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UNIT I  
GROUPS AND RINGS 

PART-A 
1. State any two properties of a group.   

 Closure property: a*bG, for all a,bG 
 Associative property: (a*b)*c=a*(b*c), for all a,b,cG 

2. Define Homomorphism of groups.  
Let (G,*) and (G,o) be two groups and f be a function from G into G1. Then f is called 
a homomorphism of G into G1 if for all a,b ∈ G,  
                     f(a*b) = f(a) o f(b).  

 3. Give an example of Homomorphism of groups. 
Consider the group (Z,+). Define f:Z →Z by f(n) = 3n for all n∈ Z  
Here the function f is from the group (Z,+) to (Z,+)  
Let n,m ∈ Z then we get n+m ∈ Z  and we have f(n+m) = 3(n+m) = 3n + 3m = f(n) + f(m)  
Hence the function f is a homomorphism. 

 4. Define Isomorphism.  
Let (G,*) and (G’,o) be two groups and f : G → G’ be a homomorphism of groups then f is called a 
isomorphism if f is a bijective(one-to-one and onto) function. 

5. Give any two Example of Isomorphism.  
   Example:1 

Consider the function f: Z → Z by f(x) = x, Now we have to show that f is a homomorphism.  
Take any two elements x, y belongs to Z ,Then x + y  belongs to Z, Hence f(x+y) = x + y = f(x) + f(y)  
Hence f is homomorphism.  
Since the function f(x) = x is bijective. f is an isomorphism. 
Example :2 
Consider the function f: Z → Z by f(x) = x. Take any two elements x,y belongs to Z ,Then x + y 
 belongs to Z, Hence f(x+y) = x + y = f(x) + f(y) Hence f is homomorphism.  
Since the function f(x) = x is bijective. f is an isomorphism. 

6. Show that ( ), 5,5 Z  is a cyclic group.                                

5  [0] [1] [2] [3] [4] 

[0] 0 1 2 3 4 
[1] 1 2 3 4 0 
[2] 2 3 4 0 1 
[3] 3 4 0 1 2 
[4] 4 0 1 2 3 

111       
2111 5

2   

321111 5

2

5

3   

431111 5

3

5

4   

            041111 5

4

5

5   

           Hence ( ), 5,5 Z  is a cyclic group and 1 is a generator. 

7.  Prove that the group   ,4ZH is cyclic. 

Here the operation is addition, so we have multiplies instead of powers. We find that both 
[1] and [3] generate H. For the case of [3], we have 

  1.[3]=[3], 2.[3]=[2], 3.[3]=[1], and 4.[3]=[0]. 
Hence H=<[3]>=<[1]>.Hence   ,4ZH  is cyclic 

8. Prove that }8,7,5,4,2,1{9 U is cyclic group. 

 Here we find that 21=2, 22=4, 23=8, 24=7, 25=5,26=1, 

So 9U is a cyclic group of order 6 and 29 U and also true that 59 U  

because 51=5, 52=7, 53=8, 54=4, 55=2, 56=1. 



   

        
 

9. Define Left coset and Right coset of the group. 
If H is a subgroup of G,then for each Ga ,the set  HhahaH  / is called a l 

eft coset of H in G and  HhhaHa  / is a right coset of H in G. 

10. Consider the group Z4= {[0],[1],[2],[3]} of integers modulo 4. Let H={[0],[2]} be a    
        subgroup of Z4 under +4. Find the left cosets of H.   
  [0] + [H] = {[0],[2]} = H 
  [1] + [H] = {[1],[3]}  
  [2] + [H] = {[2] ,[4]} = {[2],[0]} = {[0],[2]} = H 
  [3] + [H] = {[3] , [5]} = {[3],[1]} = {[1],[3]} = [1] + H 
  [0] + H = [2] + H = H and [1] + H = [3] + H are  the two distinct left cosets of H in Z4   
11. State Lagrange’s theorem for finite groups. Is the converse true?                      

If G is a finite group and H is a sub group of G, then the order of H is a divisor of order of  G.  
The converse of Lagrange’s theorem is false. 

