will run each for a millisecond before repeating.
But what if we had, say, 1, 000 processes? Each process would run for 1 microsecond if we followed the procedure just

described. Due to switching costs, scheduling processes for such short lengths of time is inefficient. CFS consequently

relies on a second configurable variable, the minimum granularity, which is a minimum length of time any process is

allotted the processor. All processes, regardless of the target latency, will run for at least the minimum granularity. In

this manner, CFS ensures that switching costs do not grow unacceptably large when the number of runnable processes

grows too large. In doing so, it violates its attempts at fairness. In the usual case, however, the number of runnable

processes remains reasonable, and both fairness and switching costs are maximized.
With the switch to fair scheduling, CFS behaves differently from traditional UNIX process schedulers in

several ways. Most notably, as we have seen, CFS eliminates the concept of a static time slice. Instead, each process

receives a proportion of the processor’s time. How long that allotment is depends on how many other processes are

runnable. This approach solves several problems in mapping priorities to time slices inherent in preemptive, priority-

based scheduling algorithms. It is possible, of course, to solve these problems in other ways without abandoning the

classic UNIX scheduler. CFS, however, solves the problems with a simple algorithm that performs well on interactive

workloads such as mobile devices without compromising throughput performance on the largest of servers.

Real-Time Scheduling
Linux’s real-time scheduling algorithm is significantly simpler than the fair scheduling employed for standard

time-sharing processes. Linux implements the two real-time scheduling classes required by POSIX.1b: first-come,
first-served (FCFS) and round-robin. In both cases, each process has a priority in addition to its scheduling class. The
scheduler always runs the process with the highest priority. Among processes of equal priority, it runs the process that

has been waiting longest. The only difference between FCFS and round-robin scheduling is that FCFS processes
continue to run until they either exit or block, whereas a round-robin process will be preempted after a while and will
be moved to the end of the scheduling queue, so round-robin processes of equal priority will automatically time-share
among themselves.

Linux’s real-time scheduling is soft rather than hard real time. The scheduler offers strict guarantees about the
relative priorities of real-time processes, but the kernel does not offer any guarantees about how quickly a real-time
process will be scheduled once that process becomes runnable. In contrast, a hard real-time system can guarantee a
minimum latency between when a process becomes runnable and when it actually runs.

Kernel Synchronization
The way the kernel schedules its own operations is fundamentally different from the way it schedules

processes. A request for kernel-mode execution can occur in two ways. A running program may request an operating-
system service, either explicitly via a system call or implicitly for example, when a page fault occurs. Alternatively, a

device controller may deliver a hardware interrupt that causes the CPU to start executing a kernel-defined handler for
that interrupt.

The problem for the kernel is that all these tasks may try to access the same internal data structures. If one

kernel task is in the middle of accessing some data structure when an interrupt service routine executes, then that
service routine cannot access or modify the same data without risking data corruption. This fact relates to the idea of

critical sections portions of code that access shared data and thus must not be allowed to execute concurrently. As a

result, kernel synchronization involves much more than just process scheduling. A framework is required that allows
kernel tasks to run without violating the integrity of shared data.

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a process running in kernel mode could
not be preempted even if a higher-priority process became available to run. With version 2.6, the Linux kernel became
fully preemptive. Now, a task can be preempted when it is running in the kernel.

CS8493-Operating System

The Linux kernel provides spinlocks and semaphores (as well as reader – writer versions of these two locks)
for locking in the kernel. On SMP machines, the fundamental locking mechanism is a spinlock, and the kernel is
designed so that spinlocks are held for only short durations. On single-processor machines, spinlocks are not
appropriate for use and are replaced by enabling and disabling kernel preemption. That is, rather than holding a
spinlock, the task disables kernel preemption. When the task would otherwise release the spinlock, it enables kernel
preemption. This pattern is summarized below:

Single processor Multiple processors

Disable kernel preemption Acquire spin lock

Enable kernel preemption Release spin lock

Linux uses an interesting approach to disable and enable kernel pre-emption. It provides two simple kernel
interfaces preempt disable() and preempt enable(). In addition, the kernel is not preemptible if a kernel-mode task is

holding a spinlock. To enforce this rule, each task in the system has a thread-info structure that includes the field

preempt count, which is a counter indicating the number of locks being held by the task. The counter is incremented

when a lock is acquired and decremented when a lock is released. If the value of preempt count for the task currently

running is greater than zero, it is not safe to preempt the kernel, as this task currently holds a lock. If the count is zero,

the kernel can safely be interrupted, assuming there are no outstanding calls to preempt disable().
Spinlocks along with the enabling and disabling of kernel preemption are used in the kernel only when the

lock is held for short durations. When a lock must be held for longer periods, semaphores are used.
The second protection technique used by Linux applies to critical sections that occur in interrupt service

routines. The basic tool is the processor’s interrupt-control hardware. By disabling interrupts (or using spinlocks)
during a critical section, the kernel guarantees that it can proceed without the risk of concurrent access to shared data
structures.

However, there is a penalty for disabling interrupts. On most hardware architectures, interrupt enable and

disable instructions are not cheap. More importantly, as long as interrupts remain disabled, all I/O is suspended, and
any device waiting for servicing will have to wait until interrupts are reenabled; thus, performance degrades. To

address this problem, the Linux kernel uses a synchronization architecture that allows long critical sections to run for
their entire duration without having interrupts disabled. This ability is especially useful in the networking code. An

interrupt in a network device driver can signal the arrival of an entire network packet, which may result in a great deal
of code being executed to disassemble, route, and forward that packet within the interrupt service routine.

Linux implements this architecture by separating interrupt service routines into two sections: the top half and
the bottom half. The top half is the standard interrupt service routine that runs with recursive interrupts disabled.
Interrupts of the same number (or line) are disabled, but other interrupts may run. The bottom half of a service routine
is run, with all interrupts enabled, by a miniature scheduler that ensures that bottom halves never interrupt themselves.
The bottom-half scheduler is invoked automatically whenever an interrupt service routine exits.
This separation means that the kernel can complete any complex processing that has to be done in response to an

interrupt without worrying about being interrupted itself. If another interrupt occurs while a bottom half is executing,
then that interrupt can request that the same bottom half execute, but the execution will be deferred until the one

currently running completes. Each execution of the bottom half can be interrupted by a top half but can never be
interrupted by a similar bottom half.

The top-half/bottom-half architecture is completed by a mechanism for disabling selected bottom halves while

executing normal, foreground kernel code. The kernel can code critical sections easily using this system. Interrupt
handlers can code their critical sections as bottom halves; and when the foreground kernel wants to enter a critical

section, it can disable any relevant bottom halves to prevent any other critical sections from interrupting it. At the end

of the critical section, the kernel can reenable the bottom halves and run any bottom-half tasks that have been queued
by top-half interrupt service routines during the critical section.

CS8493-Operating System

top-half interrupt handlers

bottom –half interrupt handlers

kernel-system service routines (Preemptible)

user-mode programs (Preemptible)

Fig 5.2: Interrupt protection levels

In
cr

ea
si

n
g

 p
ri

o
ri

ty

Figure 5.2 summarizes the various levels of interrupt protection within the kernel. Each level may be interrupted by
code running at a higher level but will never be interrupted by code running at the same or a lower level. Except for
user-mode code, user processes can always be preempted by another process when a time-sharing scheduling interrupt
occurs.

Symmetric Multiprocessing
The Linux 2.0 kernel was the first stable Linux kernel to support symmetric multiprocessor (SMP) hardware,

allowing separate processes to execute in parallel on separate processors. The original implementation of SMP imposed
the restriction that only one processor at a time could be executing kernel code.

