EC 8651 - TRANSMISSION LINES
AND RF SYSTEMS



UNIT |
TRANSMISSION LINE THEORY

General theory of Transmission lines - the transmission
line - general solution - The infinite line - Wavelength,
velocity of propagation - Waveform distortion - the
distortion-less line - Loading and different methods of
loading - Line not terminated in Z0 - Reflection
coefficient - calculation of current, voltage, power
delivered and efficiency of transmission - Input and
transfer impedance - Open and short circuited lines -
reflection factor and reflection loss
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Introduction

The transfer of energy from one point to another takes place through
either wave guides or transmission lines

Transmission lines always consist of at least two separate conductors
between which a voltage can exist

Wave guides involve only one conductor

There are two types of commonly used transmission lines

1. Parallel wire (balanced) line

2. Coaxial (unbalanced)_line
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Outer casing

Conductors

Outer conductor

/ Inner conductor

/ Dielectric

Outer casing

(a) Parallel wire (balanced) line

(b) Coaxial (unbalanced) line

Transmission lines
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Transmission Line as Cascaded T sections

To study the behaviour of transmission line, a transmission can be considered to be
made up of a number of identical symmetrical T sections connected in series

If the last section is terminated with its characteristic impedance, the input
impedance at the first section is Z,
Each section is terminated by the input impedance of the following section
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The characteristic impedance for a T section is

Z,_
Zyr = Z,Z, 1+Z'Z,:

If ‘n” number of T sections are cascaded and if the sending and receiving currents
are I and I respectively, then
Ig = Iz e

where v is the propagation constant for one T section
Yy = ot+jB

. YA V4 Z
Y = pa+jB = — nd | =1
e e 1+222+\/Zz(1+422)
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One T section representing an incremental length Ax of the line has
a series impedance Z, = Z Ax

1
Y Ax

The characteristic impedance of any small T section is that of the line as a whole

) Z,
ZO = ’\/2122(1 +Iz;)

Substituting the values of Z, yand Z,,

7 - Z Ax (l ZArYAr)
¢ Y Ax 4
s _Z_( ZY(Ax)Z)
Y 4
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If Ax tends to zero, then Z, becomes

ZO= e

Z Z Z Z, \3
=k 1+ 1 - t | (1 + =1 )2
By the binomial theorem,
Z Z ) _ Z, 1(Z ) 1(. 4 ]
\[Zz(l+422) - Z, [1+2 (422)_8 (422 e

Substituting this value in ¢’ equation,
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4 Zy 1(Z), [Z4 ] zl]z Z,
=1+3572.*\/z, *3l\Z,)\| Z, "128 \ Z, Z, toe
= *+ASZ, Tal\] Z, s \\[/Z, | "18(\yZ, ) T

1
Y Ax

When applied to the incremental length of line Ax, then Z, =Z Ax, Z, =

and propagation constant becomes y Ax,

e = | 4y[Z¥ Ar+ 5 (ZY 2 (@xP+gNZY P (Ax)-T3g WZY )5 (Axy
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Ax
Series expansion for an exponential "> is

2 3 3
Y gAxE 73 (Ax) %

e'dr = 1 +yAx + o + N POSEp——

Equating the above two expressions,

~ZY 2)2 (Ary | ([ZY g (Axp
LY %lx)z s (éx)i +

ZY Ax +

_ m+Q/ZZY )4 Ap + (\[ZYgf"(Ax)z .

If Ax tends to zero then,
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four parameters resistance (R), inductance (L), capacitance (C) and conductance (G),

all distributed along the lines are known as distributed parameters. The equivalent
circuit diagram of transmission line is shown in Fig.2.3.

—

Fig. 2.3. Equivalent circuit diagram of transmission line
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Inductance (L) is defined as the loop inductance per unit length of the transmission
line. It is measured in Henries/km.

Capacitance (C) is defined as the shunt capacitance per unit length between the
two transmission lines. It is measured in Farads/km.

Conductance (G) is defined as the shunt conductance per unit length between the
two transmission lines. It is measured in mhos/km.
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Transmission Line Equation — General Solution

I+dl S
—— ———
L R L R
V+dVv G C Vv

AX e ——

Equivalent circuit of T section of Transmission line
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The parameters R, L, G and C are distributed throughout the transmission line. The
constants of an incremental length dx of a line are shown in Fig.2.4. The series
impedarice per unit length and shunt admittance per unit length are given by

Z = R+joL
Y = G+joC
Consider a T section of transmission line of length dx.

Let V + dV be the voltage
I + dI be the current at one end of T section

Let V be the voltage and I be the current at the other end of this section
The series impedance of a small section dxis (R +jLo) dx
The shunt admittance of this section dx is (G + jCw) dx
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The voltage drop across the series impedance of T secnons ie the potenm\
difference between the two ends of T section is - ~

V+dV-V = IR +joL)dx
dV = 1 (R+joL)dx

ayv - .. (2.1
I I(R+joL) . )

dV
i 1Z

The current difference between the two ends of T section is due to the voltage drop
across the shunt admittance.

[+dl-1 = V(G+joC)dx
dl = V(G+joC)dx
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dl
ax - V(G+joC) .. (22)

a
* dV
—~ = | (R +jolL)

Differentiating equation (2.1) w.r.t. °x’, dx

dxV dl
a2 (R+joLl) gy dx

dl .
Substituting the value of 4y D the above equation

‘f\z’ = (R+joL) (G +joC)V o (23)

Differentiating equation (2.2) w.r.t. *x’
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d?l dV
ae = (GHjoC) 7

dv

Substituting the value of ~7= in the above equation
d?l .
an = R+jol)(G+jeC)l e (24)

But propagation constant is given by

Substituting the value of ¥ in equation (2.3) and (2.4),
d*V s
@ =Y
d?1
dxr = 71

Page 17 of 465 Dr.M.Sivakumar/ECE, MSAJCE



The solutions of the above linear differential equations are

V=Ae"+B e "
I = Ce™+De™ ™
where A, B, C and D are arbitrary constants
Differentiating the equation (2.5), w.r.t. ‘x’

dV
I = Aye"-Bye™
dv

IZ = Aye™ -Bye ™
= A\ZY NZV* _B\ZY V2V~
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[ y=vZY]
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\/ \f_'“-B*\/ e VZ¥x . 2T)

Similarly, differentiating the equation (2.6) w.r.t. ‘x°

g—; = Cye™-Dye ™
dl

VY = Cye”*-Dye™ ™
= CZY VZ¥* _DAJZY ¢ V2=

V = CA /%— NZYx_p '\/% e VY = ... (2.8)
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Since the distance x is measured from the receiving end of the transmission line,
x =0, Sl =g
V =V,
= I Zy
where I is the current in the receiving end of line
Vp is the voltage across the recemng end of the lines

Zy, is the impedance of receiving end
Substituting this condition in equations (2.5), (2.6), (2. 7) and (2.8).

Vi = AtB . (2.9)
[, = C+D .. (2.10)
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Z /Z
VR wpe C -?- _..D "?' ...(2.12)

To solve these equations,

Z ] Y
Let x = v and o= 7
A B
]
=+ (A-B)
But [, = C+D
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C+D = ')l'c' (A-B)
Cx+Dx = A-B

A-B =Cx+Dx ... (2.13)
Similarly, equation (2.12) becomes,
Vg = Cx-Dx
But Vp = A+B
A+B = Cx-Dx ... (2.14)
A-B = Cx+Dx : . {2.13)
Adding the equations (2.13) and (2.14),
2A = 2Cx

A=Cx
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Similarly subtracting the equation (2.13) from equation (2.14),

2B = -2Dx
B=-Dx
Substituting the values of A and B in the following equations
Ve = A+B
= Cx-Dx

But I = C+D
Ipx = Cx+Dx ... (2.15)
Vg = Cx-Dx ... (2.16)

Adding the equations (2.15) and (2.16),
2Cx = Ipx+V,
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C=%5+357 ... (2.17)

»
I
< |

IR Vg Y
..C-2+2 Z

Subtracting the equations (2.15) and (2.16),

2Dx = Igx—Vy
IR vR
D=7%-%
I Ve Y
. D= 5 — 7 ... (2.18)
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The characteristic impedance is defined as

Z, = \[¥
- \/'Si‘fﬁlé . (2.21)
Substituting the value of Z, in equations (2.19), (2.20), (2.17) and (2.18),
A=y5'-*- :1 +-Z§§- | ... (2.22)
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il

2R,
R
=
y .. (2.23)
R, [Y
2 Z
I Zg
4. 2R
t 2z, [ Ve=IxZg)
Zy
L7 ] .. (224)
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_..!.B. Vi Y

D=75-3 Z

_k Lz
2 " 2Z

- R '
= [‘“%] -+ (225)

Substituting the values of A, B, C and D in equations (2.5) and (2.6), the solutions
of the differential equations are

Vi Z 7y V ( /. . ’
o ————— e J ’ ] /.Y x N - "-_"& M’J \ V/'Y . "N 7’ 2(
Iy ZJ& \NZY x Iy ——-7'“ - 7Y x
u e /4 — - ’ / e + 7
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V=Y_B.e\fz_Yx+.Y.B._z.9.e\rZ-‘_{x+Y_& N7vx Yo Z

— 0 —NZY x
2 Zg 2 ¢ T2 Zg°
[ = IR \I-T(x +IR ZR '\I_Yx+.5 —ZYx _ ......Z.'.E e~ VZY x
2 Z 2 Z,
VZY x -—\E?x VZYx _ —~\ZYx
vV = Va(e +2€ )"'Inzo(e 2e ) [~ Va=IrZg]
ﬁx 'J_Yx \I_Y.r_ Yx < vV ?
I=IR( Ze )+Z( _i____)\i["'la"z‘:]

Then equations can be written in terms of hyperbolic functions.
V = VRCOSh\J ZY x+IRZ Sinh\‘ 2Y x -.-(2:30)

I = I cosh\f ZY x + =R smh\I ZY x .. (2.31)
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These are the equations for voltage and current of a transmission line at any
distance ‘x’ from the receiving end of transmission line.
The equations for voltage and current at the sending send of a transmission line of

length ‘I are given by |
Vs = Vi cosh\/_? ! + Z sinh \[ZY ! o {‘.‘ lg.%}
o = I, cosh\[ZY [ + R sinhA\JZY [ [ Vrp=Ip Zg]

Vg = vR[cosh\/WHZR- sinh\[ZY ! ] .- (2.32)

I = I ’:cosh 7Y [ + == smh'\/ ZY | ] ... (2.33)
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Physical Significance of the Equation-Infinite Line

Input impedance:

The equations for voltage and current at the sending end of a transmission line of
length ‘/’ are given by

= VR(cosh\/ ZY | 7 smh\/ ZY | ) ... (2.32)
Ig = I (cosh\/ ZY l+ smh\/ ZY 1 ) .. (2.33)

The input impedance of the transmission line is,
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_ Zo (ZR COSh‘\/ Y I+Zosinh-\,ZY I) |
Z, cosh\/ ZY |+ Z; sinh+[ ZY .. (2.34)
R ZY ) |

S
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Let \/ZY = y

The input impedance of the line is
Zg coshyl+ Z, sinh y!
Ls = Z,

Z,coshyl+Zg sinh yl
Zg + Z,tanh yl
or ZS - ZO Z0+ZRtanh‘Yl
In a different form
VR{( Zo) IV ( ZO)
= — 1+ — +| 1= _mf] ...(2.28
Vs =2 |1z )¢ Z. e (2:28)

I.T( Z Z
Is=—§‘[ 1+-—"‘-)e*fz_‘f"+(1-—z-'§)e-m’] ... (2.29)
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2 Ze Ze
Ig [ (Zr*Z0) yzvi ZO_ZR) —NZV1 ]
IS - 2 L ZO )e ¥ ZO ¢

\" Zo+7Z Z, -7
v (3B o () ] o

2
IR ZR+Z_ m’ (ZR_ZO) _m’ ]
IS = 2 ( ZO }[ e - ZR+ZO e Y (2.36)
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The input impedance of the transmission line is given by,

_ e +fZR-ZZ3o) VIV
o+
Z — 'Y—§' —— Z \ R 0 [.u. VR=IRZR]'l.(2.37)
S Is 0 NZY! (ZR—ZO) ~ZY!
e - e
L \ZR"TZO

.. (2.38)
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If the line is terminated with its characteristic impedance i.¢.,

Ly = g, then the

input impedance becomes equal to its characteristic impedance.
Zs = £,

The input impedance of an infinite line is determined by letting / — o

Zs = Z,

IfK=z;——'

+Z,°

eV +Ke V!

e —Ke '
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Wavelength and Velocity of Propagation

The propagation constant (y) and characteristic impedance (Z,) are called
secondary constants of a transmission line.
Propagation constant is usually a complex quantity

Y = at+jp
where o 1is the attenuation constant.

B i1s the phase shift.
y =\ZY
where Z = R+joL
Y = G+joC
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The charzcteristic impedance of the transmission line is also a complex quantity.

Z
Z, = Y
7 = | R+joL
0 GrjoC
Propagation constant is Y = a+ip

= \’ (R +joL) (G +joC)

o +if = 1 RG-w2LC +jo(LG + RC)
Squaring on both sides,

(a+jB»2 = RG-&2LC +jo(LG + RC)
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o2-B2+2jap = RG-w2LC+jo (LG +RC)

Equating real parts,
o2 — B2
o2
Equating imaginary parts,
2 af

Squaring on both sides,

4 o2 32

o2 B2

Substituting the value of o
(B2 + RG - 02LC) B2

o2

RG - o2LC
B2+ RG - w2LC

® (LG + RC)

o2 (LG + RC)?

0)2
= (LG +RCy

(LG + RC)?
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o2
B4+ B2 (RG - w?LC) - 1~ (LG+RC)? = 0
The solution of the quadratic equation is

— (RG - ©?LC) +\ (RG — 02LC)? + 02 (LG + RCY
= 2

BZ

By neglecting the negative values,

; \/Ech _RG +4 (RG - w2LC) + 02 (LG + RCR
=\/" 2

dz = Bz + RG -~ (02LC
Substituting the value of p

0LC-RG+\(RG-02LCP +0? LG+RCP RG — @ILC

o2 =
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 RG-@2LC +[(RG—@?LCP + 0? (LG +RC)?

2 n

\/ RG — 0?LC + ] (RG — 0?LC)? + 02 (LG + RCY?
o O = ’ 2 | | , '

For a perfect transmission line R=0and G =0,
B2 — (DZLC

B = ® \/ LC
Velocity: | |
The velocity of propagation is given by,
v = Af

A
= 2n f 7~
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® 27

vV = B ['.'B=Tand © =27 f]
Substituting the value of § = ® ‘\/ LC
®
"7 eALC

1
V —
\/ LC
This is the velocity of propagation for an ideal line.

Wavelength:
The distance travelled by the wave along -the line while the phase angle i

changing through 27 radians is called wavelength.

BA = 2n
2 2
A= o A= }'
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Waveform Distortion

The received waveform will not be identical with the input waveform at the
sending end

This variation is known as distortion
1. Frequency Distortion
2. Delay or Phase Distortion
Frequency Distortion: A complex (voice) voltage transmitted on a transmission

line will not be attenuated equally and the received waveform will not be identical

with the input waveform at the transmitting end. This variation is known as frequency
distortion.

The attenuation constant is given by
o \/ RG — @?LC +[(RG — 0?LCY + ? (LG + CR)2
2
a i1s a function of frequency and therefore the line will introduce frequency
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Delay or Phase Distortion: For an applied voice-voltage wave the received
waveform may not be identical with the input waveform at the sending end, since

some frequency components will be delayed more than those of other frequencies.
This phenomenon is known as delay or phase distortion.

The phase constant is
3 - _\/ ©?LC - RG +/(RG - o?LCP + @2 (LG + CR?
2

B is not a constant multiplied by ® and therefore the line will introduce delay
distortion.

Page 44 of 465 Dr.M.Sivakumar/ECE, MSAJCE



The Distortion Less Line

If a line is to have neither frequency nor delay distortion, then attenuation factor g
and the velocity of propagation v cannot be functions of frequency.

