UNIT- GROUPS AND RINGS

Groups: Definition and Properties-Homomorphism-Isomorphism-Cyclic groups-Cosets
Lagrange's theorem.

Rings: Definition and examples-sub rings-Integral domain-Field-Integer modulo n-Ring
homomorphism.



UNIT 1
GROUPS AND RINGS
PART-A

1. State any two properties of a group.
Closure property: a*beG, foralla,beG
Associative property: (a*b)*c=a*(b*c), for all a,b,ce G
2. Define Homomorphism of groups.
Let (G,*) and (G,0) be two groups and f be a function from G into G1. Then fis called
a homomorphism of G into G1 if for all a,b € G,
f(a*b) = f(a) o f(b).
3. Give an example of Homomorphism of groups.
Consider the group (Z,+). Define f:Z -Z by f(n) = 3n for all n€ Z
Here the function fis from the group (Z,+) to (Z,+)
Let n,m € Z then we get n+m € Z and we have f(n+m) = 3(n+m) = 3n + 3m = f(n) + f(m)
Hence the function f is a homomorphism.
4. Define Isomorphism.
Let (G,*) and (G’,0) be two groups and f: G — G’ be a homomorphism of groups then fis called a
isomorphism if f is a bijective(one-to-one and onto) function.
5. Give any two Example of Isomorphism.
Example:1
Consider the function f: Z — Z by f(x) = X, Now we have to show that f is a homomorphism.
Take any two elements x, y belongs to Z ,Then x + y belongs to Z, Hence f(x+y) = x +y = f(x) + f(y)
Hence f is homomorphism.
Since the function f(x) = x is bijective. f is an isomorphism.
Example :2
Consider the function f: Z —» Z by f(x) = x. Take any two elements x,y belongs to Z ,Then x +y
belongs to Z, Hence f(x+y) = x + y = f(x) + f(y) Hence f is homomorphism.
Since the function f(x) = x is bijective. f is an isomorphism.
6. Show that (Z; ,+;) is a cyclic group.

ts [0] 1] | [2] [3] [4]
[0] 0 1 2 3 4
[1] 1 2 3 4 0
[2] 2 3 4 0 1
[3] 3 4 0 1 2
[4] 4 0 1 2 3

=1

12 =1+,1=2

P=1+,1"=1+,2=3
1" =1+.1=1+,3=4
°=1+,1"=1+.4=0
Hence (Z; ,+5) isa cyclic group and 1 is a generator.
7. Prove that the group H = (Z . ,+)is cyclic.

Here the operation is addition, so we have multiplies instead of powers. We find that both
[1] and [3] generate H. For the case of [3], we have

1.[3]=[3], 2.[3]=[2], 3.[3]=[1], and 4.[3]=[0].
Hence H=<[3]>=<[1]>.Hence H = (Z4,+) is cyclic
8. Prove that U, ={1,2,4,5,7,8}is cyclic group.
Here we find that 21=2, 22=4, 23=8, 24=7, 25=5,26=1,
So Uyis a cyclic group of order 6 and U, =(2) and also true that U, = (5)
because 51=5, 52=7, 53=8, 54=4, 55=2, 56=1.




9. Define Left coset and Right coset of the group.
If H is a subgroup of G,then for each a € G,the set aH = {ah/ heH }is calledal

eft coset of Hin G and Ha = {ha/h € H }is a right coset of H in G.