In version 2.2 of the kernel, a single kernel spinlock (sometimes termed BKL for “big kernel lock”) was

created to allow multiple processes (running on different processors) to be active in the kernel concurrently. However,

the BKL provided a very coarse level of locking granularity, resulting in poor scalability to machines with many

processors and processes. Later releases of the kernel made the SMP implementation more scalable by splitting this

single kernel spinlock into multiple locks, each of which protects only a small subset of the kernel’s data structures.

Such spinlocks are described in Section 18.5.3. The 3.0 kernel provides additional SMP enhancements, including ever-

finer locking, processor affinity, and load-balancing algorithms.

Memory Management
Memory management under Linux has two components. The first deals with allocating and freeing physical

memory — pages, groups of pages, and small blocks of RAM. The second handles virtual memory, which is memory-
mapped into the address space of running processes. In this section, we describe these two components and then

examine the mechanisms by which the loadable components of a new program are brought into a process’s virtual
memory in response to an exec() system call.

Management of Physical Memory
Due to specific hardware constraints, Linux separates physical memory into four different zones, or regions:

 ZONE DMA


 ZONE DMA32


 ZONE NORMAL


 ZONE HIGHMEM
These zones are architecture specific. For example, on the Intel x86-32 architec-ture, certain ISA (industry

standard architecture) devices can only access the lower 16 MB of physical memory using DMA. On these systems, the
first 16 MB of physical memory comprise ZONE DMA. On other systems, certain devices can only access the first 4
GB of physical memory, despite supporting 64-bit addresses. On such systems, the first 4 GB of physical memory
comprise ZONE DMA32. ZONE HIGHMEM (for “high memory”) refers to physical memory that is not mapped into

the kernel address space. For example, on the 32-bit Intel architecture (where 2
32

 provides a 4-GB address space), the

kernel is mapped into the first 896 MB of the address space; the remaining memory is referred to as high memory and
is allocated from ZONE HIGHMEM. Finally, ZONE NORMAL comprises everything else — the normal, regularly

CS8493-Operating System

mapped pages. Whether an architecture has a given zone depends on its constraints. A modern, 64-bit architecture such
as Intel x86-64 has a small 16 MB ZONE DMA (for legacy devices) and all the rest of its memory in ZONE
NORMAL, with no “high memory”.

The relationship of zones and physical addresses on the Intel x86-32 architecture is shown in Figure 5.3. The
kernel maintains a list of free pages for each zone. When a request for physical memory arrives, the kernel satisfies the
request using the appropriate zone.

The primary physical-memory manager in the Linux kernel is the page allocator. Each zone has its own

allocator, which is responsible for allocating and freeing all physical pages for the zone and is capable of allocating
ranges of physically contiguous pages on request. The allocator uses a buddy system (Section 9.8.1) to keep track of

available physical pages. In this scheme, adjacent units of allocatable memory are paired together (hence its name).
Each allocatable memory region has an adjacent partner (or buddy). Whenever two allocated partner regions are freed

up, they are combined to form a larger region — a buddy heap. That larger region also has a partner, with which it can
combine to form a still larger free region. Conversely, if a small memory request cannot be satisfied by allocation of an

existing small free region, then a larger free region will be subdivided into two partners to satisfy the request. Separate

linked lists are used to record the free memory regions of each allowable size. Under Linux, the smallest size
allocatable under this mechanism is a single physical page. Figure 5.3 shows an example of buddy-heap allocation. A

4-KB region is being allocated, but the smallest available region is 16 KB. The region is broken up recursively until a
piece of the desired size is available.

zone physical memory

ZONE_DMA < 16 MB

ZONE_NORMAL 16 .. 896 MB

ZONE_HIGHMEM > 896 MB

Figure 5.3 Relationship of zones and physical addresses in Intel x86-32.

Ultimately, all memory allocations in the Linux kernel are made either statically, by drivers that reserve a
contiguous area of memory during system boot time, or dynamically, by the page allocator. However, kernel functions
do not have to use the basic allocator to reserve memory. Several specialized memory-management subsystems use the
underlying page allocator to man-age their own pools of memory. The most important are the virtual memory system,
the kmalloc() variable-length allocator; the slab allocator, used for allocating memory for kernel data structures; and
the page cache, used for caching pages belonging to files.

Many components of the Linux operating system need to allocate entire pages on request, but often smaller
blocks of memory are required. The kernel provides an additional allocator for arbitrary-sized requests, where the size
of a request is not known in advance and may be only a few bytes. Analogous to the C language’s malloc() function,
this kmalloc() service allocates entire physical pages on demand but then splits them into smaller pieces. The kernel
maintains lists of pages in use by the kmalloc() service. Allocating memory involves determining the appropriate list
and either taking the first free piece available on the list or allocating a new page and splitting it up. Memory regions
claimed by the kmalloc() system are allocated permanently until they are freed explicitly with a corresponding call to
kfree(); the kmalloc() system cannot reallocate or reclaim these regions in response to memory shortages.

Another strategy adopted by Linux for allocating kernel memory is known as slab allocation. A slab is used for

allocating memory for kernel data structures and is made up of one or more physically contiguous pages. A cache

consists of one or more slabs. There is a single cache for each unique kernel data structure — for example, a cache for

the data structure representing process descriptors, a cache for file objects, a cache for inodes, and so forth.

CS8493-Operating System

Each cache is populated with objects that are instantiations of the kernel data structure the cache represents.
For example, the cache representing inodes stores instances of inode structures, and the cache representing process
descriptors stores instances of process descriptor structures. The relationship among slabs, caches, and objects is shown

in Figure 5.5. The figure shows two kernel objects 3 KB in size and three objects 7 KB in size. These objects are stored
in the respective caches for 3-KB and 7-KB objects.

The slab-allocation algorithm uses caches to store kernel objects. When a cache is created, a number of objects
are allocated to the cache. The number of objects in the cache depends on the size of the associated slab. For example,

a 12-KB slab (made up of three contiguous 4-KB pages) could store six 2-KB objects. Initially, all the objects in the
cache are marked as free. When a new object for a kernel data structure is needed, the allocator can assign any free
object from the cache to satisfy the request. The object assigned from the cache is marked as used.

Let’s consider a scenario in which the kernel requests memory from the slab allocator for an object
representing a process descriptor. In Linux systems, a process descriptor is of the type struct task struct, which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task, it requests the necessary memory for the
struct task struct object from its cache. The cache will fulfill the request using a struct task struct object that has already
been allocated in a slab and is marked as free.
In Linux, a slab may be in one of three possible states:

 Full. All objects in the slab are marked as used.


 Empty. All objects in the slab are marked as free.


 Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a partial slab. If none exist, a free object

is assigned from an empty slab. If no empty slabs are available, a new slab is allocated from contiguous physical

pages and assigned to a cache; memory for the object is allocated from this slab.

CS8493-Operating System

Two other main subsystems in Linux do their own management of physical pages: the page cache and the virtual
memory system. These systems are closely related to each other. The page cache is the kernel’s main cache for files

and is the main mechanism through which I/O to block devices is performed. File systems of all types, including the
native Linux disk-based file systems and the NFS networked file system, perform their I/O through the page cache. The

page cache stores entire pages of file contents and is not limited to block devices. It can also cache networked data. The
virtual memory system manages the contents of each process’s virtual address space. These two systems interact

closely with each other because reading a page of data into the page cache requires mapping pages in the page cache
using the virtual memory system.

Virtual Memory
The Linux virtual memory system is responsible for maintaining the address space accessible to each process.

It creates pages of virtual memory on demand and manages loading those pages from disk and swapping them back out
to disk as required. Under Linux, the virtual memory manager maintains two separate views of a process’s address
space: as a set of separate regions and as a set of pages.