If v=£§'

B must be a direct function of frequency

; - _\/ o?LC — RG +J(RG — 0?LC) + 02 (LG + CR)?
- 2

For B to be a direct function of frequency, the term
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(RG - @2 LC)? + o2 (LG + CR)? must be equal to (RG + 02 LC)?

1762 + m“}/CZ -2 02 ECRG + 0212G? + @2 C2R2 + 2 mz}/éRG

= RyG2+m4/I£2 C?2+2 0?2LCRG
®?L2G2 + 02C2R?2 = 2 @2 LCRG
@?L2G2+ 02 C2R2-2 ®2LCRG = 0

(LG-CR) = 0
LG = CR
R_G
L C

This is the condition for distortionless line.
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Propagation constant y = VR + chEL) (G +jwC)

R
[Fre)e(Gor)
_ R Y
=V A[(E+j0) (S
R_G
But L =0C
_ R
Y = '\/LC ("[':+jo))

Then B = /coZLC—RG-;RG+0)2LC
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I
4
[\ ® )
ol
.-
@)

B = 0ALC
Velocity of propagation is vy = %"
1
vV = T

This is the same velocity for all frequencies, thus eliminating delay distortion
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Attenuation factor

Yl \/RG-mch+\F(RG—m2LC)2+m2 (LG + CR?
- 2

To make o is independent of frequency, the term (RG — w? LC)?2 + w? (LG + CR)?
is forced to be equal to (RG + w2 LC)2.

(LG-CR) = 0
LG = CR
L R
C~G

This will make o and the velocity independent of frequency simultaneously. To
achieve this condition, it requires a very large value of L, since G is small.
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RG - @2LC +\(RG + 02 LCR2 )"
2

\/RG-—O)ZLC+RG+(02LC

The attenuation factor o =

2

2 RG
2

\RG

It is independent of frequency, thus eliminating frequency distortion on the line.

Il

0/
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The characteristic impedance Z, is given by

7 = R+ij
o G+_](DC
( w»T
+ ja)
But L = — for distortionless line.
L C
L
L C

It is purely real and is independent of frequency
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Loading of Lines

e To achieve distortion less condition = increase L/C ratio

* Increasing inductance by inserting inductances in series with the line
is termed as loading such lines are called as loaded lines

* Lumped inductors = loading coils
Types of loading

(a) Lumped loading

(b) Continuous loading

(c) Patch loading
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Unloaded

Lumped loaded

(o)

Attenuation

/___ Continuously loaded

>

Frequency (f)

Comparison of loaded and unloaded cable characteristics
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Inductance loading of Telephone cables

Consider an uniformly loaded cable with G = 0. Then,
Z = R+joL

Y =joC

7 = \R2+ (Lo) tan“'(%)

T R
VR2+(Lo)? |5 - tan >
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Propagation constant y =

‘\/\/R2+(La))2 '7'27" — tan"'IjRg (O)Cl%_]
(DC\/R2+(L0))2 n — tan~! R
Lo

‘\/(coC) (Lm)‘\/ 1 +(Lo))2 % — -;— tan-! E%)—

_ R
= co\/LC ‘\/1+ Lco

L
2" 2 tan™!
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Since R is small with respect to Lo, the term (i%)_) is neglected.

Ly = r 1. R

nt 1 R
n 1 R )

— = = tan-l
cos O cos(2 5 tan Lo

(1 _,_13_.)
S1n 2tan

Lo

For small angle, sinf ~ tan0 =0
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R

so that — —
cos 6 > Lo
_— . 1 R
Similarly, sin® = sin (’g‘ -5 tan-! Lo

o)\l LC (cos© +j sin 0)
R .

o\ LC (ZLO) +j)

= thc +jo)\/LC

C
=% ‘E+ja) LC

Propagation constant vy

-
I
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. R /C
. Attenuation constant o0 = 5 L

Phase-shift f = \/ LC
0] 1
B

- iz

Velocity of propagation v =

Campbell’'s Equation

The series arm of T section including loading coil is given by

_Z;!:.__Zc Zl
2 — 2 7
Zl

where 5 is the series arm of T section.
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/ Loading coils \

N
N

Equivalent T section for part of a line between two lumped loading coils

Z, vl
Zl' ZC Ll

where / is the distance between two loading coils
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The shunt arm Z, of the equivalent T section is

22 = sinh y!
For loaded T section 7
coshy'l = -2-22-
Z,
"2— +Z, tanhy—l
=1+ Z
sinh y/
y! _ coshyl-1
But tanh 5 sinh 77
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Substituting this value in above equation

Z. _ coshyl-1

2 * 2o " ginhyl
s.coshy'l = 1 + Z.
sinh y/
ZC
'i'sinh vyl + Z,(coshyl—1)
— -+ —
1 Z.
Z,
=1+57 sinhy! + coshyl — 1
Z, |
coshy'l = 57 sinh y/ + coshy!/
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Reflection on a line not terminated In Z,

When the load impedance is not equal to the characteristic impedance of a transmission line,

reflection takes place, i.e., Z, # Z, , reflection occurs.
If a transmission line is not terminated in Z, , then part of the wave is reflected back. The

reflection is maximum when the line is open circuit or short circuit.

From the general solution of a transmission line, the equations for voltage and current are

expressed as:

E

I=

_ Ep(Zr+24y)

27,

In(Zp +Z,)
27,

i
el +(
)
el® —(

Zp -2

Zp+Z,

Zp -2

Zp+ 2,

where s -—> is the distance mgasured from the receiving endhece wsarce



The first component of E or | that varies exponentially with +s is
called the incident wave which flows from the sending end to the
receiving end

The second term, varying with e™7°, must represent a wave of
voltage or current progressing from the receiving end towards the
sending end is called reflected wave

In case of an infinite line (S = Q0) of for Z, = Z, the second term of
the equation becomes zero and the reflected wave is absent

When Zp = Z,, the waves travel smoothly down the line and the
energy is absorbed in the Z, load without setting up of a reflected
wave. Such a line is called a smooth line
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Incident voltage component is given by

Z
ER[I+~—9~]
E]:ER(ZR+ZO)eys: ZR s
2Zp 2

Reflected voltage component is given by,

Rl 1-=-
Ez._:ER(ZR—ZO)e—ys: Zp —s

27, 2
If Zz =0 which represents an open circuited line,
2 2
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Ats=0,both E and E, have an amplitude of E,/2. Thus at the receiving end, initial value of
the reflected wave is equal to incident voltage.

Open Circuit Open Circuit

Incident Wave
=TT T~ - /”.-
\," s >\ N ? " 0
I\_/\\‘ /] ] TN/ v
’I l \‘--..—"J \\\ ’//
Reflected

(i) For time instantt=0 (ii) For time instant t = 1/8 f

~
N

-i-m l

Voltage waves for an open-circuited line
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Open Circuit

(iii) For time instant t = 2/8 f
Current waves for a open-circuited line

I'he two current waves are equal and of opposite phase:

Ip s .
[, =-& e incident wave
]R A-YLS'
I, Y e reflected wave
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Reflection Phenomenon: The quantity actually transmitted along the line is energy. This energy
is conveyed by the electric and magnetic fields traveling or guided along the line.

The energy conveyed in the electric field is

CE?

w,= joules/m?

The energy conveyed in the magnetic field is

1
W, = LI joules/m?

L
For such a line, R<<oL, G=0, Zoz\[“;
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Wez-!z—L]z =W,

Thus W, =W, atallthe points along the ideal line terminated in Z, (or) the electric field
Dr.M.Sivakumar/ECE, MSAJCE

energy equals the magnetic field energy.
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Reflection coefficient

Reflection coefficient is defined as the ratio of the reflected voltage to the incident
voltage at the receiving end of the line.

_ Reflected voltage atload Vg
Incident voltage atload ~ Vg

The equation for the voltage of a transmission line is

Ve (Zg+Z,) Zp—~Z
Yx 0 -Yx
v 27, e’ + (ZR+Zo)e

Vi (Zg +Z,) N Vr (Zr - Z,) o

= Yx
v 27y ° 2 Zy
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The first term (e'”) represents incident wave, whereas the second term (e~ ')
represents the reflected wave. The ratio of amplitude of the reflected wave voltage to
the amplitude of the incident wave voltage is nothing but reflection coefficient.

Vr (Zg - Z,)
2 Zy _ -4
K=Nozerzy)  ZrtZ
27,
ZR—ZO
N ZR+ZO

K

It is also defined as in terms of the ratio of the reflected current to the incident

current. But it is negative.
3 Reflected current at load I

Incident current at load I
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Reflection Factor and Reflection Loss

Zg

O

Ty . 1 L X I ¥ J &1 § § 1 ]

Transmission line with voltage source VS and impedance Zg

current ratio of the transformer is given by I, Zg

I, ~ Zy
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The current through the source is
Vs
-2 L

The current flow in the secondary of the transformer

Z
L' = I, /zi
vV Zs
2Zs \/ Z,

_ Vs
21[Zs Zg
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The current in the load impedance Z,

1Ly = =LYl
2 | Zg + Zy |

The ratio of the current actually flowing in the load to that which might flow under
matched condition is known as reflection factor.

| Vs |
L1 |Zs+Z|

A
12[ZsZ, |

2[Zs Zo
Zs+Zy
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The reflection loss is the reciprocal of the reflection factor in nepers or dB

Reflection loss = In 71(_

g Ls+ Zy
n s \/ Z. 7, nepers
= 201 L% | 4p
% | 2[ZsZ¢
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Input Impedance and Transfer Impedance of
Transmission Line

Input impedance :

The equations for voltage and current at the sending end of a transmission line of
length ‘I’ are given by

Vg VR(cosh\/ AQN! + — smh\/ Y | )
Is = I (cosh\/ ZY l+—' smh\/ ZY | )

The input impedance of the transmission line is,
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Lg =

\

Vg (cosh \/ ZY | + 7 smh \NZY 1

/
)
/

Ig (cosh\/ Y l+ smh\/ ZY |

I Zg (cosh ZY | + 7 = smh\/ Y 1)

Ir (cosh \ZY | + smh \ ZY l)

Zy (Zg cosh \ ZY !+ Z,sinh \ZY 1)
(Z cosh \ ZY [+ Zg sinh \ZY 1)
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The input impedance of the line is
" Zgp coshyl+Zysinhyl
Zs = Zo | Zycoshyl+ Zg sinhyl_

| PZR+Z0tanh‘yl-
ZS - ZO _Z0+ZRtanhYl_

In a different form.

Vr Lo | \ZVI Zo | -NZVI
vie P (1o z2) o™ o1 )

R ;
Ig Zr | Z¥! Zr \ _Z¥I |
IS=-2-|:(1+—Z";)3 + I—ZO e ]
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Vi [(Zg+Z Zp—Zp)
Vg = ..2_[( 7 0] eNZY! +( RZR Oje—\lzvz
Ig [ (Zg +Z, Zo-Zr)\ _Jyzv :
s = 7[( Z, )e ZYL+[ 0Zo R/e_ i
\' )(ZR+Z Ze—-Z _
Vo = | = 0 [ ZY ! R0 | —ZYI
s =2 )\ 7 Ze ] e +(ZR+ZO)6
Ir (ZR+Z Z
[o = — 0][ ZY | R —\[ZY!
52 Z ¢ (ZR"'Z’)
The input 1mpedance of the trans(mlssmn line is given by,
eNZY! 4 Zg—Zo" —[ZY!
. Vs 7 \Zr+Zg) ©
ST . ~ <0 )
S (Z .'V =
NZYI _ ZR Zy) o~ NZY1 VR = e 2ad
\ l%age 7894)65 — Dr.M.Sivakumar/ECE,MSAJC-E




Let \|ZY =¥

The input impedance of the transmission line is,

T (BT
. . \ZR T Z,
> ° Yy! _ (ZR_ZO -yl
€ \Zp+Zy) ¢ |

If the line is terminated with its characteristic impedance ie., Zp = Z,, then the

input impedance becomes equal to its characteristic impedance.
Zg = Zg

The input impedance of an infinite line is determined by letting / — oo
ZS = ZO
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Zr—Z,

If K = Ze+Zy then
o' +Ke ¥
Le = Z
> Olet —Ke !

Transfer impedance :

the ratio of voltage at the sending end (transmitted voltage) to the current at the

receiving end (received current).
Vs
T I,
N VR (Zg + Zy)
S 27y

" +Ke 1)
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[+ VR=1g Zg]

S
2o

2 2

— )*'ZO(

Zt = Zgcoshyl + Z,sinhy!
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Z“)e-v'

e'yl _e—'yl )
2

Dr.M.Sivakumar/ECE, MSAJCE



Open Circuited and Short Circuited Lines

The expressions for voltage and current at the sending end of a transmission line of

length ¢/’ are given by

Vg = vR[cosh\f_?H smh\/—_l
I, = IR[cosh\[Z?l+"Z'ESinh\/ZYl
(0 -

The input impedance of a transmission line is given by
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Zs

VR[cosh\/_?l+—smh\/ Yl]

Z
Ig [cosh \ZY I + EB‘ sinh\[ZY [ ]
Vi Z, (Zg coshyl+ Z sinh yl)
I Zg (Z,coshyl+ Zg sinhyl)

Zp coshyl+ Z, sinh yl
°\ Z, coshyl+ Z; sinh y/  Zg

Zg cosh yl + Z_ sinh y!
Z, coshyl + Z sinh yl
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If short circuited, the receiving end impedance is zero.
ie, Zp =0

. Z, sinh yl
Lo = 2 (Zo cosh yl)
Short circuited impedance
Z, = Z,tanhyl

If open circuited, the receiving end impedance is infinite.

ie., Ip =
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Input impedance of transmission line can be written as

- Z, -
coshyl + 7 = sinh y!

R
°l Z,

== cosh yl +
A osh y smhyld

Zs = Z

Applying Z, =

Then Z, = Z, [ —Z%thﬁgJ

The open circuited impedance
Z,, = Z, cothyl
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By multiplying open circuited impedance and short circuited impedances
Z,.Z, = Z2tanhyl cothyl
= Z2

The characteristic impedance is given by

'\/ Zoc sC

By dividing short cuculted impedance by open circuited impedance

Ze _ Z,tanhyl _ = tanzh y/
Z Z, coth y/
ZSC‘
tanh y/ = 7
i [ e
[ = tanh 7
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Problems

A lossless line has a characteristic impedance of 400 ohms. Determine the standing
wave ratio of the receiving end impedance is 800 + j0.0 ohms. [Nov./Dec. 2010}

Given: Z =400 ohms, Z =800 + 0.0 ohms

i) Reflection coefficient
Zp—-Zy _800-400 _ 400 _

1
=ZR+ZO 800+400 1200 3

i) Standing wave ratio

oo Lk 143 g

-k 1-1/3
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A transmission line has the following unit length parameters. L = 0.1 pH; R = 5
ohms, G = 0.01 mho, C = 300 PF. Calculate the characteristic impedance and propa-
gation constant at S00 MHz. [November/December 2010]

Ans:
R=50ohms, L=0.1 uH, C=300PF, G=0.01 mho
f =500 MHz
Z=R+joL=5+j2n x 500 x 10°) (0.1 x 107°)
Z=5+314.15
=314.199/89.088°
Y =G +joC
=0.01 +j(2n x 500 x 10° x 300 x 107'%)
Y =0.01+,0.9424

= (0.9425/89.39°
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A
Characteristic impedance Z,= 47

314.199 £89.088°
\ 0.9425./89.39°

Z = 18.281/-0.151°Q

Propagation constant Y = \/ZY

= \/314.199/ 89.088 x 0.9425 /89.39°

y = 17.2085/89.239°
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The characteristic impedance of a uniform transmission line is 2309.6 ohms at a
frequency of 800 MHz. At this frequency the propagation constant is
0.054 (0.0366 + j0.99). Determine R and L. [November/December 2010]

Given: Z,=2309.6 ohms, f=800 x 10° Hz

vy =0.054 (0.0366 + j0.99) JoL =j123.47
©=21f =27 x 800 x 10° oL =123.47
27 x 800 x10°

=(2309.6) (0.054 (0.0366 +,j0.99))
R +joL =456 +;123.47
R=4.56 Q/km

= 0.0245 puH/km
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Find the attenuation and phase shift constant of a wave propagating along the line
whose propagation constant is 1.048 10/ 88.8°. [November/December 2008]

y=1.048 x 10/88.8°
y=o+/B

=2.19 x 10°+,1.048 x 10~
a=2.19 x 10 Nepers/m
B=1.048 x 10~ radians/m
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A transmission line has Zy=7452-12°Q and i1s terminated in Z,=100 Q.