10. Consider the group Z4= {[0],[1],[2],[3]} of integers modulo 4. Let H={[0],[2]} be a
subgroup of Z, under +4. Find the left cosets of H.
[0] + [H] ={[0],[2]} =H
[1] + [H] = {[1],[3]}
[2] + [H] ={[2].[4]} = {[2].[0]} = {[0],[2]} = H
[3] + [H] ={[3], [5]} ={[3],[1]} ={[1][3]} = [1] + H
~[0]+H=[2]+H=Hand[1] + H=[3] + H are the two distinct left cosets of H in Z4
11. State Lagrange’s theorem for finite groups. Is the converse true?
If G is a finite group and H is a sub group of G, then the order of H is a divisor of order of G.
The converse of Lagrange’s theorem is false.
12. Define ring and give an example of a ring with zero-divisors.
An algebraic system (R,+,.) is called a ring if the binary operation + and . satisfies the
following conditions.
(i) (atb)+c=a+(b+c) ab,ceR
(ii) There exists an element 0 € R called zero element such that a+0 =0+a =aforallaeR
(iii) For all aeR,a+(-a) =(-a)+a = 0,-a is the negative of a.
(iv) a+b=b+aforallabeR
(v) (a.b).c=a.(b.c) forallab,c eR
The operation * is distributive over + i.e.for any a,b,ce R, a.(b+c)=a.b +a.c,
(b+c).a =b.a +c.a In otherwords, if R is an abelian group under addition with the properties
(iv) and (v) then R is a ring.

Example:The ring (Zlo,+10, Xlo) is not an integral domain.Since 5X102 yet 5£0,2#0 in ZlO-

13. Define unit and multiplicative inverse of a Ring.
Let R be a ring with unity u. If aeR and there exists b € R such that ab=ba=u, then b is called a
multiplicative inverse of a and a is called a unit of R.
14. Define integral domain and give an example.
Let R be a commutative ring with unity. Then R is called an integral domain if R has no
proper divisors of zero.
Example: (Z,+,@) is an integral domain and Q,R,C are integral domain under addition and
multiplication
15. Define Field and give an example.
A commutative ring (R,+,0) with identity is called a field if every non-zero element has a
multiplicative inverse. Thus (R,+,e) is a field if
(i) (R,+) is abelian group and
(ii) (R-{0},e) is also abelian group.
Example: (R,+ ) is a field.
16. Give an example of a ring which is not a field.
(Z,+,8) is aring but not a field, if every non-zero element need not a multiplicative inverse.
17. Define Integer modulo n.

Let neZ", n>1. For a,b€Z, we say that “ a is congruent to b modulo n”, and we write
a=b(modn),if n|(a—b),or equivalently, a=b+kn for some k € Z.

18. Determine the values of the integer n>1 for the given congruence 401 =323(mod n) is
true.

401-323=78=2.3.13 there are five possible divisors (n>1),namely 2,3,6,26,39.

19. Determine the values of the integer n>1 for the given congruence 57 =1(mod n) is true.
57-1=56=23.7. So there are six divisors, namely 2,4,8,14,28,56

20. Determine the values of the integer n>1 for the given congruence 68=37(mod n)is true.
68-37=31, prime, consequently n=31.

21. Determine the values of the integer n>1 for the given congruence 49 =1(mod n)is true.
49-1=48=24.3. So there are nine possible values for n>1, namely 2,4,8,16,3,6,12,24,48.
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UNIT-II-FINITE FIELDS AND POLYNOMIALS

1. Define polynomial.
Given a ring (R,+,.), an expression of the form
f(x)=a,x" +a, ;X" +....... +a,x" +a,x°, where a, e R for 0<i<n, is called a polynomial in
the indeterminate x with coefficients from R.
2. Define Field.
A field is a nonempty set F of elements with two operations ‘+’ (called addition) and ‘-’ (called
multiplication) satisfying the following axioms. For all a, b, c € F:
(i) Fisclosedunder+and-;ie,a+banda-bareinF.
(i) Commutativelaws:a+b=b+a,a-b=b-a.
(iii) Associative laws: (a+b)+c=a+(b+c),a-(b-c)=(a-b)-c.
(iv) Distributivelaw:a:(b+c)=a-b+a-c.

3. What is meant by a finite field?
A field containing only finitely many elements is called a finite field, A finite field is simply a field
Whose underlying set is finite. Eg: F2, whose element 0 and 1.

4. What is meant by polynomial ring?
If R is a ring, then under the operations of addition and multiplication + and .,(R[x],+,.) is
aring ,called the polynomial ring, or ring of polynomials over R.