The first view of an address space is the logical view, describing instructions that the virtual memory system
has received concerning the layout of the address space. In this view, the address space consists of a set of

nonoverlapping regions, each region representing a continuous, page-aligned subset of the address space. Each region
is described internally by a single vm area struct structure that defines the properties of the region, including the

process’s read, write, and execute permissions in the region as well as information about any files associated with the
region. The regions for each address space are linked into a balanced binary tree to allow fast lookup of the region

corresponding to any virtual address.
The kernel also maintains a second, physical view of each address space. This view is stored in the hardware

page tables for the process. The page-table entries identify the exact current location of each page of virtual memory,

whether it is on disk or in physical memory. The physical view is managed by a set of routines, which are invoked
from the kernel’s software-interrupt handlers whenever a process tries to access a page that is not currently present in

the page tables. Each vm area struct in the address-space description contains a field pointing to a table of functions
that implement the key page-management functionality for any given virtual memory region. All requests to read or

write an unavailable page are eventually dispatched to the appropriate handler in the function table for the vm area
struct, so that the central memory-management routines do not have to know the details of managing each possible type

of memory region.

Virtual Memory Regions
Linux implements several types of virtual memory regions. One property that characterizes virtual memory is

the backing store for the region, which describes where the pages for the region come from. Most memory regions are
backed either by a file or by nothing. A region backed by nothing is the simplest type of virtual memory region. Such a
region represents demand-zero memory: when a process tries to read a page in such a region, it is simply given back a
page of memory filled with zeros.

A region backed by a file acts as a viewport onto a section of that file. Whenever the process tries to access a
page within that region, the page table is filled with the address of a page within the kernel’s page cache corresponding

to the appropriate offset in the file. The same page of physical memory is used by both the page cache and the
process’s page tables, so any changes made to the file by the file system are immediately visible to any processes that

have mapped that file into their address space. Any number of processes can map the same region of the same file, and
they will all end up using the same page of physical memory for the purpose.

A virtual memory region is also defined by its reaction to writes. The mapping of a region into the process’s
address space can be either private or shared. If a process writes to a privately mapped region, then the pager detects
that a copy-on-write is necessary to keep the changes local to the process. In contrast, writes to a shared region result in
updating of the object mapped into that region, so that the change will be visible immediately to any other process that
is mapping that object.

Lifetime of a Virtual Address Space
The kernel creates a new virtual address space in two situations: when a process runs a new program with the

exec() system call and when a new process is created by the fork() system call. The first case is easy. When a new

CS8493-Operating System

program is executed, the process is given a new, completely empty virtual address space. It is up to the routines for
loading the program to populate the address space with virtual memory regions.

The second case, creating a new process with fork(), involves creating a complete copy of the existing
process’s virtual address space. The kernel copies the parent process’s vm area struct descriptors, then creates a new set

of page tables for the child. The parent’s page tables are copied directly into the child’s, and the reference count of each
page covered is incremented. Thus, after the fork, the parent and child share the same physical pages of memory in
their address spaces.

A special case occurs when the copying operation reaches a virtual memory region that is mapped privately.
Any pages to which the parent process has written within such a region are private, and subsequent changes to these
pages by either the parent or the child must not update the page in the other process’s address space. When the page-
table entries for such regions are copied, they are set to be read only and are marked for copy-on-write. As long as
neither process modifies these pages, the two processes share the same page of physical memory. However, if either
process tries to modify a copy-on-write page, the reference count on the page is checked. If the page is still shared, then
the process copies the page’s contents to a brand-new page of physical memory and uses its copy instead. This
mechanism ensures that private data pages are shared between processes whenever possible and copies are made only
when absolutely necessary.

Swapping and Paging
An important task for a virtual memory system is to relocate pages of memory from physical memory out to

disk when that memory is needed. Early UNIX systems performed this relocation by swapping out the contents of
entire processes at once, but modern versions of UNIX rely more on paging — the movement of individual pages of
virtual memory between physical memory and disk. Linux does not implement whole-process swapping; it uses the
newer paging mechanism exclusively.

The paging system can be divided into two sections. First, the policy algorithm decides which pages to write
out to disk and when to write them. Second, the paging mechanism carries out the transfer and pages data back into
physical memory when they are needed again.

Linux’s pageout policy uses a modified version of the standard clock (or second-chance) algorithm. Under
Linux, a multiple-pass clock is used, and every page has an age that is adjusted on each pass of the clock. The age is
more precisely a measure of the page’s youthfulness, or how much activity the page has seen recently. Frequently
accessed pages will attain a higher age value, but the age of infrequently accessed pages will drop toward zero with
each pass. This age valuing allows the pager to select pages to page out based on a least frequently used (LFU) policy.

The paging mechanism supports paging both to dedicated swap devices and partitions and to normal files,
although swapping to a file is significantly slower due to the extra overhead incurred by the file system. Blocks are

allocated from the swap devices according to a bitmap of used blocks, which is maintained in physical memory at all
times. The allocator uses a next-fit algorithm to try to write out pages to continuous runs of disk blocks for improved

performance. The allocator records the fact that a page has been paged out to disk by using a feature of the page tables
on modern processors: the page-table entry’s page-not-present bit is set, allowing the rest of the page-table entry to be

filled with an index identifying where the page has been written.

Kernel Virtual Memory
Linux reserves for its own internal use a constant, architecture-dependent region of the virtual address space of

every process. The page-table entries that map to these kernel pages are marked as protected, so that the pages are not
visible or modifiable when the processor is running in user mode. This kernel virtual memory area contains two
regions. The first is a static area that contains page-table references to every available physical page of memory in the
system, so that a simple translation from physical to virtual addresses occurs when kernel code is run. The core of the
kernel, along with all pages allocated by the normal page allocator, resides in this region.

The remainder of the kernel’s reserved section of address space is not reserved for any specific purpose. Page-
table entries in this address range can be modified by the kernel to point to any other areas of memory. The kernel

provides a pair of facilities that allow kernel code to use this virtual memory. The vmalloc() function allocates an
arbitrary number of physical pages of memory that may not be physically contiguous into a single region of virtually

contiguous kernel memory. The vremap() function maps a sequence of virtual addresses to point to an area of memory
used by a device driver for memory-mapped I/O.

CS8493-Operating System

Execution and Loading of User Programs
The Linux kernel’s execution of user programs is triggered by a call to the exec() system call. This exec() call

commands the kernel to run a new program within the current process, completely overwriting the current execution

context with the initial context of the new program. The first job of this system service is to verify that the calling
process has permission rights to the file being executed. Once that matter has been checked, the kernel invokes a loader

routine to start running the program. The loader does not necessarily load the contents of the program file into physical
memory, but it does at least set up the mapping of the program into virtual memory.

There is no single routine in Linux for loading a new program. Instead, Linux maintains a table of possible loader

functions, and it gives each such function the opportunity to try loading the given file when an exec() system call is

made. The initial reason for this loader table was that, between the releases of the 1.0 and 1.2 kernels, the standard

format for Linux’s binary files was changed. Older Linux kernels understood the a.out format for binary files — a

relatively simple format common on older UNIX systems. Newer Linux systems use the more modern ELF format,
now supported by most current UNIX implementations. ELF has a number of advantages over a.out, including

flexibility and extendability. New sections can be added to an ELF binary (for example, to add extra debugging

information) without causing the loader routines to become confused. By allowing registration of multiple loader

routines, Linux can easily support the ELF and a.out binary formats in a single running system.

Mapping of Programs into Memory
Under Linux, the binary loader does not load a binary file into physical memory. Rather, the pages of the binary

file are mapped into regions of virtual memory. Only when the program tries to access a given page will a page fault
result in the loading of that page into physical memory using demand paging.

It is the responsibility of the kernel’s binary loader to set up the initial memory mapping. An ELF-format binary
file consists of a header followed by several page-aligned sections. The ELF loader works by reading the header and
mapping the sections of the file into separate regions of virtual memory.