Calculate the reflection loss in db?

Reflection Factor k =

27,2,

Zp+2Z,

2,/745x100

745+100

= 0.645

1

Reflection Loss = 20103m

=20 log

0.645

=3.7751 dB
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Calculate the characteristic impedance of a transmission line if the following mea-
surements have been made on the line. Z, =550 /- 60° Q and Z, = 500 . 30°€2.

5

[November/December 2007]

N
I

VZoc - Zsc

- \/@4—600-5004300

= 558404 / @”
9
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If the reflection coefficient of a line is 0.3 [ — 66°. Calculate the standing wave ratio.
[May/June 2009]

Given: K=03 - 66°

=|K] £¢

Standing wave ratio
1+ K|
S = SWR _]‘|K|
_1+03 1.3
1-03 0.7
=1.8571
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A generator of 1 V, 1 KHz supplies power to a 100 km lon
having following constants.

R = 10.4 Ykm

G =08 x 10°° mho/km
Calculate Z, attenuation constant o,

g line terminated in Z, and

L = 0.00367 H/km

C =0.00835 x 10° F/km
phase constant, voltage and power.

. . [Nov./Dec. 2006], [May/June 2005]
(i) The line constants

Z=R+ joL
=10.4+ j23.0 =25.29 £66°
Y=G+j0)C : 03 > \C b YR 3y % \"\v\' 00 23S x

=0.8x107% + j52.5x1078
=52.6x107° £90°
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(ii) Characteristic Impedance Z,

o
Z, =\/Z = J 232 4666 =692 £ —12° ohms
Y 52.6x10™ £90°

(1ii) Propagation constant y
66 + 90
y=NZY =\[252 £66° x52.6x1076 £90° = 0.03 / :

Y =0.0363 £78°
v=0.007928 + j0.03553 = + jB

where o is the attenuation constant,

B is the phase constant.

a = 0.007928 nepers/km
B=0.0355 rad/km
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(iv) Wavelength (1)

n2T__ 2T _176.84=17Tkm
B 0.03553

(v) Velocity of Propagation

3
® 2axI1x10° _ 6230 =177000 km/sec.

V= — =

B~ 003553 0.0355

(vi) Sending Current:
Since the line is terminated in Z, then Z; = Z,

E, 1£0°
] =

= - =0.00145£12° 4
S Zy 692£-12

=1.45x 107 £12° fnt
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(vii) Received Current

I
= ""YI
Iy= Ie
— 1 e—al e—_}B,
S

o =0.00755 neper/km
B=0.0355 rad/km
/=100 km.

1,=0.00145212%xe
=0.00145212° xe V" x e

-0.755 e—j0.0355x 100
-73.55

¢~/3-33 1s equivalent to an angle of —3.55 radians or —203.8 deg
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180
[Radians into degrees —3.55x—=-230.8
T

IR =0.00145 £12°xe *7% £ -203.8°
=0.00145 £12°x 0.472 £ -203.8°

=0.000685 [~ 191.8° amperes

(viii) Received voltage, E,=1,-Z,

E, = 0.000685 £-191.8x692 £ —12°
Ep=0.474 £ -203.8° volts
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(ix) The received power is given by
Pr=Ep I5cosB

0 is the angle between E, and | R

0=203.8°-191.8°

0=12°

Py =0.474x0.000685x cos 12°
=318x107% watts
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A generator of 1 volt,1000 cycles, supplies power to a 100 mile open wire line
terminated in 200 ohms resistance. The line parameters are:

R = 10.4 ohms per mile
L = 0.00367 Henry per mile

G =08 x 10° mho per mile
C = 0.00835 pf per mile

Calculate the Reflection coefficient, Input impedance, The i/p power, The o/p power,
Transmission efficiency.

[April/May 2011], [May 2009], [Nov./Dec. 2009], [Nov. 2005]
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Ans: The line constant are computed in the previous problem
7 =25.2 766 ohms per mile.

Y=52.6x10"° £ +90° mho per mile.
Z,=692 £ —-12° ohms

y=0.0363 78°
o = 0.00755 neper per mile.

B =0.0355 radians per mile.
al =0.755 neper

B/ =3.55 radians = 203.8°
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(i) The reflection coefficient K
K——'ZR -Zy _ 200-692 /£ -12°
Zp+Zy 200+6922—-12°

200+ jO—676.87 + j143.87
200+ jO +676.87 — j143.87
 —476.87 + j143.87

~ 876.87 - j143.87
49809216321

 888.59./-9.317
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(ii) The input impedence

eyl +Ke-71
Zs =2 et —Ke™
el = . g/Bl _ 0755 £903.8° =2.12.2203.8°
eV —g Bl =075 ,_203.8° =0.472 £-203.8°

Z,=692/-12°

=692Z—12°(

—

(5 12.,203.8° + 0.558.2172.8° x 0.472 £ —203.8°

1 2.12.£203.8° - 0.558 41 72.8°x0.472 £ —203.87 |

1.975 £210°
2.285£198.5°

Page 104 of 465 Dr.M.Sivakumar/ECE, MSAJCE




=692 /—12°x0.865/11.5°

L

Z, =597 £0.5°

(iii) The input current

=210 _000167.,+05° amps
*TZ, 597£-0.5°

A
(iv) The received current /,

Ir@Zr+2y)
27,
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YA

0.00167.£0.5° =R (888:39£-9.5%) ) s 198.5°)

1384 £-12°

(v) The load voltage E, {b\b\ \ 5 (J‘ b
ER :[RZR ::OOO] ]3[__(2%50 %200

N
=0-226[~ﬂ'2(a).5°V \;
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(vi) The power delivered to the load
P =I%R
=0.00113%x200
Pp =0.000255 watt

(vii) The power input to the line
P,=E I cosO

where 0 is the angle between E, and /|

=1.0 x0.00167 cos0.5°
P, =0.00167 watt
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(viii) Efficiency of the transmission line

n:—e&xlOO%
PS

~0.000255

= x 100%
0.00167

1’]:]5.20/0
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A transmission line has the following parameters per km.
R=15Q, C=15uF, L=1mH, G =1 umbho.

Find the additional inductance to give distortionless transmission. Calculate a and 3
for this inductance added transmission line. [Nov./Dec. 2007]

For the distortionless line,

RC=L'G
-6
L,_;E_g:leIleg s
G 1x10

So that additional inductance required is
225-1x107>=224.999 H
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For the loaded line:
Y
______\/15><10"6 1107 \/ 225
2\ 225 2 \15x107°
o = 0.00387 N/km
3:(0\/-17(?

3=6.283x10 3 \[225x15x1078
3= 365 rad/km
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A transmission line operating at 500 MHz has Z, = 80Q2, a = 0.04 Nepers/m, B = 1.5
rad/m. Find the line parameters series resistance (R{2/m), sereis inductance
(L H/m), shunt conductance (G mho/m) and capacitance between conductors
(C F/m). [May/June 2007]

f=500MHz, Z =80 QQ, o =0.04 Nepers/m, 3 =1.5 rad/m
The series impedance of a line is given by
Z=R+tjoL=Z 1y
Y=o +/j3=0.04+,15=1.5 ,88.5
R+joL=24Yy=80 ,0°x 1.5 ~88.5°
=120  88.5°
R+ jol =3.14+;119.96
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Equating real and imaginary parts,

R=3.140Q |

wl=119.96

_119.96 _ 11996 _ 119.96
©  27500x10% 3142x10°

L

L =38.12 x 10° H/m.

The shunt admittance of a line is given by,

Y=G+ja)C=—L
Z
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_1.5./88.5°
 8040°
=0.01875 £88.5°

G+ joC=4.9x10"* + j0.01874

Equating real and imaginary parts,

IG =0.49x107> mho/m I

oC=0.01874
_0.01874  0.01874
¢ @ 3142 x10°

C=59x10"12F/m.
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UNIT 11
HIGH FREQUENCY TRANSMISSION LINES

Transmission line equations at radio frequencies - Line
of Zero dissipation - Voltage and current on the
dissipation-less line, Standing Waves, Nodes, Standing
Wave Ratio - Input impedance of the dissipation-less
line - Open and short circuited lines - Power and
impedance measurement on lines - Reflection losses -
Measurement of VSWR and wavelength
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Introduction

* When a line, either open-wire or coaxial, I1s used at frequencies of a
Mega Hertz or more, certain approximations may be employed leading
to simplified analysis of line performance

The assumptions are usually made are:

1. At very high frequency, the skin effect is very considerable so that
currents may be assumed as flowing on conductor surfaces, internal
Inductance then being zero

2. Due to skin effect, resistance R increases with ./f. But the line
reactance oL Increases directly with frequency f. hence wL > R

3. The lines are well enough constructed that G may be considered
Zero
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Skin effect:

Skin effect Is the tendency of an alternating current(AC) to
become distributed within a conductor such that the current density Is
largest near the surface of the conductor, and decreases with greater
depths in the conductor

Parameters of the open wire line at high frequencies

Due to skin effect the current is considered as flowing essentially on the surface of the
conductor in a skin of very small depth. Hence the internal inductance and internal flux are reduced

nearly to zero.
The inductance of an open wire line is given by,

p d}
. -7 ~— +4In—
L=10 [W" a
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The first term on the right hand side of the above expression represents internal inductance of
the line due to internal flux linkages in the conductors and is zero for a open wire line.

Hence the inductance of the open wire line is .\

d
L=4x 107In - henrys/m

d
=9.21 x 107 log,, . henrys/m

«— dq —T

a — radius of conductor

d — distance between conductors Cross section of parallel wires
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The value of capacitance of a line is not affected by skin effect or frequency and hence the
capacitance of a open wire line with air dielectric is given by,

nELE

_ ver
C= 7 farads/m

In—
a

where ¢, = Permittivity of free space = 8.85 x 1072 {/m,

g, =1 forair

27.7
C= 4 Hufm
In—
a
12.07
C= THRS/m
log;o

a
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The‘effective thickness of the surface layer of current is given by,

where p = conductor permeability = 4n x 10-7 henry/m for copper.

o = conductivity of conductor = 5.75 x 10’ mho/m for copper.

The effective thickness is then given by,

0.0664
d= "‘J-‘}-" (for Copper).
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The resistance of a round conductor of radius ‘a’ meters to direct current is inversely
proportional to the area as,

k
Rdc = —
2
na
I k &k
where R=2- =% - >
A A ma
While that of a round conductor with alternating current flowing in a skin of thickness 8 is.
k
R, =
2nad
Therefore the ratio of resistance to alternating current to resistance to direct current is given

by,
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R, anfus a

— A

R, 2 25

For copper

Ree _7.53aF
Ry

From the above equation it is clear that for the large radius conductors, increase in resistance
with increasing frequency is considerably large as compared to that of the conductor of small

radius.
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PARAMETERS OF THE COAXIAL LINE AT HIGH FREQUENCIES

Because of the skin effect, the current flows on the outer surface of the inner conductor and
the inner surface of the outer conductor.

Outer
Conductor
Sheath

Cross Saction of-a¢ coaxtal cable Dr-M.Sivakumar/ECE, MSAJCE



For a coaxial line the inductance is given by,

14
2.,,....,__2C lnz Q'? |
L=1071""g " (c2_p?)t (2 _p?
e /
second term and third term represents flux linkages inside the inner and outer conductors,

H/m

The skin effect eliminates flux linkages and hence the inductance of conxial line is given by,

b
L=2x 107 In - henrys/m

b
L =46 x 107 log,, p henrys/m
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The capacitance of the coaxial line is not affected by the frequency

2TE
C= b farads/m
In —
a
ANESE,::) ,
= In-[?- farads/m , €, = 8.854 x 1012 f/m
a

55.5¢

C = :’ upf/m
e
a
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Due to skin effect resistance increases and the resistance of coaxial copper line is:

11
R =4.16 x 10 J?[r;]ﬂ/m

where a and b are the outer radius of the inner conductor and inner radius of the outer conductor
in meters respectively.

The ac resistance of the coaxial cable is derived as follows,

a” 2nadc 2mbdc 2ndc|la b
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The ac resistance per unit length of a copper conductor is given by,

] [1 ] ]
R = ""“5
ac a
2n(0'0664](5.75x 107]

Jf
S 1]
R _=4.16 x 107 ﬁ[y;]mm

The dc resistance of a coaxial line is given by,

11 1
R = >t Q/m

d  TO| a (cz—bz)_

¢ — outer radius outer conductor.
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Line constants for zero dissipation
In general the line constants‘for a transmission line are:
Z=R+joL
Y=G + joC

Z |R+joL
Characteristic impedance Z,= \y T4/ 5 ioC

Propagation constant Y= VZY = (R + joL)(G + joC)

Y =a +jB.

For a transmission of energy at high frequencies, ®L > > R
G=0

Page 127 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Z=joL, Y =joC
Since oL>>R, G=0

Z, = < JmL \/:ohms
Y \JjoC

-
Z, = R, = VE ohms

Using the inductance and capacitance a open wire line at high frequency, the value of
characteristic impedance of the open wire line can be found as,

L=4x 1071 d =1
=4 x n - h/m C=1nd/q Huf/m
L d d
R = ,/E; =120 In - ohms =276 logm; ohms
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The characteristic impedance of the coaxial line can be computed as,

L=4.60 x 1077 log,, b/a h/m L=2 % 107 In b/a h/m
24.14¢, 55.5¢,
€= log,yb/a Eali L= Inb/a Kpt/m
L 138 L 60 b
Ry=\¢c~ e log, , b/a ohms R,=\¢ —‘\[?Tlnz ohms

g, = 1 for air spaced lines
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The propagation contant is given by,

Y =VZY = [FjoL)GoC) =20’ LC = joIT

y=o+jB=joJLC
from which oo =0, B=w./LC radians/m

The velocity of propagation can be calculated as

® O 1
Vz — = ——
B~ oJyLC JIC "/seC

Using the values of L and C for a open wire line.

V=3 x 108 m/sec = Velocity of open wire line is same as the velocity of light
IS space.
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For a coaxial cable, using the values of L and C,

3x108
V= —J_e__ m/sec = Velocity may be reduced due to the presence of a

dielectric other than air between the conductors.
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Voltages and Currents on the Dissipation less Line

The voltage at any point distant s units from the receiving end of a transmission line is,

Ep(Zp+2)
E= e + Ke™
2z, ( )
For the line of zero dissipation, the attenuation constant a is zero and Z = R,
Ep(Zz +2Zy)
E = (efﬂs + K e“'fﬂ-"
27, )

e _y wave progressing from the source towards the load

e®s — reflected wave moving from the load back towards the source
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ZZR Z/R/+ ZO _
_ Ep [Z (eJBS + e“fﬁs)+ RO[eJBS _e /PBs ]:l
2Zp
i JjBs | ,-JBs JjBs _ ,-JBsy |
=£E.. ZR(e te )+jRo(e L )
R 2 2) -
E=FE,cos Bs +j I, R, sinPs
Whﬁl‘ﬁ ,H:.' &
R
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Similarly for the current on the line

——
-

'IR(ZR +Z)

27,

(elﬁ‘ — K e'./B’)

The current at any point on a dissipationless line is given by

Ig

] = E—EO— Z, + R) (efﬁs __[

—

Ir
" R

JZ R

(eJBS _ 3'1[5-9)
+

2j

ZR =Ry | s
Zp +R,

R

(eJBs + e-.jﬁs)

2
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—

ER

where k,=1,. Z,

From velocity of propagation equation,

V___U_)_:B__Z‘ltf )":ZT'E(OI')B—ZR

B 4 B A
2 2
E=E COS%"‘J!RSIH—;&'—S‘-
2
I=1,cos == + 2R g 2ms

Ry A
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Let us consider different conditions at the receiving end

(1) When the line is open circuited, then I, = 0. Then
at a poin distance ‘s’ from the receiving end IS given

the expression for voltage and current
by,

oC

Open circuited Jine
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(2) If the line is short circuited at the receiving end then E, =0

27
E,.=jI R sin —
‘ A
27s
I,.= I, cos T

Receiving End

Shon Cimum 1@7‘1@163,; = 0 Dr.M.Sivakumar/ECE, MSAJCE



3) When the line is terminated in an impedance Z, = R , the reflection coefficient and

Receiving End

reflected wave becomes zero. 7
Zp— <
E=E,e"
I=1, e

€

Line is terminated in an impedance R_=R_

The voltage and current distributions are represent by horizontal lines when
R,=R.
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1
(4) When R,=3R, K= 5 there is a finite value of voltage (or) current at all points on the line

+» Receiving End

E

Line is terminated in an impedance, R.=3R
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Standing Waves: Nodes

The actual voltage at any point on a transmission line is the sum of the incident and the
reflected voltages at that point. It can be seen that the resultant total voltage appears to stand stil!
on the line, oscillating in magnitude with time but having fixed positions of maxima and minima.
Such a wave is known as a standing wave.