12. Define ring and give an example of a ring with zero-divisors.                 
An   algebraic system (R,+,.) is called a ring if the binary operation + and . satisfies  the     
following conditions. 
(i)        (a+b)+c=a+(b+c)     a,b,c R  
(ii) There exists an element  0 є R called zero element  such that  a+0 = 0+a =a for all aR 
(iii) For  all  aєR,a+(-a) =(-a)+a = 0,-a is the negative of a. 
(iv) a+b =b+a for all a,b єR 
(v) (a.b).c =a.(b.c) for all a,b,c R 

          The operation * is distributive over +  i.e.,for any a,b,c є R,     a.(b+c) = a.b +a.c , 
          (b+c).a = b.a +c.a In otherwords,   if R is an abelian group under addition with the properties       
          (iv) and (v) then R is a ring. 

          Example:The ring ( 101010 ,, XZ  ) is not an integral domain.Since 25 10X ,yet 02,05   in 10Z . 

13. Define unit and multiplicative inverse of a Ring. 
Let R be a ring with unity u. If aR and there exists bR such that ab=ba=u, then b is called a 

multiplicative inverse of a and a is called a unit of R.  
14. Define integral domain and give an example. 
           Let R be a commutative ring with unity. Then R is called an integral domain if R has no  
        proper  divisors of zero. 
        Example: (Z,+,●) is an integral domain and Q,R,C are integral domain under addition and   
        multiplication 
15. Define Field and give an example.                 
 A commutative ring (R,+,●) with identity  is called a field if every non-zero element has a   
          multiplicative inverse. Thus (R,+,●) is a field if  
                         (i) (R,+) is abelian group and 
                        (ii) (R-{0},●) is also abelian group. 
       Example:   (R,+,●) is a field. 
16. Give an example of a ring which is not a field.     
           (Z,+,●) is a ring but not a field, if every non-zero element need not a multiplicative inverse. 
17. Define Integer modulo n. 

 Let Zn , n>1. For a,bZ, we say that “ a is congruent to b modulo n”, and we write   
        ),(modnba  if ),( ban  or equivalently, knba   for some .Zk  

18. Determine the values of  the integer n>1 for the given congruence  401 323(mod n) is   
        true.  

 401-323=78=2.3.13 there are five possible divisors (n>1),namely 2,3,6,26,39. 
19. Determine the values of  the integer n>1 for the given congruence  571(mod n) is true. 
 57-1=56=23.7. So there are six divisors, namely 2,4,8,14,28,56 
20. Determine the values of  the integer n>1 for the given congruence  68 37(mod n)is true. 
 68-37=31, prime, consequently n=31. 
21. Determine the values of  the integer n>1 for the given congruence  49 1(mod n)is true. 
 49-1=48=24.3. So there are nine possible values for n>1, namely 2,4,8,16,3,6,12,24,48. 



UNIT-II-FINITE FIELDS AND POLYNOMIALS
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   Given a ring (R,+,.), an expression of the form    

    ,0,......... 0

0

1

1

1
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n

n

n  

  is called a polynomial in    

   the indeterminate x with coefficients from R. 

   A field is a nonempty set F of elements with two operations ‘+’ (called addition) and ‘·’ (called     
   multiplication) satisfying the following axioms. For all a, b, c ∈ F: 

(i) F is closed under + and · ; i.e., a + b and a · b are in F.  
(ii) Commutative laws: a + b = b + a, a · b = b · a.  
(iii) Associative laws: (a + b) + c = a + (b + c), a · (b · c) = (a · b) · c.  
(iv) Distributive law: a · (b + c) = a · b + a · c. 

 

    A field containing only finitely many elements is called a finite field, A finite field is simply a field     
    Whose underlying set is finite. Eg: F2, whose element 0 and 1.  

    If R is a ring , then under the operations of addition and multiplication + and .,(R[x],+,.) is    
    a ring ,called the polynomial ring, or ring of polynomials over R. 

   Let R be a ring with unity u and let f(x)  xR ,with degree f(x) 1 . If r  and f(r)=z, then     

    r is called a root of the polynomial f(x) 

    Let F be a field. For f(x), g(x)  xF , where f(x) is not a zero a polynomial , we all f(x) a divisor of    

    g(x)  if there exists h(x)  xF  with f(x)h(x)=g(x). In this situation we also say that f(x) divides   

    g(x) and that  g(x) is a multiple of f(x) 

    f(x)= x2-2=   22  xx  

   Since 2  and - 2 are irrational numbers , f(x) has no roots. 