Kernel virtual memory

stack

Memory-mapped region

Memory-mapped region

Memory-mapped region

the ‘brk’ pointer

run-time data

Uninitialized data

Initialized data

Program text

Forbidden region

Fig 5.6 Memory layout for ELF programs

Figure 5.6 shows the typical layout of memory regions set up by the ELF loader. In a reserved region at one end of the
address space sits the kernel, in its own privileged region of virtual memory inaccessible to normal user-mode
programs. The rest of virtual memory is available to applications, which can use the kernel’s memory-mapping
functions to create regions that map a portion of a file or that are available for application data.

The loader’s job is to set up the initial memory mapping to allow the execution of the program to start. The
regions that need to be initialized include the stack and the program’s text and data regions.

The stack is created at the top of the user-mode virtual memory; it grows downward toward lower-numbered
addresses. It includes copies of the arguments and environment variables given to the program in the exec() system

CS8493-Operating System

call. The other regions are created near the bottom end of virtual memory. The sections of the binary file that contain
program text or read-only data are mapped into memory as a write-protected region. Writable initialized data are
mapped next; then any uninitialized data are mapped in as a private demand-zero region.
Directly beyond these fixed-sized regions is a variable-sized region that programs can expand as needed to hold data
allocated at run time. Each process has a pointer, brk, that points to the current extent of this data region, and processes
can extend or contract their brk region with a single system call— sbrk().

Once these mappings have been set up, the loader initializes the process’s program-counter register with the
starting point recorded in the ELF header, and the process can be scheduled.
Static and Dynamic Linking

Once the program has been loaded and has started running, all the necessary contents of the binary file have

been loaded into the process’s virtual address space. However, most programs also need to run functions from the

system libraries, and these library functions must also be loaded. In the simplest case, the necessary library functions

are embedded directly in the program’s executable binary file. Such a program is statically linked to its libraries, and

statically linked executables can commence running as soon as they are loaded.
The main disadvantage of static linking is that every program generated must contain copies of exactly the

same common system library functions. It is much more efficient, in terms of both physical memory and disk-space
usage, to load the system libraries into memory only once. Dynamic linking allows that to happen.

Linux implements dynamic linking in user mode through a special linker library. Every dynamically linked
program contains a small, statically linked function that is called when the program starts. This static function just
maps the link library into memory and runs the code that the function contains. The link library determines the
dynamic libraries required by the program and the names of the variables and functions needed from those libraries by
reading the information contained in sections of the ELF binary. It then maps the libraries into the middle of virtual
memory and resolves the references to the symbols contained in those libraries. It does not matter exactly where in
memory these shared libraries are mapped: they are compiled into position-independent code (PIC), which can run at
any address in memory.

File Systems
Linux retains UNIX’s standard file-system model. In UNIX, a file does not have to be an object stored on disk

or fetched over a network from a remote file server. Rather, UNIX files can be anything capable of handling the input
or output of a stream of data. Device drivers can appear as files, and interprocess-communication channels or network

connections also look like files to the user.
The Linux kernel handles all these types of files by hiding the implemen-tation details of any single file type

behind a layer of software, the virtual file system (VFS). Here, we first cover the virtual file system and then discuss
the standard Linux file system — ext3.
The Virtual File System

The Linux VFS is designed around object-oriented principles. It has two components: a set of definitions that
specify what file-system objects are allowed to look like and a layer of software to manipulate the objects. The VFS
defines four main object types:

 An inode object represents an individual file.

 A file object represents an open file.

 A superblock object represents an entire file system.


 A dentry object represents an individual directory entry.
For each of these four object types, the VFS defines a set of operations. Every object of one of these types

contains a pointer to a function table. The function table lists the addresses of the actual functions that implement the
defined operations for that object. For example, an abbreviated API for some of the file object’s operations includes:

int open(. . .) — Open a file.

ssize t read(. . .) — Read from a file.
ssize t write(. . .) — Write to a file.
int mmap(. . .) — Memory-map a file.

CS8493-Operating System

The complete definition of the file object is specified in the struct file operations, which is located in the file

/usr/include/linux/fs.h. An implementation of the file object (for a specific file type) is required to implement each

function specified in the definition of the file object.
The VFS software layer can perform an operation on one of the file-system objects by calling the appropriate

function from the object’s function table, without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a networked file, a disk file, a network socket, or a
directory file. The appropriate function for that file’s read() operation will always be at the same place in its function
table, and the VFS software layer will call that function without caring how the data are actually read.

The inode and file objects are the mechanisms used to access files. An inode object is a data structure
containing pointers to the disk blocks that contain the actual file contents, and a file object represents a point of access

to the data in an open file. A process cannot access an inode’s contents without first obtaining a file object pointing to
the inode. The file object keeps track of where in the file the process is currently reading or writing, to keep track of

sequential file I/O. It also remembers the permissions (for example, read or write) requested when the file was opened
and tracks the process’s activity if necessary to perform adaptive read-ahead, fetching file data into memory before the

process requests the data, to improve performance.
File objects typically belong to a single process, but inode objects do not. There is one file object for every

instance of an open file, but always only a single inode object. Even when a file is no longer in use by any process, its
inode object may still be cached by the VFS to improve performance if the file is used again in the near future. All
cached file data are linked onto a list in the file’s inode object. The inode also maintains standard information about
each file, such as the owner, size, and time most recently modified.

Directory files are dealt with slightly differently from other files. The UNIX programming interface defines a
number of operations on directories, such as creating, deleting, and renaming a file in a directory. The system calls for
these directory operations do not require that the user open the files concerned, unlike the case for reading or writing
data. The VFS therefore defines these directory operations in the inode object, rather than in the file object.

The superblock object represents a connected set of files that form a self-contained file system. The operating-
system kernel maintains a single superblock object for each disk device mounted as a file system and for each
networked file system currently connected. The main responsibility of the superblock object is to provide access to
inodes. The VFS identifies every inode by a unique file-system/inode number pair, and it finds the inode corresponding
to a particular inode number by asking the superblock object to return the inode with that number.

Finally, a dentry object represents a directory entry, which may include the name of a directory in the path
name of a file (such as /usr) or the actual file (such as stdio.h). For example, the file /usr/include/stdio.h contains the
directory entries (1) /, (2) usr, (3) include, and (4) stdio.h. Each of these values is represented by a separate dentry
object.

As an example of how dentry objects are used, consider the situ-ation in which a process wishes to open the

file with the pathname /usr/include/stdio.h using an editor. Because Linux treats directory names as files, translating

this path requires first obtaining the inode for the root — /. The operating system must then read through this file to

obtain the inode for the file include. It must continue this process until it obtains the inode for the file stdio.h. Because

path-name translation can be a time-consuming task, Linux maintains a cache of dentry objects, which is consulted

during path-name translation. Obtaining the inode from the dentry cache is considerably faster than having to read the

on-disk file.

The Linux ext3 File System
The standard on-disk file system used by Linux is called ext3, for historical reasons. Linux was originally

programmed with a Minix-compatible file system, to ease exchanging data with the Minix development system, but

that file system was severely restricted by 14-character file-name limits and a maximum file-system size of 64 MB.
The Minix file system was superseded by a new file system, which was christened the extended file system (extfs). A

later redesign to improve performance and scalability and to add a few missing features led to the second extended file
system (ext2). Further development added journaling capabilities, and the system was renamed the third extended file

system (ext3). Linux kernel developers are working on augmenting ext3 with modern file-system features such as

extents. This new file system is called the fourth extended file system (ext4). The rest of this section discusses ext3,

however, since it remains the most-deployed Linux file system. Most of the discussion applies equally to ext4.
Linux’s ext3 has much in common with the BSD Fast File System (FFS). It uses a similar mechanism for

locating the data blocks belonging to a specific file, storing data-block pointers in indirect blocks throughout the file

CS8493-Operating System

system with up to three levels of indirection. As in FFS, directory files are stored on disk just like normal files,
although their contents are interpreted differently. Each block in a directory file consists of a linked list of entries. In
turn, each entry contains the length of the entry, the name of a file, and the inode number of the inode to which that
entry refers.