E4
W

__{__J, in .
Standing waves on a dissipationless line terminated in a load not equal to R,

If a line is terminated in a load other than R, the distribution of voltage at a point along the line

consists of maximum and minimum values of voltage as shown in figure
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Node Node
Standing waves on a line having open or short circuited terminations

If the line is either short circuited or open circuited at the receiving end, we get nodes and
antinodes in the voltage distribution as shown in figure
Nodes are the points of zero voltage or current (E = I = 0) in the standing wave

systems.
Antinodes or loops are points of maximum voltage or current.
A line terminated in R_has no standing wave and thus no nodes or loops and is called a

L 4
smooth line.
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A 3n S5A

For open circuit, the voltage nodes occur at distances vy and so on from the
open end of the linc. Under the same conditions, the current nodes occur at a distance
0, %_, A, 32)' and so on for open termination.

] T

Open end of line
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A

For short circuit, these nodal points shift by a distance of 2

A
Voltage nodes occur at 0, > A and so on,

3A 5A

A
Current nodes occur at Z’T’T and so on.
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Standing Wave Ratio

The ratio of the maximum to minimum magnitudes of current or voltage on a line having
standing waves is called the standing wave ratio, S.

g = Emax = Imax
Emin Imin

Relationship between Standing Wave Ratio and Reflection Coefficient:

The voltage at any point s from the receiving end for zero dissipation transmission line is given

by9

E = ER (ZR +ZO) (ejﬂs + K eﬂm)
27,
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Reflection Coefficient K = |K] /¢ = |K] e/

E=ErR(Zp+Zy) ,sps (l+lKlej"’ -e'szs)
27,
- Ep(Zg +2,) e/Bs (]+|K|ej(¢-2l38))
2Z,
Ep(Zg +2)
27,

In equation the first term represents the voltage in the incident wave while the second
term represent the voltage in the reflected wave.

E= e (120+| K| £¢ - 2Bs)

The voltage E at any point is the vector sum of the voltages in the incident and reflected
wave.
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The maxima of voltage along the line occur at points at which the incident and the reflected
waves are in phase and add directly. When both the waves are in phase, their phase angles will be
the same.

For £ _, 0=¢-2Ps. .- Phase angles are same

Eq(Zg+Zy)

E_=—" 2;« e/ (1.£0+K] 20)
Ep(Z,+2,)

Eru=" 27 ™[1+/K]]

The voltage minima occur at points at which the reflected and incident wave are out of phase
hen the difference of angle of two waves is «.

For E , n=¢-2ps
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_ Eg(Zg+Zy)

E ePS[1£0+| K | £7]
274
= Er(Zr*Z0) one gy _ g
27,
S Enax _ 1+ K|
E. 1-|K]
_1+| K|
5= 1-| K|
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K
~1
s-1_1-|K| _ | K|-(=|K])_2IK|_ g
S+1 1+|K L1 HIK[+(0-1 X)) 2
-1 K
5-1
lKl--S+1

Page 148 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Cana (3 T f K= Zr—%
e (i) If Z, > R, and substituting the value of K = Zp+ R,

l+(ZR_R°\
o HIKI_ >ZR+R0< _2Zp _Zp
-IK| _(Zr=Re| 2R Ko
Case (ii) IfZ, < R \ZR+RO)
]_/ZR_RO\

s FIKI_\Zy+R)_2R R
l+|K| (ZR—RON\ 2ZR ZR
\Zr+ Ry,
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The Input Impedance of the Dissipation less line

The input impedance of a dissipationless line is given by,

7 - Es _Epcosps+ jIgRysinBs _ | Eg+jlgRytanBs |

3 =Ry .
Is IRcosB5'+j—Ek-O&sinBS _IR-RO +]E1i*tal‘lBSJ
E, )
-I—I; + j Ry tan s
ZS - R" , .. since ZR =.§_B_.
R0+j tanBs Ip
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R0+jZRtanBS

The input impedance is complex in general and is periodic with variation of Bs, the period

being © or s—&
g _2'

Another convenient form of Input impedance can be obtained as

IR(_ZR‘FZ())
7 - ks _ 2
S
Is  IR(Zp+Zy)( jns -
N - - ——— -.,BS
2R, (e Ke )
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R e/PS 4 K o= JBs
° | /P _ g JBs

1 /Bs+| K| £o—Ps
ST [ 1£Bs—| K| £0—PBs

where ¢ is the angle of reflection coefficient K

Dividing both numerator and denominator by 1 / Bs

14| K | Z0—2Bs
%= R, (1-|K|é¢-23~9)
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(i) The input impedance will be maximum at a distance of,

¢=2PBs (or) $—2Bs=0

. ) l
s = — (or) general expression s = 2¢ + n2

283

. /1+|K| _ RS
e Smax ~ RO L]_lKl -

where S represents voltage standing wave ratio
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(i) Input impedance will be minimum if ¢ — 2fs = =, with phasors again coincident

o A

General Expression: s = 26 +(2n - ])-Z-

2Bs=¢+m
Z. =R, [1+|K|4¢—(¢+n)]
| I-|K|£¢—(¢+m)
P1+|K|£—1t)7
=R | 1-|K|2-7)
1-| K| , _ &
= Ry 1+| K| Smin — G

where S = standing wave ratio
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Input iImpedance of Open and Short Circuited
Lines

The input impedance of a dissipationless line is given by,
7 R ZR + jRo tan BS
s RO + ]ZR tan BS

() Input impedance of a short circuited line:
For a short circuited lines Z,= 0

R,
Ze=J R, tan Bs

2 ,
ZSC=jROtan—%{ A
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Z=jX=j R, tan-%-y-tﬁ

Lo _X 271s
The variation of —= Ro Ro =J tan( N ) with a length of line s is plotted as:
(Inductive)

N&

3

3A/4

(Capacitive)

Short Circuited Line
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(ii) Input impedance of a open circuited line:
The input impedance of a dissipationless line is given by
7 :
ZS = RO RTJ RO tan BS
Ry + jZp tanPBs

For a open circuited line Z, = «

(1+jzﬁtan[3s\
Z;= Ry R, K

—— + jtanBs
\ ZR J
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Sub.Z,= w0 z =R Lo LR
s 70 jtanBs tan f3s

27ms
Z=Z,.=~] Ry cot Ps==j Ry cot =—
v . . Z()(‘ J\’ . g ~ . . . .
Variation of Z2€ =2 as a function of length of line s for a open circuited line is plotted as:

| | | | (

| | | | |

I l | ' '

! ' ! ' ! »S
T T B

| | l ' | 2

| [ ! l '

| ' ' ' '
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Power and Impedance measurement on Lines

The voltage and current on the dissipationless line is given by,

E= Iz (2132+ZO) (1+| K | £¢-2Bs)

_Ip(Zp+Zy) 9
I= TR (1-| K | £Z¢-2Bs)

For a voltage maximum, the incident and the reflected waves are in phase. 1 ~ 0° is proportional
to the incident wave voltage and |K] ~ ¢ — 2Ps is proportional to the reflected voltage.

Zr*20) |, ik

E = Inphase condition =

max
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Similar reasoning shows that at a current maximum the incident and reflected waves must be

in phase, so that

I = Ikli“zo' (1 + 1K)

max

Emax — RO
Imax

o, Diagram illustrating equations, .



Since a change to the values at voltage and current minima requires only the reverse of

phase of the reflected waves or a minus sign in front of |K], the ratio of Emin s given by,
lmin
Emin _
= RO
1 min
In|Zp+Z
r,,= BZthl o g

min 2R0
The resistive impedance seen at a voltage loop (Antinode) is

Emax =R0 1+lK|
[ -] K|

min

J=SRO=RM
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Since the voltage and current are again in phase at a current loop,

‘ the resistive impedance
may be identified as R P

Ein _ RO(] _IKI) _ R

= — = R
! hax (1+|K|) S min
P — Eriax
Rmax
p= Ell:.lin

Rmin

Multiplying the above two equations for power
2 2

Emax * Emin

Rmzu ) Rmin
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Substituting the values of R_. R,

P’ = Eéax °E3un — Er‘:'\ax 'Er%ﬂn
(Ema\ ) | (_Em.i_n) SR, - Ro
Imin | max S
p2 = Ex?ﬁax °1E3nn
Ry
pP= ‘Emm(l'|Emin|

, Ry
Similarly] 7 =11 |1 | -Ro |
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Measurement of unknown load impedance
The unknown value of a load impedance Z, connected to a transmission line may be determined

by standing wave measurements on the open wire or slotted line. Bridge circuit is used for the

measurement of unknown impedance.

imum at a distance s’ from the load it can be shown that

Ry

—

ZS = Rmm = S

At the point of voltage min

Atany pointon the line, the input impedance is given by,

7.+ jRotan(2ns'/A) | _ Ry
Z= K - s’ /A) | S
> LRO+jZRtan( ms'/A) |
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Solving for Z, gives,

. 2ns’) [ '
Ry +j Z, tan ( :Sst ZR+fR0ta"(2§i)
-
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) 21s")
1-jS tan ( ——-)
Z,= R, A gives the value of connected load impedance
S — jtan ( -2—M-)
_ 1- S tan Bs’
ZR - RO { ) B .
_S—jtanfs’
where 3 = 25_
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Reflection losses on the Unmatched line

The maximum voltage is attained when incident and reflected waves are in phase

| Vinax | = [ Vil +1 Vel

| I (Zg +Zy) |
= = (1+]K])
The minimum voltage is attained when incident and reflected waves are in out of
phase.
|Vmin| = |vi|-|vr|
| Ig (Zg +Zy) |
= 2 (1-1K])
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Ve Vil 1V,

-. Standing waveratiois S = =
: Vol 1V/1=1V,]

\Y \'
Power delivered to the load P = -l-—-'"‘”‘ 1V i |

SRECERETE)

Z,
UV IHIV,D UV =1V, D
- AR LU D
RAAAA

ZO
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If P, is the transmitted power in the incident wave and P, is the reflected power in
the reflected wave, power delivered to the load

P=P-P,
The ratio of power delivered to the load to the power transmitted by incident wave
is given by _l_’_ . Pi“Pr__: -&
P, P, P,
i
= 1-|KJ
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Measurement of VSWR and Wavelength

VSWR and the magnitude of voltage reflection coefficient are very important
parameters which determine the degree of impedance matching.

VSWR and I' are also used for measurement of load impedance by the
slotted line method.

Tunable probe VSWR
detector [ meter
Microwave Isolator |- Frequency| | Variable |l Slotteq line - 'Unknown Matched
Source meter attenuator section Impedance load
Microwave

power supply
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When a load Z, # Z, is connected to the transmission line, the standing
waves are produced.

VSWR can be measured by detecting Vax and Viin in the VSWR meter
\Y 1+1

max

V. 1-T

min

Standing wave ratio (S) =

reflected

I’ = Reflection coefficient =
incident

LOW VSWR (S < 20)
HIGH VSWR (S > 20)
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Reflection Coefficient:
The ratio of electrical field strength of reflected and incident wave is called

the reflection coefficient.

E, Z+2Z,
where, Z is the impedance at a point,

Z, 1s characteristic impedance

The above equation gives following equation
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Twice minimum

Voltage —»
—

Vx=m|vmin|

I Vmin |

X4 Xmin X2
Distance (cms) ——»

Double minima method
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VSWR denoted by S is,

g = E_. _ E/ |+ |E,
Emin L E,
where, Ei — Incident voltage, and
E: — Reflected voltage.
Pmin - Vrﬁin
2P min & Vf
2
..1.. — Vmin
2 V2
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V2 = 2(Vmin)2

X

Vx ~ ﬁvmin

Guide Wavelength:

By moving the probe between two successive minima, a distance equal to

g . . :
> is found to determine the guide wavelength A g

Ay =
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For TE o mode,
Cut off wavelength A =2a.

Free space wavelength A = .tc:

High VSWR:

High VSWR can be calculated using the empirical relation as,

S = M

n (xl_xz)
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Find the reflection coefficient and voltage standing wave ratio of a line having R =
100Q) and Z, =100 - j100().

Given: Z, =100 - j100Q)
Z, =R ,=100q.

Zp-Zy 100 j100Q-100
Zr+Zy 100- j100Q+100

reflection coefficient Kis givenby K =

~j100 1002 —90°

" 200- 100 223.61/-26.57°

K=04472 , —63.43°
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The voltage standing wave ratio is given by,

1+| K| 1+0.4472

_ = =2.618
I—| K| 1-0.4472

q

§=2.618
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Determine K of a line for which Z,=200Q), Z, = 692 / —12° (). [May/June - 2005]
Given: Z, =200 Q Z,=692 ,-12°Q)
Zp-2Zp _200-692Z ~-12°
TZp+Zy 200+692£-12°

: _
200 (676.80,/143.8) —467.84 j143.8
= 200+(676.8— j143.8) 876.8— j143.8

0
K=489.44—l62.9l __:0.554 2\@
\7|

K

888.512-9.31°
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. [ . L] ___—--\
A S0() line is terminated in a load. Z, =90 + j60 ohms. Determine the reflectiop

coefficient. [November/December -2007|

_Zp-2y _(90+,60)-50 40+ ;60
Zp+Zy (90+,60)+50 140+ j60

_ 72.111£56.31°
152.3154.,23.2°

~ 0.473433.11°

K
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A radio frequency line with Z,=70 ohm is terminated by Z , = 115 — j80 ohms at
A = 2.5 m. Find the VSWR and the maximum and the minimum line impedances.
[November/December - 2007

Given: Z =70 , Z =115-,80 0

(i) The reflection coefficient X is given by

o _Zr-Zy _(115-80)-70 _ 45— g0
Zr+Zy (115-j80)+70 185— ;80

0
k= JLT8TTL=60.64 o 1cos 37 5c0

201.5564 2 —23.38°

Page 181 of 465 Dr.M.Sivakumar/ECE, MSAJCE



4] K| _ 1+0.4553
I-1K| 1-0.4553
(ili) Maximum line impedance is given by,

R =87 = SR, = (2.6717) (70)=187.02 ¢

(ii) VSWR =S8= =2.6717

(iv) Minimum line impedance is given by,

PO T Y P10
oS S 26717
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An open wire line counsists of two copper condutors each of radius 2 mm and are
separated by a distance of 250 mm in air. Calculate the following per unit length of
the line, if the frequency of the wave signal is 40 kHz.