5. Define root of the polynomial.
Let R be a ring with unity u and let f(x) € R(X),With degree f(x)>1.Ifr and f(r)=z, then
r is called a root of the polynomial f(x)

6. When do you you say that f(x) is a divisor of g(x)?
Let F be a field. For f(x), g(x) € F(X), where f(x) is not a zero a polynomial , we all f(x) a divisor of
g(x) if there exists h(x) € F(X) with f(x)h(x)=g(x). In this situation we also say that f(x) divides
g(x) and that g(x) is a multiple of f(x)

7. Find the roots of f(x)=x2-2Q x.

f(x)=x2-2=(x + v2x - ~/2)

Since +/2 and -~/2 are irrational numbers, f(x) has no roots.
8.Find all roots of f(x)=x2+4x if f(x) z x
712={0,1,2,3,4,5,6,7,8,9,10,11}
f(0)=0+0=0 .. Oisaroot of f)x)
f(1)1+4=5
f(2)=4+8=12=0
So 2 is aroot.
f(3)=21, f(4)32
f(5)=45,f(6)=60=0
So 6 is aroot
f(7)=77, f(8)=96=0
So 8 is aroot.
f(9)=81+36=117.f(10)100+40=140
f(11)=121+44=165
Thus x=0,2,6,8 are the roots of f(x)
9. State division algorithm
Let f(x),g(x) € F(X) with f(x) not the zero polynomial. There exists unique polynomials q(x), r(x)
€ F(X)such that g(x)=q(x)f(x)+r(x),where r(x)=0 or degree r(x)< degree f(x).
10. State the remainder theorem.
The remainder theorem:
For f(x) € F(X)and ae F, the remainder in the division of f(x) by x-a is f(a).

11. Determine all polynomials of degree 2 in z [x].
The polynomials are




B x

(i)  x%+x
(iii) x2+1
(iv) x2+x+1

12. State the factor theorem.
If f(x) and a f(x) € F, then x-a ia a factor of f(x) if and only if a is a root of f(x).
13. Determine polynomial h(x) of degree 5 and polynomial k(x)of degree 2 such that degree
of h(x)k(x) is 3.
Choose h(x)=4x>+x of degree 5 and k(x)3x?2 of degree 2. Then h(x)k(x)= (4x°+x)
(3x2)=12x7+3x3=0+3x3 which is of degree 3.
14. Define reducible and irreducible polynomials .
Let f(x) , with F a field and degree f(x) > 2. We call f(x) reducible over F if there exists
g(x),h(x) ,where f(x)=g(x)h(x) and each of g(x),h(x) has degree >1.If f(x) is not reducible
itis called irreducible or prime.
15. Give example for reducible and irreducible polynomials .
The polynomial f(x) =x*+2x2+1 is reducible . Since x*+2x2+1=(x2+1)2
The polynomial x2+1 is irreducible in Q[x] and R[x]but in C[x] it is reducible.
16. Verify the polynomial x2+x+1 over Z,Z irreducible or not.
The polynomial x2+x+1=(x+2)(x+2) is irreducible over Z3
The polynomial x2+x+1=(x+5)(x+3) is irreducible overZs.
17. What is meant by monic polynomial?
A polynomial f(x) is called monic if its leading coefficients is 1, the unity of F.
Example: x2+2x+ 1
18. When do you say that 2 polynomials are relatively prime?
If f(x),g(x) and their gcd is 1, then f(x) and g(x)are calle d relatively prime.
19. What is the characteristic of R?
Let (R,+,.) be a ring. If there is least positive integer n such that nr=z(the zero of R) for allreR,
the we say that R has characteristic n and write characteristic n. When no such integer exists,
R is said to be characteristic 0.
20. Find the characteristic of the following rings a) (Z ,+,.) b)(Z ,+,.) and Z [x]
The ring (Zs3,+,.) has characteristic 3.
The ring (Z4,+,.) has characteristic 4
Z3[x] has characteristic 3.
21. Give an example of a polynomial f(x) R x where f(x) has degree 8, is reducible but has
no real roots.
Choose f(x)=(x2+9)*is of degree 8, is reducible but has no real roots.
22. Write f(x)= 2x 1 5x 5x 3 4x 3 zx as the product of unit and three monic

polynomials.
(%)= (2x? +1)5x° —5x + 3 4x—3)