The main differences between ext3 and FFS lie in their disk-allocation policies. In FFS, the disk is allocated to
files in blocks of 8 KB. These blocks are subdivided into fragments of 1 KB for storage of small files or partially filled
blocks at the ends of files. In contrast, ext3 does not use fragments at all but performs all its allocations in smaller
units. The default block size on ext3 varies as a function of the total size of the file system. Supported block sizes are
1, 2, 4, and 8 KB.

To maintain high performance, the operating system must try to perform I/O operations in large chunks

whenever possible by clustering physically adjacent I/O requests. Clustering reduces the per-request overhead incurred

by device drivers, disks, and disk-controller hardware. A block-sized I/O request size is too small to maintain good

performance, so ext3 uses allocation policies designed to place logically adjacent blocks of a file into physically

adjacent blocks on disk, so that it can submit an I/O request for several disk blocks as a single operation.
The ext3 allocation policy works as follows: As in FFS, an ext3 file system is partitioned into multiple

segments. In ext3, these are called block groups. FFS uses the similar concept of cylinder groups, where each group

corresponds to a single cylinder of a physical disk. (Note that modern disk-drive technology packs sectors onto the disk
at different densities, and thus with different cylinder sizes, depending on how far the disk head is from the center of

the disk. Therefore, fixed-sized cylinder groups do not necessarily correspond to the disk’s geometry.)
When allocating a file, ext3 must first select the block group for that file. For data blocks, it attempts to

allocate the file to the block group to which the file’s inode has been allocated. For inode allocations, it selects the
block group in which the file’s parent directory resides for nondirectory files. Directory files are not kept together but
rather are dispersed throughout the available block groups. These policies are designed not only to keep related
information within the same block group but also to spread out the disk load among the disk’s block groups to reduce
the fragmentation of any one area of the disk.

Within a block group, ext3 tries to keep allocations physically contiguous if possible, reducing fragmentation if
it can. It maintains a bitmap of all free blocks in a block group. When allocating the first blocks for a new file, it starts

searching for a free block from the beginning of the block group. When extending a file, it continues the search from
the block most recently allocated to the file. The search is performed in two stages. First, ext3 searches for an entire

free byte in the bitmap; if it fails to find one, it looks for any free bit. The search for free bytes aims to allocate disk
space in chunks of at least eight blocks where possible.

Once a free block has been identified, the search is extended backward until an allocated block is encountered.
When a free byte is found in the bitmap, this backward extension prevents ext3 from leaving a hole between the most
recently allocated block in the previous nonzero byte and the zero byte found. Once the next block to be allocated has
been found by either bit or byte search, ext3 extends the allocation forward for up to eight blocks and preallocates these
extra blocks to the file. This preallocation helps to reduce fragmentation during interleaved writes to separate files and
also reduces the CPU cost of disk allocation by allocating multiple blocks simultaneously. The preallocated blocks are
returned to the free-space bitmap when the file is closed.

Figure 5.7 illustrates the allocation policies. Each row represents a sequence of set and unset bits in an
allocation bitmap, indicating used and free blocks on disk. In the first case, if we can find any free blocks sufficiently
near the start of the search, then we allocate them no matter how fragmented they may be. The fragmentation is
partially compensated for by the fact that the blocks are close together and can probably all be read without any disk
seeks. Furthermore, allocating them all to one file is better in the long run than allocating isolated blocks to separate
files once large free areas become scarce on disk. In the second case, we have not immediately found a free block close
by, so we search forward for an entire free byte in the bitmap. If we allocated that byte as a whole, we would end up
creating a fragmented area of free space between it and the allocation preceding it. Thus, before allocating, we back up
to make this allocation flush with the allocation preceding it, and then we allocate forward to satisfy the default
allocation of eight blocks.

CS8493-Operating System

Journaling
The ext3 file system supports a popular feature called journaling, whereby modifications to the file system are

written sequentially to a journal. A set of operations that performs a specific task is a transaction. Once a transaction is
written to the journal, it is considered to be committed. Meanwhile, the journal entries relating to the transaction are
replayed across the actual file-system structures. As the changes are made, a pointer is updated to indicate which
actions have completed and which are still incomplete. When an entire committed transaction is completed, it is
removed from the journal. The journal, which is actually a circular buffer, may be in a separate section of the file
system, or it may even be on a separate disk spindle. It is more efficient, but more complex, to have it under separate
read – write heads, thereby decreasing head contention and seek times.

If the system crashes, some transactions may remain in the journal. Those transactions were never completed
to the file system even though they were committed by the operating system, so they must be completed once the
system recovers. The transactions can be executed from the pointer until the work is complete, and the file-system
structures remain consistent. The only problem occurs when a transaction has been aborted — that is, it was not
committed before the system crashed. Any changes from those transactions that were applied to the file system must be
undone, again preserving the consistency of the file system. This recovery is all that is needed after a crash, eliminating
all problems with consistency checking.

Journaling file systems may perform some operations faster than non-journaling systems, as updates proceed
much faster when they are applied to the in-memory journal rather than directly to the on-disk data structures. The

reason for this improvement is found in the performance advantage of sequential I/O over random I/O. Costly

synchronous random writes to the file system are turned into much less costly synchronous sequential writes to the file
system’s journal. Those changes, in turn, are replayed asynchronously via random writes to the appropriate structures.

The overall result is a significant gain in performance of file-system metadata-oriented operations, such as file creation
and deletion. Due to this performance improvement, ext3 can be configured to journal only metadata and not file data.

The Linux Process File System
The flexibility of the Linux VFS enables us to implement a file system that does not store data persistently at

all but rather provides an interface to some other functionality. The Linux process file system, known as the /proc file
system, is an example of a file system whose contents are not actually stored anywhere but are computed on demand
according to user file I/O requests.

A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc file system as an efficient interface
to the kernel’s process debugging support. Each subdirectory of the file system corresponded not to a directory on any
disk but rather to an active process on the current system. A listing of the file system reveals one directory per process,
with the directory name being the ASCII decimal representation of the process’s unique process identifier (PID).

CS8493-Operating System

Linux implements such a /proc file system but extends it greatly by adding a number of extra directories and
text files under the file system’s root directory. These new entries correspond to various statistics about the kernel and

the associated loaded drivers. The /proc file system provides a way for programs to access this information as plain text
files; the standard UNIX user environment provides powerful tools to process such files. For example, in the past, the

traditional UNIX ps command for listing the states of all running processes has been implemented as a privileged
process that reads the process state directly from the kernel’s virtual memory. Under Linux, this command is

implemented as an entirely unprivileged program that simply parses and formats the information from /proc.
The /proc file system must implement two things: a directory structure and the file contents within. Because a

UNIX file system is defined as a set of file and directory inodes identified by their inode numbers, the /proc file system
must define a unique and persistent inode number for each directory and the associated files. Once such a mapping
exists, the file system can use this inode number to identify just what operation is required when a user tries to read
from a particular file inode or to perform a lookup in a particular directory inode. When data are read from one of these
files, the /proc file system will collect the appropriate information, format it into textual form, and place it into the
requesting process’s read buffer.

The mapping from inode number to information type splits the inode number into two fields. In Linux, a PID
is 16 bits in size, but an inode number is 32 bits. The top 16 bits of the inode number are interpreted as a PID, and the
remaining bits define what type of information is being requested about that process.

A PID of zero is not valid, so a zero PID field in the inode number is taken to mean that this inode contains
global rather than process-specific information. Separate global files exist in /proc to report information such as the
kernel version, free memory, performance statistics, and drivers currently running.