(1) Inductance L
(1) Capacitance C
(ii)) dc resistance R, given that for copper
o =575x107e/,, Civen: @a=2mm=2 x 10°m
(iv) ac resistance R_. d=250mm =250 x 10°=025m

f=40 kHz

oc=575x10"0/m
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(i) The inductance L is given by,

_ d
L=921x10""log;o—H/m
a
7o (02
=921x107 logyo[ 223
. 0.002 )
L=1931uH/'m
(ii) The capacitance C is given by,
c=29% 0 2F/m
d
logo —
a

Page 184 of 465 Dr.M.Sivakumar/ECE, MSAJCE



12.07 x1
(0.25 )

lozial
£10{ 4.002 )

= 5.756 x 1071% F/m

-12
x10 “F/m [ &, =1 for air]

(iii) The dc resistance R, each conductor is given by,

© 2(0.002)2 x(5.75x107)

~1.385x1072Q/m
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(iv) The ratio of ac to dc resistance 1s given by,

Rae _ 7.53a\/7
R,

R,. =(R 4 )X7.53af)
—(1385x107)(7.53x 2x 107 xV40x10°)

R, =4.1716x107Q/m
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A coaxial cable is made of copper having conductivity of 5.75 x 10’ t5/m. The inner
conductor has a radius of 2mm, the outer conductor has inner radius of 8mm and has
a thickness of 1 mm. The space between conductors is filled with i wicsectric material

of relative permittivity of 4.
Calculate per km the following:
(i) inductance L
(ii) capacitance C
(iii) dc resistance R,

(iv) ac resistance R__ at frequency of 150 kHz.
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Given: 45 -575x 1070/m
a=2mm = 0.002m
b=8mm = 0.008m
¢ =9mm = 0.009m
£ =4
f=150 x 10° Hz.
(i) The inductance L is given by,

_ b
= 4.61x10 ‘ Iog,o(—-JH/m
a
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= 461 KIO—T |03|0(0 008]

0.002

L=278x10"H/Im
L=0.278 mH/km.

(ii) The capacitance C is given by,
24.13x1071%(4)

0 008
log g

~-12
C = 24.l3x10b £, Flm

'0810“‘
=1.603x107'°F/m
C=0.1603 #F/m

0.002
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(iii) The dc resistance of coaxial cable is given by,

1 [ 1

1

R, = 2+

d 7O | g cz—sz

1

Q/m

l

7(5.75%10")

R

R, =171 Q/km.

= 1.71x1073Q/ m

+
(2x107)%2 (9x107%)% - (8x1073)? |
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(iv) The ac resistance of coaxial cable is given by,

R —416><IO_8\/—[ ]Q/m

=4.I6x10_8\/150x103[ : S+ : JQ/m

2x1073  8x10”
=(0.01 Q/m

R =10 q/km.
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A lossless line has a standing wave ratio of 4. The R is 150 ohm and the maximum
voltage measured on the line is 135 V. Find the power being delivered to the load.
[May/June - 2006]

Given: S =4, R,= 150 ohms, E = 135V.
At voltage maxima the impedance is given by,

R =SR =4(150) =600 )
The power delivered to the load is given by,

_E2, _(135)
Ruax 600

P =30.375W
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A line having a characteristic impedance of 50 Q is terminated in load impedance
(7S + j75)QA. Determine the reflection coefficient and voltage standing wave ratio.

Given: Zp =(75+ j75)Q Z; =50Q

Zr—Zy_(15+j75)-50 _ 25+ 75
Zp+Zy (15+j75)+50 125+ 75

79.056 £71.56

~ 145.7738 230.96'
K=0.5423 406°

Reflection coefficient is given by, K =

The VSWR ratio is given by,

+] K| 1+0.5432
-[K| 1-0.5423
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UNIT 11
IMPEDANCE MATCHING IN HIGH FREQUENCY
LINES
Impedance matching: Quarter wave transformer -
Impedance matching by stubs - Single stub and
double stub matching - Smith chart - Solutions of
problems using Smith chart - Single and double

stub matching using Smith chart
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Impedance matching

It is important to transfer radio frequency signal from the source to the
load through transmission lines without power loss.

To achieve this the source impedance and load impedance have to be
matched

For maximum power transfer the load impedance must be complex
conjugate of source impedance

Ry +jX, = Rs — JXs
A network which is used to match the load impedance with source
impedance is called matching network

One eighth wave line, quarter wave line and half wave line are used as
matching networks
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One eighth Wave line

For the transmission line the voltage and current at any point distant x from the
receiving end of the transmission line is

Vo(Zo+Z,)

V = R 2‘22 ~0J (eyx +Ke-—yx)
I (Z, +Z))

I = 27, (e -Ke™ ")

For the line of zero dissipation, the attenuation constant a is zero. i.e., y = jp and

Z'a = R‘J"

V = ZZRL (elﬁx +Ke“1a‘)
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Vi . | |
= m[zg(elﬁ‘ +Ke /B )+ R, (e/™ +K e /Br))

For standing wave | K| =1,
(e’%* +e7/P7) N Ve Ry (e/B ¢/

V=V 2 Zs 2
But V, = 1,7,
(e}fd +e-13x2 . &elﬁl_e-/fk)
V=V, 7> +J Ig Ry 2

= VycosPx+jIgRysinPx
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Similarly, for the current on the transmission line
. VR .
[ = IpcosBx+j R—Rsm,Bx
)

The input impedance of a dissipation line is

V
Ly = T
VecosPx +j Ig RysinBx
- Vr .
[gcosPx +) R, sin B x
I ZgcosPx +j I RysinPx
Ls = I g Zg B
cosPx+y sin P x
RCOSPx +) R,
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ZgcosPBx+jRysinBx
- Lyp .
cosPx +j R, Sin Bx
0

" ZpcosPx +jRysinPx
 RycosPx+jZgsinPx |

Ro

Zp+jRytanBx
Ryt+jZgtanPx |

For an eighth wave line x = A/8,

Zs = R,
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 Zgp +j Rytan (n/4)

< RO_R0+j Zg tan (n/4)
' Zg+Jj Ry
Zs = Ro| Ry +j Zy
If such a line is terminated with pure resistance Ry ie, Zz =Ry
7 =R Rp+jRy
> "L Ro+J/ Ry _

Since, both the numerator and denominator have identical magnitudes, then
|Zs| = Ry
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Quarter wave line (Quarter Wave Transformer)

The input impedance of a dissipationless transmission line is

Zp+jRytanBx |

ZS B ROLRO+jZRtaan4
3 ZR .

ZS = Ro Ro
_tarle+]ZR
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For a quarter wave line x = A/4,

_2n A ®m
Px =574 72
- Z. .
_ tan'ﬂ/2+jR0 _ JRO
Zs = Ro R, = Ro J Ly
L_tan1t/2+jZR_
R2
Zs = 7.

-
el
I
N
N
z
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—— —

i

Quarter wave transformer
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Half-Wave Line

The input impedance of a dissipationless transmission line is

Zptj R, tan B x
L.R0+jZRta'an_

Zs = R,

For a half-wave line x = A/2

_ 2 A _
Bx_ K'z"'n

" ZptjRytanm |
" Ry+jZgtanm

Zs = Ry
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A half wavelength of line may then be considered as one to one transformer. It has
application in connecting a load to a source in cases when the load and source cannot
be made adjacent.
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Stub Matching

accomplishing impedance matching is the use of an open or short circuited line of
suitable length, called stub at a designated distance from the load. This is called stub
matching. There are two types of stub matching. They are:

(/) Single stub matching

(ii) Double stub matching
Single Stub Matching

A transmission line having a characteristic admittance Y, terminated with load
conductance Yy (load resistance Zp) is shown in Fig.3.7. Since Yp is different from
Y,, standing waves are set up in between source and load.
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Single stub matching
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The input impedance at any point of a transmission line is given by

. Zp +Z,tanhyl
0Z,+Zy tanhy!
Yr + Y, tanhy/
Y,+ Y tanhy!

Ly =

The input admittanceis Yq = Y
For propagation y=jB (a0 = 0)

Y+ jY,tan B/
s = Y, ,
Yo+ jYg tan B/

Y
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For normalization, the above expression is divided by Y,

Y Yo+ jY,tan B/

Y, Y,+/ Yy tanp/

YR
Y0
Ym= ,YR
l+j'Y—o‘ tan 3 /

+jtan B/

e—

Y Yy :
where = = Y, normalized input admittance
0
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< = Y, normalized load admittance
Y,+jtan B/
im "~ 1+ Y, tanB/

Y,+jtanB/ (1-jY,tanB/)
1+j Y, tanB/ (1-; Y, tanP )

!
l

Y,—jYltanp/+jtan B /+Y, tan? B/
1 +Y? tan? B /
_ Y, (+an?fh+/ad- ,)tanBI
1 +Y? tan? B /
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For perfect matching Ys = Y,

Ys _
Y, !
SY. =1

in

The stub has to be located at a point where the real part of Y, is equal to unity
Y (1+tan2B /)

1 +Y? tan? B/, -
Y +Y, tan?Bl, = 1+Y} tan2 B/,
Y, tan2Bl,- Y2 tan2B/, = 1-Y,

tan2 B/, (Y,-Y?) = 1-Y,
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Y,(1-Y,)tan? B/, = 1-Y,

Y tan2B/;, = 1
]
tan?Bl, = 3
Y
tan B 1, = ( Yr’"if)

B

2
2
ol

Page 212 of 465 Dr.M.Sivakumar/ECE, MSAJCE



2n Yo
l e

The location of the stub /, is given by

/ 1
l, ——tan—l [- zR—— Zo=y,

The susceptance at the location of the stub is
S, (1-Y2)tanBl,
Yo 1+Y2tan2Bl,

(I-YZ)’\‘ Y,

1+Y? 5 YR
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I
-
o
o
~

The susceptance of the stub is
Y,
Ss = (YO - YR) ?}:

This can be obtained either by an open circuited or short circuited stub. But
normally short circuited stub is preferred because of the following advantages.

(?) it radiates less power.
(i) its effective length may be varied by means of a shorting bar.
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The susceptance of a short circuited stub is equated to Y, cot B /,

(Y,-Y ooy I
= t
R) YR 0 €O B t
Y- Yr Y,
Y, Y—R = cotfB !,
|
cotf/, = —Y)"—_f—
4 R YOYR

ZRZO \/ZOZR \fznzo
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The length of the stub is given by

= == tan-|
I’ 21‘t tan N ZR-ZO
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Location and length of the Stub using Reflection Coefficient

The input impedance of the line is given by
1+Ke™ 27/
1-Ke™ 27!

For lossless line oo =0,y =7 Band K = | K | e/

Z = 7,

where ¢ is the angle of reflection coefficient.

Z; = Z 1 — |K|ej(¢-2|”)

l+|K|ej(¢_ZBI)
= L1 |K| et eI 2P
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The input admittance is given by

where the characteristic conductance is
1 1
G = Z, TR

-G 1-|K|[cos(®—2BD+jsin(¢— 2P 1)

Yi = Go 75K | [cos (90— 2B 1) +j sin (b— 2 B D]

1 [ K | feos (p— 2B 1) —j | K |sin (¢ - 211):%
Go 1+QK|,[cos(¢- 281+ |K|sin(o— 2B D}

[~ Z, is resistive]
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Multiplying the numerator and denominator by
1+IKI[c08(¢—2B1)—J'IKlsin(¢—2Bl)
-G —| K |2 - K |sin (¢ -2 /)
°1+|K|2+2|K|cos(¢—2[31)
Since Y; = G;+j S, then
Y, _ S S _1-|KP-2/|K|sin($-2B1)

Go Gy Gp 1+|KP+2|K|cos($p-2B1)
Equating the real parts

S/ 1-|K 2

Gy  1+|KP+2|K|cos(¢-2p1)

Y
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Equating the imaginary parts
S, —2|K |sin (¢ —2B 1)

Gy 1+|KP+2|K|cos(¢-2B1)
At the location of stub Z; = Z,, for matching.

Since there is no reflection, / =1/,

o.oG,‘=G0
G _
G, |
1—|K 2
K| |

1+|KR+2|K|cos(®-2B1)
1-|KP2 = 1+|KPP+2|K|cos(d-2B1/,)
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2|K |cos (9-2B1,) = -2|KP
cos (2B 1,) = ~|K|
¢-2B1;, = cos!(-|KJ)
But cos!(—|K|) = —n+cos!|K|
¢6-2pJ, = —m+cos!|K]|
2Bl, = ¢+m—cos! | K|
;- é6+m—cos!| K|
) ZB
7\.

or l, = 7~ [¢+1t cos! | K] [ B
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The normalized susceptance (imaginary part) equation is
S, -2 |K|sin(¢-2B 1)
Gy, 1+|KP+2|K]|cos(¢p-2B1)
But (¢—-2p/,) = —m+cos!|K| and

cos($-2p 1) = —|K]|
S, -2|K|sin(=n+cos!|K])
G, ~ 1+|KP+2[K|IK]
~ 2|K]|sin(cos! |K )
- 1+4|KP-2|KP
Letcos! |K|=0,then|K|=cos0

sin (cos! |[K[) = sin®= 4 1-cos20 =1/1-|K}
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.S 2IK|V1-]|KP
© Gy 1-|K]
_ 2| K|

5= G JTo1KP

The susceptance of the stub is G, cot p /,

2|K|
GycotBl, = G, Ji-IKP
1 2| K|

tanB/, [1-|KP

1-|K|J?
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B 2|K|
I _.2."_ -lil—lK_lz_
‘= 2m 21K |

The location of the stub ‘I’ and length of the stub ‘/, can be determined, if the
reflection coefficient and frequency are known.
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A short circuited stub is normally preferred to an open circuited stub

However the single stub matching has the following drawbacks.

(/) Single stub matching is applicable for single frequency. For variable
frequency the location of the stub is not fixed (i.e., changing).

(i) For final adjustment the stub has to be moved along the line slightly. So,
it is possible only in open wire lines.' - ) |

To avoid the disadvantages of single matching, double stub matching is
introduced. Double stub matching is one in which two short circuited stubs spacing
A/4, whose lengths are adjustable independently are fixed as shown in Fig.3.8.
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rl4

|.- —
YR
/ X
Double stub matching
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Circle Diagram
The input impedance for the transmission line is given by

Ly =

VeZg +Zy) | vy
v — 57 Z [e* +Ke 77 ]
I IR(ZZRZ:TZ_QZ [e"*-Ke ""]

Ve Zy[e?"*+Ke™ ™" ]
T Iy Zg[e"*-Ke'*]
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Ve Zye'*[1+Ke?'*]
T T Vpe'F[1-Ke21¥]
[1+Ke?r*]
ZO -27x
[1-Ke ]
The input impedance of the transmission line is given by
1 +Ke ¥
01-Ke?"*
For alossless line y=j B (.. «=0)

The normalised input impedance is obtained by
impedance Z,,.

Zs = Z

dividing Z by its characteristic
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Zg 1+Ke—j2[3x
Zin = 2_0— = I_Ke‘fzﬂx

Z,, (1-Ke/2P*) = 1+Ke/?P*
Zn- Z,Ke /2% = 1+Ke/2P*

Z —1=Ke/?P* (1+2Z,)

Z. —1
_jsz = L
Ke Zln+1

But Z,,, is a complex quantity. It can be represented by

Z, = R+jX
where R is the resistance, X is the reactance
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K o-i2B% = R+jx-1= R-1D +;j X
R+jX+1 R+1)+;X

The above equation leads to two sets of circles. They are S circles and B x circle. S
circles can be obtained by equating the magnitude and B x circles by equating the
tangents of the angles.

ce = (weni ) (&)

R2-1+jX (R +1)—j X (R—1) + X2
R+1y2+X2

_ R2-1+X2 2 X

T R+12+X2 T RF I X2
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By converting rectangular co-ordinates in to polar co-ordinates

i 2X
T
j2px o o [(REDEHX2 R+12+X2
R '\/(R+1)2+X2 - R2-1 + X2
L R+1)2+X2

Constant S circles are obtained by equating the magnitude

 R-1p+X2
K2 = R¥1p+x2

K2R+12+K2X2 = (R-1)2+X?
K2(R2+2R+1)+K2X2 = R2+1-2R+X?
K2(R2+X2+2R+1) = R2+X2-2R +1

K2R2+ K2X2 + 2K2R + K2- R2- X2+ 2R -1 =0
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R2(K2-1)+X2(K2-1)+2R(K2+1)+K2-1=0

Divide by K2 -1,

2 4+
R2+X2+2R(K 1)'+1 = ()

The reflection coef

K2-1

fcient can be written in terms of the standing wave ratio.
S—1
K= 3551
(S—-1
K2+1 _ \
K2-1

\

)t s-1p+ES+1p
Nz (S—-1P2—(S+1)
y,

|2
| |+
pumnd | pumed

1

N
A
+
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S2_2S+1+S2+2S+1

S2-2S+1-82-25-1

C2(S2+1)
= T 248

K2+1  (S2+1)

K2-1 28

Substituting this value in the main equation
2 +
R2+X2-2R %ll +1 =20

2 4 2
Adding ((S 7S ) ) on both sides
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g

2S

(S82+1)
2S

@20 (G0 oy, (E20)]

2S

2 ~482+84+282+1
] tXP =TT ge
S4-282+1

42

S2 1Y
%)

gSZ+1)]2 2 = (82—1)2

28
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T

his is the equation of the S circles whose radius is
1
-1 578
28 2
S + £
S2+1 S
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151

1.0

0.5

-05

-10

-15 L

A family of constant - S circles
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The constant B x circles are obtained by equating it to the tangent of angle

- 2 X _ -
+ 12+
-2Bx = tan’! (§2—1)2+X2
- (R+1)2+@ _

Taking tangent on both sides

2 X
~an(2Bx) = R+ xe

2 X
~ tan2Px

R2+X2-1 =
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2 X

R+ X*—1 + =

]

tan2 B x -

Adding tan? 2 B x on both sides

R2+ X2+

1 N 2 X
tan22Pfx tan2fPx

1 2
2
R +(X+tan2fix )

I
But 1+ 2B
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1 2 1
R2+(X+tan2[3x ) - sin22Bx

1 :
This is the equation of P x circle whose radius is Sin2 P x and the centre is

1
tan2Px’

Though the circle diagram is very useful in calculating the line impedance and
admittance it has the following drawbacks.