= 2(x + 4)(x® - x + 2)4(x — 6)

= 4O(x2 + 4Xx3 —X+ 2)4(x -6)

=5(x? +4)x* - x + 2)4(x - 6)
Here each polynomial is monic.
23.If f(x) and g(x) are relatively prime and F x where F is any field , show that there is no
element ac F such that f(a)=0 and g(a)=0
Suppose there exists ae F such that f(a)=0 and g(a)=0. Then (x-a) would be a factor of both f(x)
and g(x). So (x-a) would divide the gcd of both f(x) and g(x).But this is a contradiction since f(x)
and g(x) are relatively prime.
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UNIT-III
DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS
PART-A

. Write about divisible.

An integer b is divisible by an integer a, not zero, if there is an integer x such that b = ax, and
we write a/b. m In case b is not divisible by a, we write a\b.
. Define division algorithm.

Given any integers a and b, with a > 0, there exist unique integers q and r such that b =qa +r,
0 <r<a. Ifa\b, then r satisfies the stronger inequalities z < r < a.
. Define greatest common divisor of b.




The integer a is a common divisor of b and c in case a/b and a/c. Since there is only a finite
number of divisors of any nonzero integer, there is only a finite number of common divisors of
b and c, except in the case b=c=0, If at least one of b and c is not 0, the greatest among their
common divisors is called the greatest common divisor of b and c and is denoted by (b, c).
4. Define Euclidean algorithm.
Given integers b and c > 0, we make a repeated application of the division algorithm, to
obtain a series of equations

b=cqi+ry, O<ri<c
C=T1q2+ I3, O<rz<ri
ri=riqs+rs, 0<rz<r1
Ij-2 = Ij-1Qj + Tj, O<rz<r;
Ij-1 = TjQj+1

The greatest common divisor (b, c) of b and c is rj, the last nonzero remainder in the division
process. Values of xo and yo In (b, ¢ ) = bxo+cyo can be obtained by writing each r; as a linear
combination of b and c.
5. Solve by Euclidean algorithm for b=288 and c=158.
288=158.2-28
158=28.6-10
28=10.3-2
10=2.5
6. Define least common multiple.
The integers aj,az,....an. all different from zero, have a common multiple b if ai/b for i=1,2,...n.
The least of the positive common multiples is called the least common multiple [le, and it is
denoted by [a1,a2,....an].
7. Define prime number.
An integer p>1 is called a prime number, or a prime , in case there is no divisor d of
satisfying 1<d<p.
8. Define Composite number with example.
If an integer a>1 is not a prime, it is called a composite number. Eg: 4,6,8,9....
9. State the binomial theorem.

nn
For any integer n21 and any real numbers x and y (x + y)n = Z(kak VAR
k=0
10.Define arithmetical function with example.
A function f(n) defined for all natural numbers n is called an arithmetical function. Eg:x2+x-3
11.Prove that if n is an even number, then 37+1 is divisible by 2; if n is an odd number, k
then 3n+1 is divisible by 2Z; if n is any number, whether even or odd, then 37+1 is not
divisible by 2m with m=>3.

Since the square of an odd number minus 1 is a multiple of 8, when n=2m we have
3n=32m=(3m)2=8a+1, and  therefore3r+1=2(4a+1). @ When n=2m+1, we  have
3n+1=32m4+1=3(8a+1)+1=4(6a+1). Since 4a+1 and 6a+1 are odd, the statement is true.