Input and Output
To the user, the I/O system in Linux looks much like that in any UNIX system. That is, to the extent possible,

all device drivers appear as normal files. Users can open an access channel to a device in the same way they open any
other file — devices can appear as objects within the file system. The system administrator can create special files

within a file system that contain references to a specific device driver, and a user opening such a file will be able to
read from and write to the device referenced. By using the normal file-protection system, which determines who can

access which file, the administrator can set access permissions for each device.

Linux splits all devices into three classes: block devices, character devices, and network devices. Figure 5.8
illustrates the overall structure of the device-driver system.

Block devices include all devices that allow random access to completely independent, fixed-sized blocks of

data, including hard disks and floppy disks, CD-ROMs and Blu-ray discs, and flash memory. Block devices are

typically used to store file systems, but direct access to a block device is also allowed so that programs can create and

repair the file system that the device contains. Applications can also access these block devices directly if they wish.

For example, a database application may prefer to perform its own fine-tuned layout of data onto a disk rather than

using the general-purpose file system.

Character devices include most other devices, such as mice and keyboards. The fundamental difference

between block and character devices is random access block devices are accessed randomly, while character devices
are accessed serially. For example, seeking to a certain position in a file might be supported for a DVD but makes no
sense for a pointing device such as a mouse.

Network devices are dealt with differently from block and character devices. Users cannot directly transfer
data to network devices. Instead, they must communicate indirectly by opening a connection to the kernel’s networking
subsystem.

Block Devices
Block devices provide the main interface to all disk devices in a system. Performance is particularly important

for disks, and the block-device system must provide functionality to ensure that disk access is as fast as possible. This
functionality is achieved through the scheduling of I/O operations.

CS8493-Operating System

In the context of block devices, a block represents the unit with which the kernel performs I/O. When a block
is read into memory, it is stored in a buffer. The request manager is the layer of software that manages the reading
and writing of buffer contents to and from a block-device driver.

A separate list of requests is kept for each block-device driver. Traditionally, these requests have been

scheduled according to a unidirectional-elevator (C-SCAN) algorithm that exploits the order in which requests are

inserted in and removed from the lists. The request lists are maintained in sorted order of increasing starting-sector

number. When a request is accepted for processing by a block-device driver, it is not removed from the list. It is

removed only after the I/O is complete, at which point the driver continues with the next request in the list, even if new

requests have been inserted in the list before the active request. As new I/O requests are made, the request manager

attempts to merge requests in the lists.

Linux kernel version 2.6 introduced a new I/O scheduling algorithm. Although a simple elevator algorithm
remains available, the default I/O scheduler is now the Completely Fair Queueing (CFQ) scheduler. The CFQ I/O

scheduler is fundamentally different from elevator-based algorithms. Instead of sorting requests into a list, CFQ
maintains a set of lists by default, one for each process. Requests originating from a process go in that process’s list.

For example, if two processes are issuing I/O requests, CFQ will maintain two separate lists of requests, one for each
process. The lists are maintained according to the C-SCAN algorithm.

Character Devices
A character-device driver can be almost any device driver that does not offer random access to fixed blocks of

data. Any character-device drivers registered to the Linux kernel must also register a set of functions that implement
the file I/O operations that the driver can handle. The kernel performs almost no preprocessing of a file read or write

request to a character device. It simply passes the request to the device in question and lets the device deal with the
request.

The main exception to this rule is the special subset of character-device drivers that implement terminal
devices. The kernel maintains a standard interface to these drivers by means of a set of tty struct structures. Each of
these structures provides buffering and flow control on the data stream from the terminal device and feeds those data to
a line discipline.

A line discipline is an interpreter for the information from the terminal device. The most common line

discipline is the tty discipline, which glues the terminal’s data stream onto the standard input and output streams of a

user’s running processes, allowing those processes to communicate directly with the user’s terminal. This job is
complicated by the fact that several such processes may be running simultaneously, and the tty line discipline is

responsible for attaching and detaching the terminal’s input and output from the various processes connected to it as
those processes are suspended or awakened by the user.

Other line disciplines also are implemented that have nothing to do with I/O to a user process. The PPP and

SLIP networking protocols are ways of encoding a networking connection over a terminal device such as a serial line.

These protocols are implemented under Linux as drivers that at one end appear to the terminal system as line

disciplines and at the other end appear to the networking system as network-device drivers. After one of these line

CS8493-Operating System

disciplines has been enabled on a terminal device, any data appearing on that terminal will be routed directly to the

appropriate network-device driver.

Interprocess Communication
Linux provides a rich environment for processes to communicate with each other. Communication may be just a matter
of letting another process know that some event has occurred, or it may involve transferring data from one process to
another.

Synchronization and Signals
The standard Linux mechanism for informing a process that an event has occurred is the signal. Signals can be

sent from any process to any other process, with restrictions on signals sent to processes owned by another user.
However, a limited number of signals are available, and they cannot carry information. Only the fact that a signal has

occurred is available to a process. Signals are not generated only by processes. The kernel also generates signals

internally. For example, it can send a signal to a server process when data arrive on a network channel, to a parent
process when a child terminates, or to a waiting process when a timer expires.

Internally, the Linux kernel does not use signals to communicate with processes running in kernel mode. If a
kernel-mode process is expecting an event to occur, it will not use signals to receive notification of that event. Rather,

communication about incoming asynchronous events within the kernel takes place through the use of scheduling states
and wait queue structures. These mechanisms allow kernel-mode processes to inform one another about relevant

events, and they also allow events to be generated by device drivers or by the networking system. Whenever a process
wants to wait for some event to complete, it places itself on a wait queue associated with that event and tells the

scheduler that it is no longer eligible for execution. Once the event has completed, every process on the wait queue will
be awoken. This procedure allows multiple processes to wait for a single event. For example, if several processes are

trying to read a file from a disk, then they will all be awakened once the data have been read into memory successfully.

Passing of Data among Processes
Linux offers several mechanisms for passing data among processes. The stan-dard UNIX pipe mechanism

allows a child process to inherit a communication channel from its parent; data written to one end of the pipe can be

read at the other. Under Linux, pipes appear as just another type of inode to virtual file system software, and each pipe

has a pair of wait queues to synchronize the reader and writer. UNIX also defines a set of networking facilities that can

send streams of data to both local and remote processes. Another process communications method, shared memory,

offers an extremely fast way to communicate large or small amounts of data. Any data written by one process to a

shared memory region can be read immediately by any other process that has mapped that region into its address space.

The main disadvantage of shared memory is that, on its own, it offers no synchronization. A process can neither ask the

operating system whether a piece of shared memory has been written to nor suspend execution until such a write

occurs. Shared memory becomes particularly powerful when used in conjunction with another interprocess-

communication mechanism that provides the missing synchronization.
A shared-memory region in Linux is a persistent object that can be created or deleted by processes. Such an

object is treated as though it were a small, independent address space. The Linux paging algorithms can elect to page

shared-memory pages out to disk, just as they can page out a process’s data pages. The shared-memory object acts as a
backing store for shared-memory regions, just as a file can act as a backing store for a memory-mapped memory

region. When a file is mapped into a virtual address space region, then any page faults that occur because the

appropriate page of the file to be mapped into virtual memory. Similarly, shared-memory mappings direct page faults
to map in pages from a persistent shared-memory object. Also just as for files, shared-memory objects remember their

contents even if no processes are currently mapping them into virtual memory.