 

    Z12={0,1,2,3,4,5,6,7,8,9,10,11} 
    f(0)=0+0=0    0 is a root of f)x) 
    f(1)1+4=5 
    f(2)=4+8=12=0 
    So 2 is a root. 
    f(3)=21, f(4)32 
    f(5)=45,f(6)=60=0 
    So 6 is a root 
    f(7)=77, f(8)=96=0 
    So 8 is aroot. 
    f(9)=81+36=117. f(10)100+40=140 
    f(11)=121+44=165 
    Thus  x=0,2,6,8 are the roots of f(x) 

       Let f(x),g(x)  xF  with f(x) not the zero polynomial. There exists unique polynomials q(x), r(x)    

       xF such that g(x)=q(x)f(x)+r(x),where r(x)=0 or degree r(x)< degree f(x). 

       The remainder theorem: 
       For f(x)  xF and a F , the remainder in the division of f(x) by x-a is f(a). 

        The polynomials are  

1. Define polynomial.

2. Define Field.

3. What is meant by a finite field?

4. What is meant by polynomial ring?

5. Define root of the polynomial.

6. When do you you say that f(x) is a divisor of g(x)?

7. Find the roots of f(x)=x2-2Q x .

8.Find all roots of f(x)=x2+4x if f(x)  z x

9. State division algorithm

10. State the remainder theorem.

11. Determine all polynomials of degree 2 in z [x].
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(i)         x2 
(ii) x2+x 
(iii) x2+1 
(iv) x2+x+1 

 

        If f(x)  and a f(x) F , then x-a ia a factor of f(x) if and only if a is a root of f(x). 

        of   h(x)k(x) is 3. 
        Choose h(x)=4x5+x of degree 5 and k(x)3x2 of degree 2. Then h(x)k(x)= (4x5+x)   
         (3x2)=12x7+3x3=0+3x3     which is of degree 3. 

       Let f(x) , with F a field and degree f(x) .2 We call f(x) reducible over F if there exists  

       g(x),h(x) ,where f(x)=g(x)h(x)  and each of g(x),h(x) has degree .1 If f(x) is not reducible  

       it is called  irreducible or prime. 

        The polynomial  f(x) =x4+2x2+1 is reducible . Since x4+2x2+1=(x2+1)2 
        The polynomial x2+1 is irreducible in Q[x] and R[x]but in C[x]  it is reducible. 

       The polynomial x2+x+1=(x+2)(x+2) is irreducible over Z3 
       The polynomial x2+x+1=(x+5)(x+3) is irreducible overZ7. 

       A polynomial f(x)  is called monic if its leading coefficients is 1, the unity of F. 

       Example: x2+2x+ 1 

       If f(x),g(x)  and their gcd is 1, then f(x) and g(x)are calle d relatively prime. 

        Let (R,+,.) be a ring. If there is least positive integer n such that nr=z(the zero of R) for all rR,    
        the  we say that R has characteristic n  and write characteristic n. When no such integer exists ,       
        R is said to be  characteristic 0. 

       The ring (Z3,+,.) has characteristic 3. 
       The ring (Z4,+,.) has characteristic 4 
        Z3[x] has characteristic 3. 

  

        no real roots. 
       Choose f(x)=(x2+9)4 is of  degree 8, is reducible but has no real roots. 

        polynomials. 

                   f(x)=    3435512 32  xxxx    

                            

     

    

    64245

642440

642542

32

32

32







xxxx

xxxx

xxxx

 

          Here each polynomial is monic. 
  

        element a F  such that f(a)=0 and g(a)=0 
        Suppose there exists a F  such that f(a)=0 and g(a)=0. Then (x-a) would be a factor of both f(x)       
         and g(x). So (x-a) would divide the gcd of both f(x) and g(x).But this is a contradiction since f(x)    
         and g(x) are relatively prime. 

12. State the factor theorem.

13. Determine polynomial h(x) of degree 5 and polynomial k(x)of degree 2 such that degree

14. Define reducible and irreducible polynomials .

15. Give example for reducible and irreducible polynomials .

16. Verify the polynomial x2+x+1 over Z ,Z irreducible or not.

17. What is meant by monic polynomial?

18. When do you say that 2 polynomials are relatively prime?

19. What is the characteristic of R?

20. Find the characteristic of the following rings a) (Z ,+,.) b)(Z ,+,.) and Z [x]

21. Give an example of a polynomial f(x)  R x where f(x) has degree 8, is reducible but has

22. Write f(x)= 2x 1 5x  5x  3 4x  3  z x as the product of unit and three monic

23. If f(x) and g(x) are relatively prime and  F x where F is any field , show that there is no



   