12.Show that if 1<aj<az....<an-1<ap, then there exist i and j with i<j, such that ai/a;.
Let aj=2"b;,n;=0), b; is odd. Since among 1,2,....,2n, there are only n distinct odd numbers
bi,....bns1 are not all distinct, in other words, among them there are some equal odd
numbers, Let bi=b;. Then ai/aj.
13.Define square number with example.
If an integer a is a square of some other integer, then a is called a square number.Eg:4,9,16...
14.Find the greatest common divisor of 525 and 231.
From 525=2.231+63
231=3.63+42
63=1.42+21
42=2.21
Therefore g.c.d.(525.231)=21
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UNIT IV
DIOPHANTINE QUATIONS AND CONGRUENCES
PART A
Define linear Diophantine equation.
Any linear equation in two variables having integral coefficients can be put in the form
ax + by = c where a, b, c are given integers.
State about the solution of linear Diophantine equation.
Consider the equation ax + by = ¢ ----(1), in which x and y are integers. If a=b=c=0, then
every pair (x, y) of integers is a solution of (1), whereas ifa =b = 0 and c #0, then (1) has no




solution. Now suppose that at least one of a and b is nonzero, and let g = gcd (a, b). If g/c then
(1)has no solution.

w

Write the solution of ax + by =c.
If the pair (x1, y1) is one integral solution, then all others are of the form x =x1 + kb/g,
y =yi1=ka/g where k is an integer and g=gcd (a, b)
4. Define unimodular with example.
A square matrix U with integral elements is called unimodular if det(U)=+1.Eg: Identity matrix
5. Define Pythagorean triangle.
We wish to solve the equation x2+y2=z2 in positive integers. The two most familiar solutions
are 3,4,5 and 5,12,13. We refer to such a triple of positive integers as a Pythagorean triple or a
Pythagorean triangle, since in geometric terms x and y are the legs of a right triangle with
hypotenuse z.
6. Write the legs of the Pythagorean triangles.
The legs of the Pythagorean triangles.
X=r2-s2
Y=2rs
Z=r2+s2
7. Define congruent and not congruent.
If an d integer m, not zero, divides the difference a-b, we say that a is congruent to b modulo
m and write a=b(mod m). If a-b is not divisible by m, we say that a is not congruent to b
modulo m, and in this case we write a# b(mod m).
8. Define residue.
If x=y(mod m) then y is called a residue of x modulo m.
9. Define complete residue
A set x1,X2,....Xm is called a complete residue system modulo m if for every integer y there is
one and only one x; such that y =xj(mod m).
10.State Chinese Remainder Theorem.
Let mi,mpy,...,m; denote r positive integers that are relatively prime in pairs, and let aj,az,....ar
denote any r integers. Then the congruences
x=a1(mod my)
x=az(mod my)

x=ar(mod my)
have common solutions. If xo is one such solution, then an integer x satisfies the congruences
the above equations iff x is of the form x=xo+km for some integer k. Here m=mim;...m,.
11.Define n-th power residue modulo p.
If (a, p)=1 and xn» =a (mod p) has a solution, then a is called an n-th power residue modulo p.
12.Define Euler’s criterion.
If p is an odd prime and (g, p)=1, then x2=a(mod p) has two solutions or no solution
according as aP-)/2=0r =-1 (mod p).
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UNIT V
CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS
PART A

. State Wilson’s theorem

The Wilson’s theorem states that, if p is a prime, then (p —1)!=—-1(mod p)

. State Fermat's theorem.

Let p denote a prime. If p/a then aP-1=1(mod p). For every integer a, aP=a(mod p).
. State Euler’s generalization of Fermat's theorem.
If (a, m)=1, then a¢(m) =1(mod m).
. State Fermat’s little theorem
If p is a prime and a#0(mod p), then ar-1=1 (mod p)
. Explain the Exponent of an integer modulo n.

Let n be a natural number >1 and a an integer prime to n. if the infinite sequence
a,aZ,a3,......=1 (mod n). Suppose that ad is the first number in the sequence =1 (mod n). then a is
said to belong to the Exponent of an integer modulo n
. Define improper divisor of n

Every integer n is a divisor of itself. It is called the improper divisor of n. All other divisors of
n are called proper divisors.