Mobile OS - iOS and Android
In The Anatomy of an iPhone 4 we looked at the hardware that is contained within an iPhone 4 device. When

we develop apps for the iPhone Apple does not allow us direct access to any of this hardware. In fact, all hardware
interaction takes place exclusively through a number of different layers of software that act as intermediaries between
the application code and device hardware. These layers make up what is known as an operating system. In the case of
the iPhone, this operating system is known as iOS.

https://www.techotopia.com/index.php/The_Anatomy_of_an_iPhone_4_(iOS_4_Xcode_4)

CS8493-Operating System

In order to gain a better understanding of the iPhone development environment, this chapter will look in detail
at the different layers that comprise the iOS operating system and the frameworks that allow us, as developers, to write
iPhone applications.

iPhone OS becomes iOS
Prior to the release of the first iPad in 2010, the operating system running on the iPhone was referred to as

iPhone OS. Given that the operating system used for the iPad is essentially the same as that on the iPhone it didn’t

make much sense to name it iPad OS. Instead, Apple decided to adopt a more generic and non-device specific name for
the operating system. Given Apple’s predilection for names prefixed with the letter ‘i’ (iTunes, iBookstore, iMac etc)

the logical choice was, of course, iOS. Unfortunately, iOS is also the name used by Cisco for the operating system on
its routers (Apple, it seems, also has a predilection for ignoring trademarks). When performing an internet search for

iOS, therefore, be prepared to see large numbers of results for Cisco’s iOS which have absolutely nothing to do with
Apple’s iOS.

An Overview of the iOS 4 Architecture
As previously mentioned, iOS consists of a number of different software layers, each of which provides

programming frameworks for the development of applications that run on top of the underlying hardware. These
operating system layers can be presented diagrammatically as illustrated in the following figure:

some diagrams designed to graphically depict the iOS software stack show an additional box positioned above the

Cocoa Touch layer to indicate the applications running on the device. In the above diagram we have not done so since
this would suggest that the only interface available to the app is Cocoa Touch. In practice, an app can directly call
down any of the layers of the stack to perform tasks on the physical device.

That said, however, each operating system layer provides an increasing level of abstraction away from the
complexity of working with the hardware. As an iOS developer you should, therefore, always look for solutions to your

programming goals in the frameworks located in the higher level iOS layers before resorting to writing code that
reaches down to the lower level layers. In general, the higher level of layer you program to, the less effort and fewer

lines of code you will have to write to achieve your objective. And as any veteran programmer will tell you, the less
code you have to write the less opportunity you have to introduce bugs.
Now that we have identified the various layers that comprise iOS 4 we can now look in more detail at the services
provided by each layer and the corresponding frameworks that make those services available to us as application
developers.

The Cocoa Touch Layer
The Cocoa Touch layer sits at the top of the iOS stack and contains the frameworks that are most commonly

used by iPhone application developers. Cocoa Touch is primarily written in Objective-C, is based on the standard Mac
OS X Cocoa API (as found on Apple desktop and laptop computers) and has been extended and modified to meet the
needs of the iPhone. The Cocoa Touch layer provides the following frameworks for iPhone app development:
UIKit Framework (UIKit.framework)

The UIKit framework is a vast and feature rich Objective-C based programming interface. It is, without question,
the framework with which you will spend most of your time working. Entire books could, and probably will, be written
about the UIKit framework alone. Some of the key features of UIKit are as follows:

 User interface creation and management (text fields, buttons, labels, colors, fonts etc)
 Application lifecycle management

CS8493-Operating System

 Application event handling (e.g. touch screen user interaction)

 Multitasking

 Wireless Printing

 Data protection via encryption

 Cut, copy, and paste functionality

 Web and text content presentation and management

 Data handling

 Inter-application integration

 Push notification in conjunction with Push Notification Service
 Local notifications (a mechanism whereby an application running in the background can gain the user’s attention)

 Accessibility

 Accelerometer, battery, proximity sensor, camera and photo library interaction.

 Touch screen gesture recognition

 File sharing (the ability to make application files stored on the device available via iTunes)
 Blue tooth based peer to peer connectivity between devices

 Connection to external displays
Map Kit Framework (MapKit.framework)

If you have spent any appreciable time with an iPhone then the chances are you have needed to use the Maps
application more than once, either to get a map of a specific area or to generate driving directions to get you to your

intended destination. The Map Kit framework provides a programming interface that enables you to build map based
capabilities into your own applications. This allows you to, amongst other things, display scrollable maps for any

location, display the map corresponding to the current geographical location of the device and annotate the map in a
variety of ways.
Push Notification Service

The Push Notification Service allows applications to notify users of an event even when the application is not
currently running on the device. Since the introduction of this service it has most commonly been used by news based

applications. Typically when there is breaking news the service will generate a message on the device with the news
headline and provide the user the option to load the corresponding news app to read more details. This alert is typically

accompanied by an audio alert and vibration of the device. This feature should be used sparingly to avoid annoying the
user with frequent interruptions.
Message UI Framework (MessageUI.framework)

The Message UI framework provides everything you need to allow users to compose and send email messages
from within your application. In fact, the framework even provides the user interface elements through which the user
enters the email addressing information and message content. Alternatively, this information can be pre-defined within
your application and then displayed for the user to edit and approve prior to sending.
Address Book UI Framework (AddressUI.framework)

Given that a key function of the iPhone is as a communications device and digital assistant it should not come
as too much of a surprise that an entire framework is dedicated to the integration of the address book data into your
own applications. The primary purpose of the framework is to enable you to access, display, edit and enter contact

information from the iPhone address book from within your own application.
Game Kit Framework (GameKit.framework)

The Game Kit framework provides peer-to-peer connectivity and voice communication between multiple

devices and users allowing those running the same app to interact. When this feature was first introduced it was
anticipated by Apple that it would primarily be used in multi-player games (hence the choice of name) but the possible
applications for this feature clearly extend far beyond games development.
iAd Framework (iAd.framework)

The purpose of the iAd Framework is to allow developers to include banner advertising within their
applications. All advertisements are served by Apple’s own ad service.
Event Kit UI Framework

The Event Kit UI framework was introduced in iOS 4 and is provided to allow the calendar events to be
accessed and edited from within an application.

CS8493-Operating System

The iOS Media Layer
The role of the Media layer is to provide iOS with audio, video, animation and graphics capabilities. As with

the other layers comprising the iOS stack, the Media layer comprises a number of frameworks that may be utilized
when developing iPhone apps. In this section we will look at each one in turn.
Core Video Framework (CoreVideo.framework)

A new framework introduced with iOS 4 to provide buffering support for the Core Media framework. Whilst
this may be utilized by application developers it is typically not necessary to use this framework.
Core Text Framework (CoreText.framework)

The iOS Core Text framework is a C-based API designed to ease the handling of advanced text layout and font
rendering requirements.
Image I/O Framework (ImageIO.framework)

The Image IO framework, the purpose of which is to facilitate the importing and exporting of image data and
image metadata, was introduced in iOS 4. The framework supports a wide range of image formats including PNG,
JPEG, TIFF and GIF.
Assets Library Framework (AssetsLibrary.framework)

The Assets Library provides a mechanism for locating and retrieving video and photo files located on the
iPhone device. In addition to accessing existing images and videos, this framework also allows new photos and videos
to be saved to the standard device photo album.
Core Graphics Framework (CoreGraphics.framework)

The iOS Core Graphics Framework (otherwise known as the Quartz 2D API) provides a lightweight two
dimensional rendering engine. Features of this framework include PDF document creation and presentation, vector
based drawing, transparent layers, path based drawing, anti-aliased rendering, color manipulation and management,
image rendering and gradients. Those familiar with the Quartz 2D API running on MacOS X will be pleased to learn
that the implementation of this API is the same on iOS.
Quartz Core Framework (QuartzCore.framework)

The purpose of the Quartz Core framework is to provide animation capabilities on the iPhone. It provides the
foundation for the majority of the visual effects and animation used by the UIKit framework and provides an
Objective-C based programming interface for creation of specialized animation within iPhone apps.
OpenGL ES framework (OpenGLES.framework)

For many years the industry standard for high performance 2D and 3D graphics drawing has been OpenGL.
Originally developed by the now defunct Silicon Graphics, Inc (SGI) during the 1990s in the form of GL, the open
version of this technology (OpenGL) is now under the care of a non-profit consortium comprising a number of major
companies including Apple, Inc., Intel, Motorola and ARM Holdings.