        
 

 
PART B 

 
1. (a)Show that (R,+,.) is a ring                                                                                                     (8) 
    (b)Show that R[x] is a polynomial ring over R.        (8) 
2. (a)If R is an integral domain ,prove that f(x) is an unit in R[x], then prove that f(x) is constant     
          and is unit in R                  (8) 
    (b)If R[x] is a polynomial ring then show that it is commutative.                                  (8) 
3. (a)Prove that every field is an integral domain.                                                                     (8) 
    (b)Let (R,+,.) be a commutative ring with unity u .Show that R is an integral domain if and only    
          if for all f(x),g(x)  xR ,if neither f(x) nor g(x) is the zero polynomial , then  

          degree f(x) g(x)=degree f(x)+degree g(x)                                                                      (8) 
4. (a)Find all the irreducible polynomials in Z2[x]                       
(8) 
    (b)Find all the roots of f(x)=x2+3x+2  xZ6                                               (8) 

5.  State and prove Division algorithm                                                                                               (16) 
6. (a)State and prove remainder and factor theorem                                                             (8) 
    (b) Discuss irreducible and reducible polynomials with example over R[x],Q[x],C[x].      (8) 

          f(x),g(x)       1,45347, 23458  xxgxxxxxxfxQ                              (8) 
     (b) f(x),g(x)   9,74383 2345

11  xxgxxxxxZ                               (8) 
 (8) 

     (b)If g(x)= ,752 325 xxxx  determine q(x) and r(x)  such that      

           g(x)=q(x)f(x)+r(x)                                                                                                              (8) 
9. (a)If f(x)=x4-16, find its roots and factorization  in Q(x).                                                     (8) 
     (b)Determine all the polynomials of degree 2 in Z7[x].                                                       (8) 
10.(a)Find all the roots of f(x)=x2+4x if f(x) =Z12[x]                                                                            (8) 
      (b)Show that for all  f(x)  xF , every nonzero polynomial of degree 1 is irreducible.  (8) 

11. (a)Let (F,+,.) be a field . If char(F)>0, then show that char(F) must be finite.                          (8) 
      (b) Prove that the characteristic of a field is either 0 or a prime number                      (8) 
12. (a)Prove that the polynomial f (x) = x 4 + 2x 6 ∈ Z3[x] is of degree 6 is reducible .     (8) 

      (b)Show that a finite field has order pt, where p is a prime and t Z                           (8) 
13. (a)Construct a finite field of 25 elements.                                                                        (8) 
      (b)Give characteristic for the following rings                                                                             (8) 
                     (a)Z11   (b)Z11[x]  (c)Q[x] 

14. (a)Find the roots of f(x)= ][23 6

2 xZxx 
                                                                         (8) 

       (b)State and prove Euclidean algorithm.                                                                                        (8) 
15. (a)Show that g(x)=q(x)f(x)+r(x), if g(x) =x4+2x3+x+4, f(x)=x2+3x+1                                      (8) 
       (b) Show that Zm is a field if and only if m is a prime.                                                                   (8) 
  

UNIT-III 
DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS 

PART-A 
 
1. Write about divisible. 

An integer b is divisible by an integer a, not zero, if there is an integer x such that b = ax, and 
we write a/b. m In case b is not divisible by a, we write a\b. 

2. Define division algorithm. 
Given any integers a and b, with a > 0, there exist unique integers q and r such that b =qa + r, 

0 < r < a.  If a\b, then r satisfies the stronger inequalities z < r < a.  
3. Define greatest common divisor of b. 

UNIT-III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITION

Division algorthim-Base b-representations-Number patterns-Prime and Composite
Numbers-GCD-Euclidean algorithm-Fundamental theorem of arithmetic-LCM



   

        
 

The integer a is a common divisor of b and c in case a/b and a/c.  Since there is only a finite 
number of divisors of any nonzero integer, there is only a finite number of common divisors of 
b and c, except in the case b=c=0,  If at least one of b and c is not 0, the greatest among their 
common divisors is called the greatest common divisor of b and c and is denoted by (b, c). 