& Sand B x are not concentric, making interpolation difficult.

< Only a limited range of impedance values can be accommodated in a chart

of reasonable size.
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¢cle diagram
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The transition -



SMITH CHART

“Smith Chart is a special polar diagram containing constant resistance circles,
constant reactance circles, circles of constant standing wave ratio and radius lines
representing line-angle loci; used in solving transmission line and waveguide
problems”.

The basic difference between circle diagram and Smith Chart is that in the circle
diagram the impedance is represented in a rectangular form while in the Smith Chart
the impedance is represented in a circular form.

The Smith Chart is obtained as follows.
To display the impedance of all possible passive networks the graph must extend

in all three possible directions (R, + jX, —jX). The Smith Chart is committed to a
bilinear transformation by plotting the complex reflection coefficient.
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K= Ze+Z,

By normalizing the load impedance z = -2-(-)-

z+1)K =
zK+K =

z -1
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1+K = z (1 -K)
_1+K
27 1-K
Since the complex quantity z =R +jX and the complex quantity K =Kg +jKy
I +Kg +jKx
1 -Kg —jKy
(1 +Kp) +jKx
(1-Kg)-jKy
[(1 +Kp) +jKy] [(1 -KR) +jKx]
[(1 -Kg) —jKx] [(1 -Kg) +/jKi]
1 "'?( 7Ky - Ki - K2 —j K Kx +jKy +j Kg Kx —K%
(1-Kp)? + K5,
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1 -K2-K2+2,K,
(1-Kg2 +K;,

R+/X =

Equating the real parts on both sides

X - 1-K:-K2
(1 -Kg2 +K3
Equating the imaginary parts on both sides
¥ = 2 Ky _
(1-Kpr+K2
1-Kg-K5
The real parts R =

(1 -Kg2+K3
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R(1-Kg+RK? = 1-KZ-Kj,
R(1-2Kz+K3)+RK2 = 1-K} -Kj
— 2
R-2RKz+RK2+RK; = l—Kf{-—Kx
(or) R 2 2 =

R X R

Ki+RK2+K2+RK2-2RK,

|
T
=

K21+R)+K2(1+R)-2RK = 1-R

2RKp 1-R
1+R 1+R

2 2
K2 +K2 -
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R Y R2 , 1-R
(KR" ) a+R2 "B = T¥R

R ¥ _, 1-R R?
(KR - 1+R) Ky = 1T¥R Y 1T+RY
_ (- -R) (1 +R) +R2
(1+R)?
_1-RE+RY
(1 + R)?
R V¥ _, 1
(KR - 1+R) tRy = Ry
This equation represents a family of constant R circles having centres on the R

1 . -
-axis at,[RE T O]and radius of R+1" This is shown in Fig.3.12.
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Circles of Constant - R

Kx
Inductive
e K - plane plot
R=1
R=2
Kr
(0,0)
\-—
R=05 Capacitive
\ R=0
_/
A A A A
R=0 R=05 R=1 R=2
* —>
e Rectangular plot
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2K,

The imaginary parts X

X[1+Kz-2Kg+K2] = 2K,
Dividing by X
2 Ky

2 —_—
I+Kg-2Kg +K5-—5 = 0

. 2Ky
(KR‘1)2+K§-_X =0

1

Adding <3 on both sides 2Kx 1 1
X2 > (Kg—-1)2+K2 - i

X X2 X

e L]
(KR_I) + Kx—x =i3

~ (1-KpR+K2

This equation represents a family of constant X circles having centres at (1, 1/X)

w o1 .,
and radii of X This is shown in Fig.3.13.
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X=-0.5

e K - plane plot
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INDUCTIVE

CAPACITIVE

90°

ey i

R=0

Smith circle diggram
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. Design a quarter wave transformer to match a load of 200 Q to a source resistance

of S00 Q, operating at a frequency of 200 MHz. [Nov/Dec 2006]
Solution: Given Z, =200Q , Zg = 500Q , f = 200MHz
R,=\Zs-Zg
= /(500)(200)
=316.22Q

. A
Input impedance of Z transformer = R, =316.22 Q.
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The frequency of operation is f=200 MHz.

C _ 3x10°
f 200x10°

Wavelength A = = 1.5 m.

A
The length of the quarter wave line s = 2

Ro=316.22Q; Zg=200Q
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Determine the length and impedance of a quarter wave transformer that will match a
1502 load to a 75Q2 line at a frequency of 12 GHz.

Solution: Given  Z, = 1500 Z,=75Q f =12GHz

R =\Zs-Zz =\75x150 = /11250 Q2 =106.0660 )
Frequency = 12 GHz

C=/Ar
C'_3x108 0.025
A—f 12x1®— . m=25 cm.

&>

The length of the quarter wave transformer =S = — =6.25 cm
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Stub Matching

accomplishing impedance matching is the use of an open or short circuited line of
suitable length, called stub at a designated distance from the load. This is called stub

matching. There are two types of stub matching. They are:
(/) Single stub matching

(ii) Double stub matching

* Single Stub Matching:

For greatest efficiency and delivered power, a high frequency transmission line should b, Ope

. : . Ty
as a smooth line (or) with an R, termination. ‘
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The quarter wave line or transformer is used as impedance matching devices.

Another means of achieving this is the use of an open or closed stub line of suitable ]ength

reactance shunted across the transmission line at a deS|gnated dlstance from the loaq,

The input impedance of the line is 1 / SRO at a voltage maximum
S / RO at voltage minimum.

At intermediate point A the real part of the input impedanceis 1 /RO
or the input admittance at A is

Y= 1, jB.
Ry

The susceptance B is the shunt value at that point.
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Voltage minimum
before insertion

of stub \‘)r lzr 4

A
Q.
v
P~

A

Location of Single Stub for Impedance Matching
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. After the point having conductance equal  The jnput admittance at this point is given by,
to 1/ R, is located, a short stub line having

. 1 . . |
input susceptance of FB may be Ys= —+ jBF jB=—
connected across the transmission line. RO
The input impedance of the transmission 7 =
s= Ko

line at point A looking towards the load is:

The input admittance ¥, looking towards the load from any point on the line, may be
written as:

yo L] (1—|K|4¢—-2Bs]
S Zs Ry\1+|K| £p-2Bs
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and changing to rectangular coordinates,

rl—l K| cos(¢—2Bs)—j| K |sin (¢p—2[Bs)
° | 14+]| K| co§(¢—2Bs)+j| K [sin (¢—2s) |

multiplying the numerator and denominator by
1+ | K |cos(p —2Bs)—j| K |sin (¢ — 2Bs)
v _ o |IIKP-2)lK sin(@-2B5)
S0 7 L 14| K +2| K |cos (9 —-2Ps) |

Expressing the shunt conductance as a dimensionless ratio Gs or on a per unit basis,
e

= G + jB,.

Page 260 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Equating the real parts

9_[ -k

G, 1+1K,2+2|K|cos(¢—2ﬁs)_

L

the shunt susceptance on a per unit basis is.
Equating the imaginary parts
Bs | -2|K|sin(¢—2Bs)

G, _1+|K|2+2|K|cos(¢—2Bs)J
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.r%,

Admittance conditions on a line indicating proper location of the stub for |K] = 0.5

Dr.M.Sivakumar/ECE, MSAJCE
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The value of U5 has a maximum and this maximum occurs for the value s, at which the
Gy . .

cosine term is —1 (or) ¢ — 2PBs, =—m,
¢—-2PBs,=-m
p+x
s, = 28
At a distance s, from th? load,
G, _ 1-IKP @+ KDA-K])
G, 1+ KP-2|K|  (-K])

-GS 1+ Kl

G, 1-1kK|=?°
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Gg

Since this equation states that R, = % , the point of maximum '(‘;'(')“ is recognized as a poin

minimum voltage, at a distance s, from the load.

tof

Ata distance s, from the load it can be seen that G, =G,. This is the point at which the stub
is to be connected and the value of G /G, is unity at that point.

1 1-| K|
1+ K +2| K |cos($—2fs,)

| +|KF + 2|K] cos($ — 2Bs)) = 1 - |KP?
cos($ — 2Bs,) = - |K]
cos™ (- |K]) = ¢ — 2B,
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Since  cos™ (—K). = -t + cos™ |K]

¢ — 2Bs, =— m + cos™ |K]

- d+n—cos™!| K| 27

S, 2B , where B=-7\._

sl=:'—n [¢+n—cos'1|K l]

Hence the distance d from the voltage minimum to the point of stub connection is:

d=sz—s1
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O+T (l)+1t—cos"1 | K |

=" | 2B
—1[ S-1 -1 S-11\A
R = | cos
cos | K| S+1) S+1)4
23 2.3’.‘. n
A

The input susceptance of the line at the stub location nearest to the load can be obtained from
equation

Bs | -2|K|sin(9-2ps)
Gy |1+ K[*+2|K |cos(p—2Ps) |

¢ — 2Bs, =— m + cos™ |K]
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-2|K |sin(-+cos ™ | K [)
° |14+]K [ 42| K |eos(-n+cos ™| K |)

cos (-—nicos"lK l) = - |K]

Letcos!'|K|=0,then|K|=cos0
sin (cos! |[K[) = sin@= [1-cos20 =+ 1-|KJ

sin (-—1: +cos™| K |)=:t 1-K?

\
[ 2k |1-k2

S 2 2
1+ KP-21K P
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( )
2| K |\/1- 2
BS - GO 2
14K
The susceptance of the short circuited stub is
B,.=- G, cot BL = ~G
- tan L

where L is the length of the short circuited stub.
If the stub and the line have equal G, then

Bgc =-Bg
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o
G g 2| K |\1-K
tan 8L 0\ 1-| K[>
( )
Gy - 2| K|
tanBL“GO 2
\\/I-IKI ’
1 2| K|

tan(%)L \/1 - K |?

_ 2
L= =-&—tan"l \/1 ,Kl
27 2| K|

This is the length of short circuited stub to be placed d meters towards the load
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Double Stub Matching

Limitations of "ingle Stub Matching

i) The stub has to be located at a definite point on the line. Single stub is adequate for a openwire
line. For coaxial lines, placement of stub at exact point is difficult.

ii) Two adjustments were required in single stub, these being the location and length of the stub.

iii) .This technique is suitable for fixed frequency only. If frequency changes, the location of the
stub has to be changed.

To overcome this difficulty, double stub impedance matching is used. In this system, two
different short circuited stubs are used for impedance matching, location of the stubs is arbitrary

A
and the spacing between the two stubs is made .

Page 270 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Yr

"'!
S . \ €Y
Y. 2 G
\]
: ) ly

Let the first stub whose length is /, be located at the point ||’ at a distance d, from the load
end,
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The input impedance at any point on the line is given by:

7.=7. :LR +JZ tanBs |
Z +J]Z, anfs

Substituting all these expressions into the expression for Z,

= -

| .
s o J e .
R A A
Y, Y, |
\’

\n
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by multiplying and dividing by Y,

- -y

l l+j—¥—}tanﬂs

\I

\

Yy, .,
0 -\-’& + jtan Bs

-

" d Jtan s

I+ \_" tan |1s
\

v

We have \ = ¥, = nomalized input admittance

\.
N e : |
<7 Ve = normalized load admittance

K
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Y= Ve + 7 tanPy
I+ 7y, tanfs

N = (O +/tanfs) (1= v, tanPs)
(14 v tanBs) (1= v, tan Bs)

¥y —Jjvg tanPs+ jtanBs+ y, tan® Bs

y, = s
1+ yg tan” PBs

= 3

v (4 tan® fs) : Jj(1=y)tanBs
l+ygtan’Bs 1+ 3 tan’ s
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Atpoint ||, we have s = d,. Substituting we get

(l+t.m Bd) (l—s )taan
ik l+v tan® 3d, l+; tan’ 3d,

=g, + /b,

When a stub-1 having a susceptance of + jb  is added at this point, the new admittance
value will be

g A
Y, =g +jb
where &'= b 4+ b and g, remains unchanged.

Now the input admittance ot the line looking toward the load at 22’ location chould be:

Y, =G

Yo =g =1tk
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Case (i): Quarter-Wavelength spacing between two stubs (d, = ),/4)

SMITH CHART

/-"'""-'“-.‘%

Circle-A
[g = 1 Circle] |

‘ 2 1
O

_
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Case (ii) : Three-eighth’s wavelength spacing between two stubs (d, = 3)./8)

d, = 33/8
o - 1 - SMITH CHART
3N/ g
Y °—27¢  Circle-a
R
2' 1
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UNIT IV

WAVE GUIDES
General Wave behavior along uniform guiding
structures — Transverse Electromagnetic \Waves,

Transverse Magnetic Waves, Transverse Electric Waves
— TM and TE Waves between parallel plates. Field
Equations in rectangular waveguides, TM and TE
waves In rectangular waveguides, Bessel Functions, TM
and TE waves In Circular waveguides
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Electromagnetic Waves between parallel Plates

» The electromagnetic waves that are guided along g#over conducting
or dielectric surfaces are called guided waves
Consider an electromagnetic wave propagating between a pair of parallel perfectly

conducting planes of infinite extent in the y and z directions as shown in Fig.4.1.
X

\ / — _

/..
L=/
/

Parallel coa@ugjng guides Dr.M.Sivakumar/ECE, MSAJCE




Maxwell’s equations will be solved to determine the electromagnetic field

configurations in the rectangular region.
Maxwell’s equations for a non-conducting rectangular region are given as

VxH = joeE
VXxE = —-jopH

G @, a
5 2 2

VxH =1 5 dy Oz
Hx H}

| 6H. 6H.,\ _ (J6H, OJH,
ey (e (e
3y ~ @z Y\ 6z Ox Ox Oy

joe [a,E +aE + aE.]
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Equating x, y and z components on both sides,

oH, oH,

3y " oz = joek,

OH, OH, .

az — ax = jmeE). $ ...(4.‘)
OH, OH,

Ecx 3y Joek;

a, a, a,

Ox Oy o0z

E, E
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_(0E, ©E _ ( oE OE. _ (GE oE )
— : 2y X -y -y X
a’( oy 0z }+ay( 0z  Ox )+a‘ ox  dy

=-jop[aH +aH +a H,)

Equating x, y and z components on both sides,

OE. OE \
z 7y _

oy 0Oz jorH;

oz “ox _ JOMRy

OE OE

4 — x = — .
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The wave equation is given by

V2E = y’E
VH = y’H
where v2 = (o +jwe) (jop)

For a non-conducting medium, it becomes
V2E = - o’ueE
V?H = - o’ueH
P L o —
2 + 5')7 + 2 - o°ueE
0*H o°H  o°H ) }
5‘;+'5'J;z‘+"5;z‘ = —o’ueH | ... (4.3)
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It is assumed that the propagation is in the z direction and the variation of field
components in this z direction may be expressed in the form e™**,

where y is propagation constant
y = atjp
If a.=0, wave propagates without attenuation

If oisreal ie., P =0, there is no wave motion but only an exponential decrease
in amplitude.