. Define Eulers Phi function

¢(n) is the number of non-negative integers less than n that are relatively prime to n. In
other words, if n>1 then ¢(n) is the number of elements in Un, and ¢(1)=1.

. If p is a prime, the only elements of Up which are their own inverses are [1] and
[p-1]=[-1].

Note that [n] is its own inverse if and only if [n2]=[n]2=[1] if and only if n2=1(modp) if and
only if p|(n2-1)=(n-1)(n+1). This is true if and only if p|(n-1) or p|(n+1). In the first case,
n=1(modp), i.e., [n]=[1]. In the second case, n=-1=p-1(modp), i.e., [n]=[p-1].

. Find the remainder of 97! When divided by 101.




First we will apply Wilson's theorem to note that 100! = -1 (mod101). When we
decompose the factorial, we get that: (100)(99)(98)(97!)=-1(mod101). Now we note that 100
=-1(mod101),99 = -2 (mod101), and 98 = -3 (mod101).

Hence: (-1)(-2)(-3)(97!)=-1(mod101)(-6)(971)=-1(mod101)(6)(97!)=1(mod101). Now
we want to find a modular inverse of 6 (mod 101). Using the division algorithm, we get that:
101=6(16)+56=5(1)+11=6+5(-1)1=6+[101+6(-16)](-1)1=101(-1)+6(17)

Hence, 17 can be used as an inverse for 6 (mod 101). It thus follows that:
(17)(6)(971)=(17)1(mod101)97!=17(mod101) Hence, 97! has a remainder of 17 when divided
by 101.

10.For prime p25,determine the remainder when (p-4)!is divided by p.

By Wilson’s theorem, (p—1)!=-1(modp). Therefore

-1=(p-1)(p-2)(p-3)-(p-4)!=-6:(p-4)!(modp).

If p=6k+1, multiplying both sides of the congruence by k gives (p—4)!=-k=-(p-1)/6(modp).
If p=6k-1, multiplying both sides of the congruence by k gives (p-4)!=k=(p+1)/6(modp).

11.Find the remainder of 53! when divided by 61.

We know that by Wilson's theorem 60!=-1(mod61). Decomposing 60!, we get that:
(60)(59)(58)(57)(56)(55)(54)(53)(52)51!=-1(mod61)(~1)(~2)(-3)(-4)(-5)(-6)(-7)(-8)(-9)
51'= -1(mod61)(-362880)51!=-1(mod61)(362880)51!=1(mod61)(52)51!=1(mod61) We
will now use the division algorithm to find a modular inverse of 52 (mod 61):
61=52(1)+952=9(5)+79=7(1)+27=2(3)+11=7+2(-3)1=7+[9+7(-1)](-3)1=9(-3)+7(4)1=9(-3)+
[52+49(-5)](4)1=52(4)+9(-23)1=52(4)+[61+52(-1)](-23)1=61(-23)+52(27) Hence 27 can be
used as an inverse (mod 61). We thus get that: (27)(52)51!=(27)1(mod61)51!=27(mod61)
Hence the remainder of 51! when divided by 61 is 2.

12.What is the remainder of 149! when divided by 139?

From Wilson's theorem we know that 138!=-1(mod139). We are now going to multiply
both sides of the congruence until we get up to 149!:
149!=(149)(148)(147)(146)(145)(144)(143)(142)(141)(140)(139)(-1)(mod139)149!=
(10)()(B)(7)(6)(5)(4)(3)(2)(1)(0)(-1)(M0d139)149!=0(mod139). Hence the remainder of
149! when divided by 139 is 0.

13.Define congruence in one variable

A congruence of the form ax =b(mod m) where x is an unknown integer is called a linear

congruence in one variable.
14.Let p be a prime. A positive integer m is its own inverse modulo p
iff p dividesm + 1 or p dividesm - 1.

Suppose that m is its own inverse. Thusm.m =1(mod p). Hencep | m?2 -1.then
p|(m -1)or p|(m + 1).