4. Define Euclidean algorithm. 
Given integers b and c > 0, we make a repeated application of the division algorithm, to 

obtain a series of equations 
                    b = cq1 + r1,         0<r1<c   
                    c = r1q2 + r2,         0<r2<r1        
                    r1= r1q3 + r3,         0<r2<r1 
                     ………..               ….. 
                    rj-2 = rj-1qj + rj,         0<r2<r1 
                    rj-1 = rjqj+1          

The greatest common divisor (b, c) of b and c is rj, the last nonzero remainder in the division 
process.  Values of x0 and y0 In (b, c ) = bx0+cy0 can be obtained by writing each ri as a linear 
combination of b and c.   

5. Solve by Euclidean algorithm for b=288 and c=158. 
288=158.2-28 
158=28.6-10 
  28=10.3-2 
  10=2.5  

6. Define least common multiple.  
The integers a1,a2,….an. all different from zero, have a common multiple b if ai/b for i=1,2,….n.  

The least of the positive common multiples is called the least common multiple [le, and it is 
denoted by [a1,a2,….an]. 

7. Define prime number. 
An integer p>1 is called a prime number, or a prime , in case there is no divisor d of 
satisfying 1<d<p. 

8. Define Composite number with example. 
If an integer a>1 is not a prime, it is called a composite number. Eg: 4,6,8,9….   

9. State the binomial theorem. 

For any integer n≥1 and any real numbers x and  y   knk
n

k

n
yx

k

n
yx 



 









0

. 

10. Define arithmetical function with example. 
A function f(n) defined for all natural numbers n is called an arithmetical function. Eg:x2+x-3  

11. Prove that if n is an even number, then 3n+1 is divisible by 2; if n is an odd number, k 
then 3n+1 is divisible by 22; if n is any number, whether even or odd, then 3n+1 is not 
divisible by 2m with m≥3. 

Since the square of an odd number minus 1 is a multiple of 8, when n=2m we have 
3n=32m=(3m)2=8a+1, and therefore3n+1=2(4a+1). When n=2m+1, we have 
3n+1=32m+1=3(8a+1)+1=4(6a+1). Since 4a+1 and 6a+1 are odd , the statement is true.   

12. Show that if 1<a1<a2….<an-1<an, then there exist i and j with i<j, such that ai/aj. 
Let ai=2nibi,ni≥0), bi is odd.  Since among 1,2,….,2n, there are only n distinct odd numbers 
b1,….,bn+1 are not all distinct, in other words, among them there are some equal odd 
numbers,  Let bi=bj.  Then ai/aj. 

13. Define square number with example. 
If an integer a is a square of some other integer, then a is called a square number.Eg:4,9,16…   

14. Find the greatest common divisor of 525 and 231. 
From 525=2.231+63 
         231=3.63+42 
          63=1.42+21 
          42=2.21 
Therefore g.c.d.(525,231)=21 

15. Find GCD(136,221,391). 



   

        
 

   (136,221,391)= (136,221-136,391-2.136) 
                               = (136,85,119) 
                               = (51,85,34) 
                               =(17,17,34)=17 

PART-B 
1. (a) State and prove division algorithm.                  (8) 
    (b) If g is the greatest common divisor of b and c, then prove that there exist integers x0 and y0    

  such that g=(b,c)=bx0+cy0.                   (8) 
2. (a) If c\ab and (b,c)=1, then prove that c\a.                 (8) 
    (b) State and prove Euclidean algorithm.                 (8) 
3. (a) Find the greatest common divisor of 42823 and 6409.               (8) 
    (b) Find integers x and y to satisfy 42823x + 6409y=17.               (8) 
4. (a) Find g=(b,c) where b=5033464705 and c=3137640337, and determine x and y such that   
         bx + cy = g.                     (8) 
    (b) Find the least common multiple of (i)482 and 1687, (ii)60 and 61.             (8) 
5. (a) How may integers between 100 and 1000 are divisible by 7?              (8) 
    (b) Prove that the product of three consecutive integers is divisible by 6 of four consecutive   
          integers by 24.                    (8) 
6. (a) Show that if k is any positive integer, then k2+k+1.                (8) 
    (b) Let a>1, and m, n be positive integers.  Prove that (am-1,an-1)=a(m,n)-1            (8) 
7. (a) If m is a composite integer prove that the following integer is so too: nm=11……11(m times).  