OpenGL for Embedded Systems (ES) is a lightweight version of the full OpenGL specification designed
specifically for smaller devices such as the iPhone.
iOS 3 or later supports both OpenGL ES 1.1 and 2.0 on certain iPhone models (such as the iPhone 3GS and iPhone 4).

Earlier versions of iOS and older device models support only OpenGL ES version 1.1.
iOS Audio Support

iOS is capable of supporting audio in AAC, Apple Lossless (ALAC), A-law, IMA/ADPCM, Linear PCM, µ-
law, DVI/Intel IMA ADPCM, Microsoft GSM 6.10 and AES3-2003 formats through the support provided by the
following frameworks.
AV Foundation framework (AVFoundation.framework)

An Objective-C based framework designed to allow the playback, recording and management of audio content.
Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and AudioUnit.framework)

The frameworks that comprise Core Audio for iOS define supported audio types, playback and recording of
audio files and streams and also provide access to the device’s built-in audio processing units.
Open Audio Library (OpenAL)

OpenAL is a cross platform technology used to provide high-quality, 3D audio effects (also referred to as
positional audio). Positional audio can be used in a variety of applications though is typically using to provide sound
effects in games.
Media Player framework (MediaPlayer.framework)

The iOS Media Player framework is able to play video in .mov, .mp4, .m4v, and .3gp formats at a variety of
compression standards, resolutions and frame rates.

CS8493-Operating System

Core Midi Framework (CoreMIDI.framework)
Introduced in iOS 4, the Core MIDI framework provides an API for applications to interact with MIDI

compliant devices such as synthesizers and keyboards via the iPhone’s dock connector.

The iOS Core Services Layer
<google>IOSBOX</google> The iOS Core Services layer provides much of the foundation on which the

previously referenced layers are built and consists of the following frameworks.
Address Book framework (AddressBook.framework)

The Address Book framework provides programmatic access to the iPhone Address Book contact database
allowing applications to retrieve and modify contact entries.
 CFNetwork Framework (CFNetwork.framework)



The CFNetwork framework provides a C-based interface to the TCP/IP networking protocol stack and low

level access to BSD sockets. This enables application code to be written that works with HTTP, FTP and Domain
Name servers and to establish secure and encrypted connections using Secure Sockets Layer (SSL) or Transport Layer
Security (TLS).
 Core Data Framework (CoreData.framework)



This framework is provided to ease the creation of data modeling and storage in Model-View-Controller (MVC)
based applications. Use of the Core Data framework significantly reduces the amount of code that needs to be
written to perform common tasks when working with structured data in an application. 

 Core Foundation Framework (CoreFoundation.framework)


The Core Foundation is a C-based Framework that provides basic functionality such as data types, string
manipulation, raw block data management, URL manipulation, threads and run loops, date and times, basic XML
manipulation and port and socket communication. Additional XML capabilities beyond those included with this
framework are provided via the libXML2 library. Though this is a C-based interface, most of the capabilities of the
Core Foundation framework are also available with Objective-C wrappers via the Foundation Framework.

 Core Media Framework (CoreMedia.framework)


The Core Media framework is the lower level foundation upon which the AV Foundation layer is built. Whilst
most audio and video tasks can, and indeed should, be performed using the higher level AV Foundation
framework, access is also provided for situations where lower level control is required by the iOS application
developer. 

 Core Telephony Framework (CoreTelephony.framework)


The iOS Core Telephony framework is provided to allow applications to interrogate the device for information
about the current cell phone service provider and to receive notification of telephony related events.

 EventKit Framework (EventKit.framework)


An API designed to provide applications with access to the calendar and alarms on the device.
 Foundation Framework (Foundation.framework)



The Foundation framework is the standard Objective-C framework that will be familiar to those that have
programmed in Objective-C on other platforms (most likely Mac OS X). Essentially, this consists of Objective-C
wrappers around much of the C-based Core Foundation Framework. 

 Core Location Framework (CoreLocation.framework)


The Core Location framework allows you to obtain the current geographical location of the device (latitude and
longitude) and compass readings from with your own applications. The method used by the device to provide
coordinates will depend on the data available at the time the information is requested and the hardware support
provided by the particular iPhone model on which the app is running (GPS and compass are only featured on
recent models). This will either be based on GPS readings, Wi-Fi network data or cell tower triangulation (or some
combination of the three). 

 Mobile Core Services Framework (MobileCoreServices.framework)


The iOS Mobile Core Services framework provides the foundation for Apple’s Uniform Type Identifiers (UTI)
mechanism, a system for specifying and identifying data types. A vast range of predefined identifiers have been
defined by Apple including such diverse data types as text, RTF, HTML, JavaScript, PowerPoint .ppt files,
PhotoShop images and MP3 files.

CS8493-Operating System

 Store Kit Framework (StoreKit.framework)


The purpose of the Store Kit framework is to facilitate commerce transactions between your application and the
Apple App Store. Prior to version 3.0 of iOS, it was only possible to charge a customer for an app at the point that
they purchased it from the App Store. iOS 3.0 introduced the concept of the “in app purchase” whereby the user
can be given the option make additional payments from within the application. This might, for example, involve
implementing a subscription model for an application, purchasing additional functionality or even buying a faster
car for you to drive in a racing game.



 SQLite library


Allows for a lightweight, SQL based database to be created and manipulated from within your iPhone application.
 System Configuration Framework (SystemConfiguration.framework)



The System Configuration framework allows applications to access the network configuration settings of the
device to establish information about the “reachability” of the device (for example whether Wi-Fi or cell
connectivity is active and whether and how traffic can be routed to a server).

 Quick Look Framework (QuickLook.framework)


One of the many new additions included in iOS 4, the Quick Look framework provides a useful mechanism for

displaying previews of the contents of files types loaded onto the device (typically via an internet or network
connection) for which the application does not already provide support. File format types supported by this framework
include iWork, Microsoft Office document, Rich Text Format, Adobe PDF, Image files, public.text files and comma
separated (CSV).
 The iOS Core OS Layer



The Core OS Layer occupies the bottom position of the iOS stack and, as such, sits directly on top of the device
hardware. The layer provides a variety of services including low level networking, access to external accessories
and the usual fundamental operating system services such as memory management, file system handling and
threads.



 Accelerate Framework (Accelerate.framework)


Introduced with iOS 4, the Accelerate Framework provides a hardware optimized C-based API for performing
complex and large number math, vector, digital signal processing (DSP) and image processing tasks and
calculations.



 External Accessory framework (ExternalAccessory.framework)


Provides the ability to interrogate and communicate with external accessories connected physically to the iPhone
via the 30-pin dock connector or wirelessly via Bluetooth.



 Security Framework (Security.framework)


The iOS Security framework provides all the security interfaces you would expect to find on a device that can
connect to external networks including certificates, public and private keys, trust policies, keychains, encryption,
digests and Hash-based Message Authentication Code (HMAC).



 System (LibSystem)


As we have previously mentioned, the iOS is built upon a UNIX-like foundation. The System component of the
Core OS Layer provides much the same functionality as any other UNIX like operating system. This layer includes
the operating system kernel (based on the Mach kernel developed by Carnegie Mellon University) and device
drivers. The kernel is the foundation on which the entire iOS is built and provides the low level interface to the
underlying hardware. Amongst other things the kernel is responsible for memory allocation, process lifecycle

management, input/output, inter-process communication, thread management, low level networking, file system
access and thread management.



As an app developer your access to the System interfaces is restricted for security and stability reasons. Those

interfaces that are available to you are contained in a C-based library called LibSystem. As with all other layers of
the iOS stack, these interfaces should be used only when you are absolutely certain there is no way to achieve the
same objective using a framework located in a higher iOS layer.

	UNIT-II.pdf
	Shared data
	Producer Process
	Semaphore Implementation