Let H, = Hg eV’
oH
—r == 0 -vz - _
0z Y H)’ € T H.v
6H,
Similarly, 5z - Y H
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Let = EY ¢ ¥

y y

OE

=y _ _

0z v E,
- OE,
Similarly o - Y E,

There is no variation in the y direction i.e., derivative of y is zero. Substituting the
values of z derivatives and y derivatives in the equations (4.1), (4.2)and (4.3).

YH, = joeE, )
OH,
...'YHI_—é—x— =j(08Ey } ...(4.4)
oH
‘ax = joeE, |
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\

YEy = —j(l)lJ.Hx
OE, .
-YE, -7, = -jopH, } ... (4.5)
OE
—6;2 B —jcop.Hz y
’E 2 )
ox? + YE = - o°ueE
O*H "
a2 TTH = -olueH | ... (4.6)
OE _ 0°H
where 02 Y’E and -a—zz—-=.Y2H

Solving the equations (4.4) and (4.5), the fields H » H, E and E, can be found out.
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To solve H,,

yEy = —jouH
From the above equations, —vE
Hx - __Z_z
JOHU

A [ o,
By =~ o [“‘x*"é}‘]

Substituting the value of E, in the above equation,
oH

. B I z ) ]
B = jmu[ (YH Tox

Page 287 of 465 Dr.M.Sivakumar/ECE, MSAJCE



* O°HE L Ox
H[H_ﬁ_]z:_!_ ?_}_{.2.]
x : )
O UE o‘pe L
2 a2 oH,
H, [ope +y°] = -7 5,
_ oH,
H, = o= 5
O NUE Ty ax__
_~v OH
H ===
x h* Ox
where h? = y2+a’pe
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To solve Hy,

OE,
YE, + _é;- = jopH, [From eqn. (4.5)]
YH, = joek; [From eqn. (4.4)]
From the above equations,
_ [@g
H, = Y E,

1] OE, ]
E, = vy L J (Dl.lHy ax
Substituting the value of E, in the above equation,
we 1 oE,
= LT Y [’ OKEy - ]
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2 [°}> aEz
H,(HQ-%E) i ey

Y y* Ox

OE,

H, (v} + o’pe) = —joe 5=
—JOE JOE,

N T 4+ otpe) o

h2 — 72+m2“8

Y h2 ax

H
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Tosolve E_,

OE,
YE. + 5 = jouH, [From eqn. (4.5)]
OE
H, = JT E, [From eqn. (4.4)]

Substituting the value of H » In the above equation,

OE °
z _ . JOE
YE, + Ox ./(')P'[ y Ex]

2

—
pe E,

Y
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Y x ox
2
E, [Y+M] L
Y Ox
OE,
E.[y'+o'ue] = -y =5
- -y BEZ
To solve E,, * h*  ox
oo M
YH, + 5 = —joeE, [From eqn. (4.4)]
q o 1

X

jop [From eqn. (4.5)]
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Substituting the value of H, in the above equation,

2
—Y°E, . OH,

j(Dl.l ax = —j(DSEy
2
= A _ OH,
Ey [jmu +me] - Ox
E 2+ 2 —_ 2 é.l_-]_i
ylY to'ue] = jop —=
jm“ 5HZ
E = 2
y h* Ox

where h? = y2+ o’ue
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Transverse Electric Waves

Transverse electric (TE) waves are waves in which the electric field strength E is
entirely transverse. It has a magnetic field strength H, in the direction of propagation
and no component of electric field E, in the same direction. (E. = 0).

Substituting the value of E, = 0 in the following equations.

OE —j OE
y 9E, _ zjoe %,
and Hy hz Ox

E, = K% ox

Then E, = 0and H,=0
The wave equation for the component E,

0°E
3;‘2 +72Ey = -mzp.eEy
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—a—;f = —o’pueE, - y’E,
- 2 2
= —(o°pe +y9)E,
But h = y'+o’ue

—+ +h’E, = 0
| ox’ ’

This is a differential equation of simple harmonic motion. The solution of this
equation is given by

E, = C,sinhx + C,cos hx

where C, and C, are arbitrary constants.
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IfE  is expressed in time and direction E, = Eg e"'*), then the solution becomes,

E, = (C,sinhx +C,cos hx) e ¥
The arbitrary constants C, and C, are determined from the boundary conditions.

The tangential component of E is zero at the surface of conductors for all values
of z. |

E,=0atx=0
E,=0atx=aq
Applying the first boundary condition (x = 0)

0 = 0+C,
C, =0
Then E, = C;sinhx e "

y
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Applying the second boundary condition (x = a)

sinha = 0
h= "
a
where m= 1,23, .........
mn
E, = C, sm(‘;‘x R
OE mn
—y _ mt mn _y
o aC,cos(ax)e’
From eqn. (4.5),
YEy = —j(l)l.le
9E,

Ox "'j(ol"le
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Jou
- e 1 OE,
rom the second equation, H, = - jon ox
Substituting the value o(@in the above equation
— mn mn
= S— -Yz
H, jona C, cos ( - x) e
jmmn mmn
H, = C, cos("—‘x)e""z
Opa a
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The field strengths for TE waves between parallel planes are

\
E, = C sin(zglx)e‘”
= ;L 1 -"—"E - Yz oo 4.7
* = jon Clsm(ax)e > (4.7)
—mn mrn \ _..
H, = jopa C, cos(—a‘x)e L

Each value of m specifies a particular field of configuration or mode and the wave
associated with integer m is designated as TE,, wave or TE, , mode. The second
subscript refers to another integer which varies with y.
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If m = 0, then all the fields become zero E, =0, H, = 0, H, = 0. Therefore, the
lowest value of m = 1. The lowest order mode is TE,,. This is called the dominant
mode in TE waves.

The propagation constant y = o + jB. If the wave propagates without attenuatior
a = 0. only phase shift exists.

Y = JB
Then the field strengths for TE waves are
| )
E, = C sin(%zx)e'lﬁz
=B o (mm )
H, —@‘DM C,sin| = "x e /P > ... (4.8)

- M m )—_‘fﬂz
H, Opa C,cos( p x)c )
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The field distributions for TE,, mode between parallel planes are shown in Fig,

X —— X
P A B )
i z T2
NN T T, R
Hx[
H,
EV
SSSNSSSY o 2 >y
S R S S R
t\ T T B |
AN \\\\i\\\j bt ANMAAAAAAAARAAARARN |
N[ 37 $
D ]]a ﬁ[[ D }] r f - £
AN 24N - < -
e R NN NN SOAONNMNMNANANNNININISSY —
l NH o1 NE Y

Electric and magnetic fields between parallel planes for the TE
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Transverse Magnetic Waves

Transverse magnetic (TM) waves are waves in which the magnetic field strength
H is entirely transverse. It has an electric field strength E. in the direction of
propagation and no component of magnetic field H. in the same direction (H.=0).

Substituting the value of H, = 0 in the following equations,

H, = = a;;’ and B, = L2 a;*'
Then H, = 0 and Ey=0 . [ H,=0]
The wave equation for the component H,

OH, :

P! +y°H, = -o neH,
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2 = —(@ps+y)H,
But h* = v+ o’ue
0*H,
—5;:“ + h? H, = 0

This is a differential equation of simple harmonic motion. The solution of this
equation is given by

H, = Cysinhy 4+ C,cos hy

where C, and C, are arbitrary constants. 11 H, is expressed in time and direction,

then the solution becomes
i y = (Cy sinhx + C, cos hy) eV ‘
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The boundary conditions cannot be applied directly to H, to determine thd
arbitrary constants C, and C, because the tangentinl component of H is not zero at the
surface of a conductor, However, E, can be obtained in terms of H, .

oH
——* = josk, eqn. (4.4)]

ox
: 1 OH,

4 n W s

* jos Ox

h | :
= "“"‘,.m\ |Cy cos hx — C, sin hx) e ¥*

Applying the first boundary condition (E, =0 at x = 0)
C“; = ()

A\l
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- h
Then E. = — C,sin hx =¥
| - jOs 4 hx e

Applying the second boundary condition (E, = 0 at x = q)

sinha = (

, mn
, = EESSTRGE
Qa
wheremisamode m=1,2,3, ....cvvnn
mm mn
E’ == -— S‘ (-———.') ‘Y:
Therefore, . josa C, sin . % )e
[ mm . (mn ) .
= sin| —x |e™ V¢
0EA Cy a )¢

| mun
: ™ “ . Sw— " Y:
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But YH, = joeE,
SR V2
¥ JjoE Hy
= C, cos (mx) e ¥’
joe a
The field strengths for TM waves between parallel planes are

' B
H, = C4cos(”;nx)e‘7"
_ 1 M\ e
* = o C4cos( p x)e > ... (4.9)
_ Imn mn —yz
Ez O C4S ( a X)e 7 J
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The transverse magnetic wave associated with the integer m is designated as TM,,
wave or TM,,, mode. If m = 0 all the fields will not be equal to zero i.e., E_and H,
exist and only E, = 0. In the case of TM waves there is a possibility of m = 0. ’

If the wave propagates without attenuation (. = 0), the propagation constant
become y =jP. The field strengths for TM waves between parallel conducting planes

are .

| \
H, = C4cos(”;nx)e“"’z
mre \ .
E, = ;D% C4cos( ; x)ef'3 . ... (4.10)

' mTt mn .
e C, sin 7 X )e 4
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The field distributions for TM,;, wave between parallel planes are shown

X X

E, Hy
. Y
4 -y

X X §
4 :

SweevaRwwy]

> $334554 b4+

Wecevceadoecsccsnccs

@eccccodoencocene

N H
::::::::1:::::::
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Transverse Electromagnetic Waves
The field strength for TM waves are

H, = C4coz’»("yalt'x)e""’z )
_ B L R
E, = g Cacos| x |e/Ps ... (4.11)
immn . { mn -
¥, = j&; C, sm(-"l-x)e e ]

For TEM waves E, = 0 and the minimum value of m=0.
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H, = C,e’™
E, = ;)ﬁe- C, e/ P*
E, = 0

These fields are not only entirely transverse, but they are constant in amplitude
between parallel planes.

Characteristics:
For the lowest value m = 0 and dielectric is air.

Propagation constant y = \/0 —0' e, = jo-Jugg;

B=a)\jp080
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©
Velocity v = = = ¢
p \jﬂo €o

Wavelength A = T{ = -f-

Unlike TE and TM waves, the velocity of TEM wave is independent of frequency
and has the value ¢ =3 x 10® m/sec.

The cut-off frequency for TEM waves is zero.

m

= =0 m=0

Ie 2a4\/ pe ( )

This means that for TEM waves, all frequencies down to zero can propagate along
the guide. The ratio of E to H between the parallel planes for a travelling wave is

|§| _ . [Re
H €9
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The fields distributions are shown in

- 7

m

*® & & e 0 x
—
.
et
et} .f“
—
e @
& X -t..__
et
__’
_ .
-
-
.

H,
a—|— | === —|—| =] | = |—|—[—|—]—]|—
|11l 11—l ’
a|—|—|—]|—|—| =] =] —=| = | == |— | =] —
o |—|— === =] =] —| = |—|—|— | =] —]|—
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Rectangular Waveguides

* Rectangular or Circular shape = simple lowest cost

* A hallow conducting metallic tube of uniform cross section is used for
propagation

* Waves are reflected from wall to wall

e Zig-zag fashion

* Maxwell’s equations are used to determine electromagnetic fields

Page 313 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Electromagnetic fields between rectangular waveguide

Z

A rectangular waveguide
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The Maxwell’s equation for non-conducting medium

VxH = joeE
a, a, a
0 0 O .
VxH = = joe (
ox 6% Px
H, H, H,
Equating x, y, and z components
oH, oH, _ . )
oy  Ox — JO8 Ry
oH, oH, }
0z  Ox = joek,
oH, OH
X Y _ .
oy ~ ox JoeE, )
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Similarly VxE = -jouH

a, a, a,
vxE=| & £ O
Ox Oy 0z
E, E, E,
Equating x, y and z components
0E, OE )
ay - _a;! = —jO)I—le
OE, OE, .
oz ~ ox OpH, }
0E, OE
=y  Zx _ .
ox ay _](D}I.Hz J
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Similarly for the wave equation,
o2 "o Tag T kel |
O’E OE IE _
o2 o ToZ T TUREE

Let Hy — H:L’ Yz
oH o
— = » Y =
P YH, e’ YH,
.. oH
Similarly 3 * = —yH,
2
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Let E, = E; e V?
OE 0
22 - ~VE, e =-vE,
. . aEx
Similarly 5~ Y E,
Substituting these values in equations 1,2,3
oH, | .
ay +'YHy — jmeEx .....
OH,
—é;'+ny= —jo)gEy ..... 5
0H, OH,
a" -5, = JeeE, 6
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oy y
OE, _
P +yE, = jopuH,
0E, OE, .
ox ~ oy JOW H,
Wave equations thus become
0’E, O°E, .
52H 6*H,
+ 37 TrH, = —oucH,
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Solving the following equations 5 and 7

OH,
Ox +yH, = —jogE, ..... 5
OE,
Dy +yE, = —jopH, -.---. 7

Substituting in equation 5

OH, .

Ox +yH, = —joeE, ..... 5
oH, 1 (BE: ]] _
ax +7[—jmp 3y +YE, = —joeE,
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OH, y 2B, YE, _
Ox jop Oy jop
oH, _y % _£_ )

E,

Ox jou Oy —j(DS
oH,  OE,
JOR G ~ Y5, T (¥ + o’ue) E,

Similarly, H, =722 5 * 2
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Solving the equations 4 and 8

oH,
ay +-YHy =jm8Ex ..... 4
3E,
ax +-YEx =‘ jm“Hy ----- 3
1 | ¢H;
5= o |3 1

Substituting E, in equation 8

c :

ox joe \ 0y
E, y oM r o = jopH,
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Similarly

OE,

y OH,

ox +j0)e oy

joe

OE,
ox

oH,
+y ay

H,

(-

_x’_)Hy

JOE

— (0’pe +v9) H,

= 2
= —h’H,

—JOE OE, Y oH,
W o6x  h* Oy

E = i 6Ez _ lo)“ 6Hz
x  h* ox h* 0y
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The following equations give the relationships among the fields within the
rectangular wave guide.

E = —y 6Ez _j(,)u 6Hz 3
*x  pt ox K oy
» ok Oy K Ox > ..... 10
N BH, JOE 6Ez
He =22 % T 02 oy
_ =Y 6Hz JOE aEz
Hy=9"% 12 o
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Transverse Magnetic Waves (TM) in Rectangular Waveguides

The wave equation in a rectangular wave guide is given by

82E 0’E, >
y2 + y*E, = —0o°p e E,

The solution of the equation is
E,(x,y3,2) = E, (x,y) "

(o]

Let E = XY

4

where X 1s a function of x alone

Y is a function of y alone
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Substituting the value.of E, in the wave equation

d2X Y

Y=5 y2 + YXY = - o’peXyY

2 2
X dY
d y2 + 2+’ pne) XY = 0

Substituting 4% = y2+ o’ue

ZX 2
Then d L +h*XY = 0
yz
Dividing by XY,
1 d*X 1 d% .

2—
X a2 Y af th
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1d2X+h2 _=1d%
X dx? Y g

The expression equates a function of x alone to a function of y alone and this can
be equated to a constant.

1dX .,
de2+h =
1 dX 5, .,
1 dX .,
X a2 TB°=0
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A solution of the equation is
X = C, cos Bx+C, sin Bx

. 2
Similarly - -‘;}} = A?