         (8) 
    (b) If p is prime, propve that there exist no positive integers a and b such that a2=pb2.          (8) 
8. (a) If an integer a is greater than 2 , prove that S(a)<a√(a)               (8) 
    (b) Prove that if 3/(a2+b2), then 3/a and 3/b.                 (8) 
9. (a) Find the smallest positive integer having only 10 positive divisors.             (8) 
     (b) Find the smallest positive integer if the sum of all its divisors is 15.             (8) 
10. (a) Find all the integers n such that P(n)=64.                 (8) 
       (b) Prove that there are infinitely many primes of the form 3n+2.              (8) 
11. (a) Find positive integers a and b satisfying the equations (a,b)=10 and [a,b]=100  
              simultaneously.  Find all solutions.                   (8) 
       (b) Prove that (a, b)=a, b, a+b) and more generally that (a, b)=(a, b, ax+by) for all integers x, y.  

         (8) 
             (8) 

       (b) Prove that (a, a+2) =1 or 2 for every integer a.                (8) 
13. (a) Prove that an integer is divisible by 3 if and only if the sum of it digits is divisible by 3.  Prove   
              that an integer is divisible by 9 if and only if the sum of its digits is divisible by 9.           (8) 
       (b) Prove that an integer is divisible by 11 if and only if the difference between the sum of the   
              digits in the odd places and the sum of the digits in the even places is divisible by 11.         (8) 
14. (a) Prove that any prime of the form 3k+1 is of the form 6k+1.              (8) 
       (b) If x and y are odd, prove that x2+y2 cannot be a perfect square.              (8) 
15. (a) If x and y are prime to 3, prove that x2+y2 cannot be a perfect square.             (8) 
       (b) Show that n/(n-1)! For all composite n>4.                (8) 
 

UNIT IV 
DIOPHANTINE QUATIONS AND CONGRUENCES 

PART A 
1. Define linear Diophantine equation. 

Any linear equation in two variables having integral coefficients can be put in the form  
ax + by = c where a, b, c are given integers. 

2. State about the solution of linear Diophantine equation.   
Consider the equation ax + by = c ----(1), in which x and y are integers.  If a=b=c=0, then 

every pair (x, y) of integers is a solution of (1), whereas if a = b = 0 and c  0, then (1) has no 
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solution. Now suppose that at least one of a and b is nonzero, and let g = gcd (a, b). If g/c then 
(1)has no solution. 

 
3. Write the solution of ax + by =c. 

If the pair (x1, y1) is one integral solution, then all others are of the form x = x1 + kb/g , 
       y = y1=ka/g where k is an integer and g=gcd (a, b) 
4. Define unimodular with example.  
        A square matrix U with integral elements is called unimodular if det(U)=±1.Eg: Identity matrix 
5. Define Pythagorean triangle. 

We wish to solve the equation x2+y2=z2 in positive integers.  The two most familiar solutions 
are 3,4,5 and 5,12,13. We refer to such a triple of positive integers as a Pythagorean triple or a 
Pythagorean triangle, since in geometric terms x and y are the legs of a right triangle with 
hypotenuse z.  

6. Write the legs of the Pythagorean triangles. 
The legs of the Pythagorean triangles. 
X=r2-s2 
Y=2rs 
Z=r2+s2 

7. Define congruent and not congruent. 
If an d integer m, not zero, divides the difference a-b, we say that a is congruent to b modulo 

m and write ab(mod m).  If a-b is not divisible by m, we say that a is not congruent to b 
modulo m, and in this case we write a b(mod m). 

8. Define residue. 
If xy(mod m) then y is called a residue of x modulo m. 

9. Define complete residue  
A set x1,x2,….,xm is called a complete residue system modulo m if for every integer y there is   

one and only  one xj such that yxj(mod m). 
10. State Chinese Remainder Theorem. 

Let m1,m2,…,mr denote r positive integers that are relatively prime in pairs,  and let a1,a2,…,ar 
denote any r integers.  Then the congruences  

                  xa1(mod m1) 
                  xa2(mod m2) 
                  ……………… 
                  ……………… 
                 xar(mod mr) 

 have common solutions.  If x0 is one such solution, then an integer x satisfies the congruences 
the above equations iff x is of the form x=x0+km for some integer k.  Here m=m1m2…mr. 

11. Define n-th power residue modulo p. 
If (a, p)=1 and xn a (mod p) has a solution, then a is called an n-th power residue modulo p.  

12. Define Euler’s criterion. 
 If p is an odd prime and (q, p)=1, then x2a(mod p) has two solutions or no solution 
according as a(p-1)/2or  -1 (mod p). 

PART-B 
1. (a) Find all solutions of 10x -7y=17.                  (8) 
     (b)Prove that 101x+37y=3819 has a positive solution in integers.               (8) 
2. (a) Find all solution in integers of 2x+3y+4z=5.                (8) 
     (b) Find all solution in integers of the simultaneous equations. 20x+44y+50z=10. 
            17x+13y+11z=19.                    (8) 
3. (a) Find all solutions of the simultaneous congruence’s  3x+z 1(mod(5), 4x-y+z3(mod5)      (8) 
     (b) For what integers a, b, and c does the system of equations x+2y+3z+4w=a. x+4y+9z+16w=b.       
            x+8y+27z+64w=c.have a solution in integers? What are the solutions if a=b=c=1?          (8) 
4. (a) The equation 15x2-7y2=9 has no solution in integers.               (8) 
     (b) let f denote a polynomial with integral coefficients. If a m f(b)modf(a) then m) (mod  ba    (8) 

5.  If m) (modyx  , then y is called a residue of x modulo m, a set x1,x2,……xn. is called a complete    



   

        
 

           residue system modulo m if for every integer there is one and only one xj such that       

           m) (modjxy                    (16) 

6. (a) If p is a prime number and 4) (mod1p then there exist positive integer a and b such that   

            a2+b2=p.                       (8) 

    (b) Let q be a prime factor of a2+b2. If 4) (mod3q then q ⎸a and q ⎸b.               (8) 

7. (a) Find the least positive integer x such that 3(mod)13 xand 7(mod)11, x7). (mod5 x          (8) 

     (b) Show that there is no x for which both 72). 19(mod xand 52) (mod29 x             (8) 

8. (a) Determine whether the system 84) 5(mod x15), 8(mod x10), (mod3 x has no solution,    

       and find them all, if any exist.                   (8) 

     (b) Exhibit the foregoing one to one correspondence explicitly, when m1=7, m2=9, m=63.            (8) 

9. (a) Let f(x) =x2+x+7. Find all roots of congruence 15) 0(modf(x)                (8) 

     (b) Solve the set of congruence’s: 7) 5(modx3), 0(modx4), 1(modx                (8) 

10. (a)Find all the integers that satisfy simultaneously: 7) 1(modx5), 3(modx3), 2(modx       (8) 

             (8) 

11. (a)Find the number of positive integers≤7200 that are prime to 3600.             (8) 

                       (8) 

12. (a)Solve the congruence x3-9x2+ 23x-15≡0 (mod 503)                 (8) 

       (b)For any integer x, (a,b)=(b,a)=(a,-b)=(a,b+ax)                               (8) 

13. (a)If (a,m)=(b,m)=1, then (ab,m)=1.                   (8) 

       (b)If m)(c,m)(b,then m), (mod  cb                  (8) 

 
UNIT V 

CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS 
PART A 

 
1. State Wilson’s theorem 
       The Wilson’s theorem states that, if p is a prime, then p) (mod1)!1( p  

2. State Fermat’s theorem. 
      Let p denote a prime.  If p/a then ap-11(mod p).  For every integer a, apa(mod p). 
3.  State Euler’s generalization of Fermat’s theorem. 
       If (a, m)=1, then a(m) 1(mod m). 
4. State Fermat’s little theorem 

If p is a prime and a≢0(mod p), then ap-1≡1 (mod p) 
5. Explain the Exponent of an integer modulo n. 

Let n be a natural number >1 and a an integer prime to n. if the infinite sequence 
a,a2,a3,……≡1 (mod n). Suppose that aδ is the first number in the sequence ≡1 (mod n). then a is 
said to belong to the Exponent of an integer modulo n 

6. Define improper divisor of n 
Every integer n is a divisor of itself. It is called the improper divisor of n . All other divisors of  

 n are called proper divisors . 
7. Define Eulers Phi function 

 ϕ(n) is the number of non-negative integers less than n that are relatively prime to n. In 
other words, if n>1 then ϕ(n) is the number of elements in Un, and ϕ(1)=1. 

8. If p is a prime, the only elements of Up which are their own inverses are [1] and 
[p−1]=[−1]. 

Note that [n] is its own inverse if and only if [n2]=[n]2=[1] if and only if n2≡1(modp) if and 
only if p|(n2−1)=(n−1)(n+1). This is true if and only if p|(n−1) or p|(n+1). In the first case, 
n≡1(modp), i.e., [n]=[1]. In the second case, n≡−1≡p−1(modp), i.e., [n]=[p−1]. 

9. Find the remainder of 97! When divided by 101. 
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First we will apply Wilson's theorem to note that 100! ≡ −1 (mod101).  When we 
decompose the factorial, we get that: (100)(99)(98)(97!)≡−1(mod101). Now we note that 100 
≡ −1(mod101), 99 ≡ −2 (mod101), and 98 ≡ −3 (mod101).  

Hence: (−1)(−2)(−3)(97!)≡−1(mod101)(−6)(97!)≡−1(mod101)(6)(97!)≡1(mod101).  Now 
we want to find a modular inverse of 6 (mod 101). Using the division algorithm, we get that: 
101=6(16)+56=5(1)+11=6+5(−1)1=6+[101+6(−16)](−1)1=101(−1)+6(17) 
Hence, 17 can be used as an inverse for 6 (mod 101). It thus follows that: 
(17)(6)(97!)≡(17)1(mod101)97!≡17(mod101) Hence, 97! has a remainder of 17 when divided 
by 101. 

10. For prime p≥5,determine the remainder when (p−4)!is divided by p. 
By Wilson’s theorem, (p−1)!≡−1(modp). Therefore 
−1≡(p−1)(p−2)(p−3)⋅(p−4)!≡−6⋅(p−4)!(modp). 
If p=6k+1, multiplying both sides of the congruence by k gives (p−4)!≡−k=-(p-1)/6(modp). 

If p=6k−1, multiplying both sides of the congruence by k gives (p−4)!≡k=(p+1)/6(modp). 
11. Find the remainder of 53! when divided by 61. 

We know that by Wilson's theorem 60!≡−1(mod61). Decomposing 60!, we get that: 
(60)(59)(58)(57)(56)(55)(54)(53)(52)51!≡−1(mod61)(−1)(−2)(−3)(−4)(−5)(−6)(−7)(−8)(−9)
51!≡ −1(mod61)(−362880)51!≡−1(mod61)(362880)51!≡1(mod61)(52)51!≡1(mod61) We 
will now use the division algorithm to find a modular inverse of 52 (mod 61): 
61=52(1)+952=9(5)+79=7(1)+27=2(3)+11=7+2(−3)1=7+[9+7(−1)](−3)1=9(−3)+7(4)1=9(−3)+
[52+9(−5)](4)1=52(4)+9(−23)1=52(4)+[61+52(−1)](−23)1=61(−23)+52(27) Hence 27 can be 
used as an inverse (mod 61). We thus get that: (27)(52)51!≡(27)1(mod61)51!≡27(mod61) 

      Hence the remainder of 51! when divided by 61 is 2. 
12. What is the remainder of 149! when divided by 139? 

From Wilson's theorem we know that 138!≡−1(mod139). We are now going to multiply 
both sides of the congruence until we get up to 149!: 
149!≡(149)(148)(147)(146)(145)(144)(143)(142)(141)(140)(139)(−1)(mod139)149!≡ 
(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)(0)(−1)(mod139)149!≡0(mod139). Hence the remainder of 
149! when divided by 139 is 0. 

13. Define congruence in one variable  
A congruence of the form ax ≡ b(mod m) where x is an unknown integer is called a linear 

congruence in one variable. 
14. Let p be a prime. A positive integer m is its own inverse modulo p 

iff  p  divides m + 1 or p divides m − 1. 

  Suppose that m is its own inverse. Thusm.m ≡ 1(mod p). Hence p | m2  − 1.then 
               p | (m − 1)or  p | (m + 1). 

 
 

PART B 
1.  State and prove Wilson’s theorem               
(16) 
2. (a) For n>2, φ(n) is an even integer                 (8) 
     (b)Verify the equality φ(n)=φ(n+1)=φ(n+2) holds when n=5186.              (8) 
3. (a) State and prove Euler’s theorem                 (8) 

        (b) If p is a prime, then p) (mod1)!1( p                  (8) 

    4. (a) If m and n are relatively prime positive integers, prove that )(mod1)()( mnnm mn  
.  (8) 

         (b) For any integer a, show that a and a4n+1 have the same last digit.               (8) 

    5. (a) Using Euler’s theorem to evaluate 2100000(mod 77)                 (8) 

        (b) Find the units digit of 3100 by means of Euler’s theorem.                (8) 

    6.  For any prime p, establish each of assertions below              
(16) 

                (i)   (p!)=2((p-1)!) 

                (ii ) σ(p!)=(p+1)σ((p-1)!) 