141 a2 _
Y 4 +A 0
The solution of this equation is
Y = Cycos Ay + C,sin Ay
Then E: = XY

= (C, cos Bx + C, sin Bx) (C; cos Ay + C, sin Ay)
= C, C; cos Bxcos Ay +C, C,cos Bx sin Ay
+C, C;sin Bx cos Ay + C, C,sin Bxsin Ay
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The constants C,, C,, C;, C,, A and B are determined by boundary conditions.
E:=0wheni=0,x=a,y=0,y=b.

When x=0, E. =20

o
4
o

E, = C,CcosAy+C,C,sinAy = 0

2

This is possible only if C, =0

Then the general equation is
o

E, = C,C3sinBxcos Ay+C, C,sin Bxsin Ay
When y=0, E, =0
E, = C,C;sinBx = 0

This is possible only if either C; =0 or C; =0. If C, = 0, E: is identically zero
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So, substituting C; =0
E

Let C = GC,

E- = CsinBxsin Ay

¥4

o
4

= C,C,sinBxsin Ay

Applying the boundary conditions in order to evaluate the value of constants A
and B.

Ifx=a. E. = CsinBasinAy = 0

-

This is possible caly if B="_" for all values of y.

mn

B = = where m=1,2,3, .c.covnn.
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If v=5, E = Csin-"gt‘xsinAb=0

Ed
-

Thisispossible onlyif A= -’%“ for all values of x.

A = T where n=1,2,3
Hence E: = Csin"!‘:;x sing';‘y

For propegation, ¥y =jP (a = 0), the field expressions are as follows :
E: = :‘}ng Bcos Bxsin Ay

z —jBC
E, = —‘}L';LAsiancosAy
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< eC
H === A sin Bx cos Ay

x h2
° —joeC
H = =23 BcosBxsinAy
where = % and B="m1
a

In the above expressions a and b are the width and height of the waveguide and m
and n are integers.

It is known B2 = h? - A?
- A*+B? = A
and R = y*+ o’ue

Y &= ‘\jhz—(t)zps = ‘\IA2+B2-0)2}.I.8
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- n_mf s 2
1= a ) T\ Tp ) —one
This is the equation of propagation constant for a rectangular guide for TM waves.
Cut-off frequency and cut-off wavelength
Propagation constant is a complex number,

Y = a+jp

For low frequencies w’pe is small. Therefore the propagation constant y becomes
real a number. ie., ¥y =a (‘- B = 0). It indicates that there won’t be any wave
propagation.

If the frequency is increased, a value (0 ) may be reached at which

otue = () (%)
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|
N
3
:
m
V
o |
S——
+
—
':~|§
~—

= (@) ()
a b
This is the cut-off frequency. Cut-off frequency is the frequency below which
wave propagation will not occur.

-
2]
I
t
ml

The corresponding cut-off wavelength is
e = 4

fe
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If the frequency is greater than the cut-off frequency, the propagation constant y
will be imaginary.
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Velocity of propagation

Propagation takes place only when the frequency is greater than the cut-off
frequency. The attenuation constant becomes zero.

e > (2] + (3]
=i - (2] -(5)
o <o - (%) (5]

The velocity of wave propagation in waveguide

Propagation constant 7y

0
VB
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BEHGED

The corresponding wavelength in the guide

\4

7\.=7 =
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Electric field and magnetic field configurations for the dominant
mode in a rectangular wave guide
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Transverse Electric Waves (TE) in a Rectangular Waveqguide

The wave equation in a rectangular waveguide is given by

0’°H, 0%H, .
ax2 + ay2 +Ysz‘= —0pe Hz

The solution of the equation is

H,(x,y,z) = H, (x,y)e "

Let H: (x,y) = XY
where X is the function of x only.
Y is the function of y only.
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Substituting the value of H, in the wave equation,

2 2
de dyz +y2 XY = - o’ pe XY
2 2
de ‘;}Z +h2XY = 0
where h? = v+ o’pe
Dividing by XY,
L X 1 dY |,
Xde *Yagp *h 70
1 d*X -1 d*Y

2
X a2 th =Y g
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The expression relates a function of x alone to a function of y alone and this can be
equated to a constant.

1 d*X
X df *H = A
1 d*X
X g2 Th'-A' =0
1 d*X
X d2 B =0

The solution of this equation is

X = C, cos Bx + C, sin Bx
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Similarly —~ =
’ Y d)}
1 dY A2 o
Y @y =0

The solution of this equationis Y = C;cos Ay + C,sinAy
But H, = XY
= (C, cos Bx + C, sin Bx) (C;cos Ay +C, sin Ay)
= C;C3cos Ay cos Bx +C, C, cos Ay sin Bx
+C, C4cos Bxsin Ay + C, C, sin Ay sin Bx

Page 342 of 465 Dr.M.Sivakumar/ECE, MSAJCE



g ==Y & _jop oM,
* h* ox  h* oy
For TE waves E,=0.

g o don OH
X h2 ay
= _th"l{i[-C, C; Asin Ay cos Bx - C, C; A sin Ay sin Bx

+C, C4 AcosBxcos Ay + C, C, A cos Ay sin Bx]

Applying boundary conditions, E,=0 when y=0, y=b

If y = 0, the general solution is

E, = -LF[C CiAcos Bx+C,C, AsinBx]=0
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For E.=0, C,=0. (C, is common)

Then the general solution is

E = "LE [- C, C; Asin Ay sin Bx — C, C; A sin Ay sin Bx]

If y=b, EJr =,
For E, =0, it is possible either B=0 or A = n;: If B = 0, the above solution is
nm

identically zero. So it is better to select A = B
The general solution is

E. = J—E [C,C;AsinAycos Bx +C, C; Asin Ay sin Bx ]

X
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Similarly forE,

g ==y %:  jou O
y  h? y h* Ox
op 9% R o=
- [ E,=0]

= j—;:izg- [-C, C;Bcos Aysin Bx + C, C; B cos Ay cos Bx -

C, C4BsinBxsin Ay + C, C, B sin Ay cos Bx]

Applying boundary conditions
E,=0; x=0 and x=a
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Ifx=0,

E: = L%—‘- [C,C;BcosAy+C,CyBsinAy]

For E, =0, C,=0

Then the general expression is

E = L_}l_ [-C, C;Bcos Ay sin Bx - C; C, B sin Bx sin Ay]

y
If x=a, then Eo =0

E, = “%[C C;BsinBacosAy+C,C,sinBasinAy]
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=0, B=
[0

a

mt

L}I—[Cl C;BsinBxcos Ay+C, C,;BsinBxsin Ay ]

=T

h2

Substituting the value C,=C,=0

E

E

b 4

o

y

° _ Iop

h2
'
G
Iop
-2
Jop
-3

C,C; Acos Bx sin Ay

C; A cos (%ﬁ)x sin (’%t

C, C;Bsin Bx cos Ay

C,CB sin(

mm )
) cos
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Let C = C, C,
E = L‘}LCAsmAycosBx

X h2
E, = Lhﬁ‘— C B sin Bx cos Ay
where A = !'?b:[i and B = nzzn
Similarly for H: ,
o -y OH, jog OE, _ —y OH, R =
H = 2 T o pt S5 [+ E,=0]
For propagation, y =, [*v a=0]
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% W Ox
on OH
B JOU Z
u Ey h*  ox
OH, h?
= — -E
ox jop Y
o) o aHz . Y o
Substituting the value of 5, I the above H equation
o _ziB K
Hx h? . Jou E}’

_:_QE°
op Y
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Substituting the value of E; in the above H: equation

H: = ;E [’Jh"z’” CBsiancosAy:I

H: = 'l];% CB sin Bx cos Ay
H: - ﬁ% CB sin(ﬁgl)x cos(%’i)y

Similarly for H_ ,

o _ =y OH jos OE.

y h* Oy h® 0Ox
_y OH,

h® Oy

[+ E,=0]
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For propagation, y =, [ a=0]

o —jP OH,
y K oy
-7 aHz
But E, = "ZI;EP“ "a‘;'
aH h2
o " jou B
oH

—= in the above II equation

Substituting this value of Dy
._.l.ﬁ L:_h.?) ..[}_ Eo
H, h*  jop Er = 0 TR
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Substituting the value of E, in the above H _equation

H; = mﬁp [jhz CAsmAycosBx]

[P_ CAcosBxsinAy

L& CAcos(mn)x sm("%")y

H a

“« o

H, = XY

w0

= C, C;cos Ay cos Bx + C, C; cos Ay sin Bx
+C, C,cos Bxsin Ay + C, C, sin Ay sin Bx

Page 352 of 465 Dr.M.Sivakumar/ECE, MSAJCE



But C, = C,=0
H: = C, C;cos Ay cos Bx
C =C, G
H: = Ccos Ay cos Bx
¥ - 1] A1)
H, = Ccos( . )xcos( b )y
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The field equations for TE waves are as follows :

=

H Lﬁ' CB sin Bx cos Ay

H: = 1,'1% CA cos Bx sin‘Ay
H: = Ccos Ay cos Bx
E: J—h#'CA cos Bx sin Ay
E, = =5t CR s By s Ay
AP T T
where A":"zj:'t'andé "Zt |
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For TE waves the equations for B, f.. A, v and A are found to be identical to
those of TM waves.

2\ U8
The corresponding cut-off wavelength is

N RO
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The velocity of propagation

=
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Impossibility of TEM waves in Waveguides

* Transverse electromagnetic (TEM) wave do not have axial component
of either E or H, it cannot propagate within a single conductor
waveguide
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BESSEL FUNCTIONS

In solving for the electromagnetic fields within the circular waveguides, a
differential equation known as Bessel’s equation is encountered. The solution of the

equation leads to Bessel Functions.
The differential equation has the form

dp _1dP (1 _f‘-z-)pz() where n=0,1,2,3, c0cvcvne
dp* T p dp P’

The solution of this Bessel's equation can be obtained by assuming a power series
expansion,

> "
P=agta ptapt....
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For special case (n = 0), the Bessel’s equation becomes

iz_l:+l-(!£+'):0 ...(5.1)

Substituting the value of P in the above equation and equating the sums of the
coefficients of each power of p to zero.

’.P=P|=C‘[l—(%)2+(%‘.’)4 _(%9)6; ]
(z)

= Cl Z ("’ 1)" (r!)z

r=0
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The series is convergent for all values of p either real or complex. This is called
Bessel's function of the first kind of order zero and is denoted by J, (p) = P, for

n=0.

The corresponding solutions for n = 1, 2, 3, ...... are designated J,(p), J,(p).
Ji(p), ... where n denotes the order of the Bessel’s function. Fig.5.1 shows the

Bessel functions of first kind of different orders.
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+1.0

— Jo(p)
+08 O

| /lf— Ji(p)
+06
+04 74: Ja(p)

+0.2

Jn(p)

-0.2

-04

0 E 4 6 8 10 12
P

Bessel functions of first kind of different orders
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The zero order of the second kind is,

1\
oot g o (1t

The complete solution of the equation

P = AlJyp) + BNy(p)

Page 362 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Fig.5.2 shows the zero order Bessel functions of the first and second kinds

+0.8 \//— Jo(p)
5 or [ AN
5 \ >
i 0 \
«
3 [ NI
S -04

-08

0 2 4 6 8 10 12 14

P
Zero-order Bessel functions of the first and second kinds
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TM Waves In Circular waveguide

For Transverse magnetic (TM) waves, H, is identically zero. The boundary-
conditions require that E, must vanish at the surface of the guide.

SJ (ha) = 0
where a is the radius of the guide.

There are an infinite number of possible TM waves corresponding to the infinite
number of roots of J, (ha) = 0.

The first few roots are (ha),, = 2.405

(ha),, = 3.85
(ha)y, = 5.52
(ha), = 7.02

The various TM waves will be referred to as ™, T™M,,, etc.
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The propagation constant Yy = \ h2- W2ue

For propagation, y = iB

b = oue-r2,
Q)CZ He = hznm

f hnm
© 2n ‘\/ e
where 4~ $m

a

The cut-off frequency

© ___©O
B Jope- K2,
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The field equations for TM waves are given by

th =Jg§ aEi!

P P ‘5‘;
OE
RH, = _jpg —=
op
we = _, %
P ap
OoE
WME, = 4+ —&
¢ p 0¢
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The expression of E, for TM wave is
E;° = A,J, (hp) cos né

OE,° 0J, (hp)
oo " A h 3p cos n¢
OE.° :
2% = —A,nl, (hp)sin n
Substituting these values in equations
. _ —JA,0enl (ph)sinn
He° =
P h2p
o —j An WE aJn (hp)
HS° = 7 op  ©0s no
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E°

= -JBA,h o cosnd
= oF H¢O

_ B .

= 5 Annl, (hp)sin ng

0], (hp)

—B

o
e Hp

Page 368 of 465

[ y=JjB]

[~ v =JB]
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o :

TM waves in circular waveguide
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TE waves In Circular Waveguide

For transverse electric (TE) waves, E, is identically zero. The field equations for
TE waves are given by the equations

r-H, = —Y dp

oH

_ Y 2%

Py = -5
wE, = ot
P p 0¢

~ 0H,

h2E, = jop dp
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The expression of H. for TE waves is

H° = C,J, (ph)cos n
OH.° ho 1, (ph)
5o C, dp CcoSs ng

OH,S _ ]
T C,nl, (ph)sinn

Substituting these derivatives in equations

Hp° = 7 dp cos n¢
. _JBnGC, ’
Hy = 7h 5 J. (ph) sin n¢
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E,° —J?Z% C,nJ (ph)sinnp = —BE H,°

" ® oJ, (ph)
E,° = th: C, 3p cos nd

s S B
= 3 Hp°
e ey ik . . oH,
The boundary condition is E, = 0 at p = a. Since E, is proportional to ?p- :
0], (ha
(ha) _ 0.
ap
I, (ha) =
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The first few roots of this equation are
(ha), = 3.83
(ha),, = 1.84
(hay , = 7.02
(hay,, = 5.33

The corresponding TE waves aré referred to as TE,,, TE,;, TE¢, and TE 5.
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waves in circular waveguide
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WAVEGUIDE CAVITY RESONATORS

Waveguide cavity resonators are formed by shorting the two ends of a section of a
waveguide. Waveguide cavity resonators are :

1. Rectangular cavity resonator

2. Circular cavity resonator
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RECTANGULAR CAVITY RESONATOR

The geometry of the rectangular cavity resonator is shown in F g

........................

y
l ol —— /
z/~ a 1

Rectangular cavity resonator
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Transverse Electric (TE,,,,) Mode :
The magnetic field expression in the z direction is given by

H, = Hocos(mnx) cos(mgl) sin(%)

a

where m=0, 1,2, 3, ... represents the number of the half wave periodicity in the
x direction.

n=0,1,2,3, ... represents the number of the half wave periodicity in the

y direction.
p=1,2,3,4, ... represents the number of the half wave periodicity in the
z direction.
The electric field in the z direction is
E, =0

4
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The magnetic field in the x direction is

T 0°H,
*  h? 9x 0z
where h? = (M)z +(M)2 +(RE)2
a b d
2 nm pnrz ﬂ
H, = hlz 6)?62 [Hocos(m;tx) COS(_[_)X) sm( d ) _
H nm pnz\ pn
= hg aax [cos(%{) cos(—gz) cos( 7 ) d
-
nz
1, ] ()22 ) o) ().
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The magnetic field in the y direction is

1 0°H,
H, = -3 dy 0z
2 nm .| Pz
= - hl2 ajaz [Hocos(m:x) COS(_—bX-) o1 ( d ):I
pnz | pW
= __II;IS aay[cos(m;tx)cos(%z) COS( d ) d ]
nZ
() (32 s (22 (752 o (%57
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The electric field in the x direction is

E _ :‘L(DE aHz .
x —  p* Oy

—jou O
= .;lzu‘ay[HocOS(
()
E, = 7 52 , ) ©0S

The electric field in the y direction is

. oH,
y h: Ox

Page 379 of 465

Dr.M.Sivakumar/ECE, MSAJCE



—
—

—

h? a

Transverse magnetic (TM,,, ) Mode :
The electric field in the z direction is given by

E. = E, sin(m::x) sin(ﬂbt‘y‘) COS

2
¥

(¢']

a

x 3
[ I
o @
romnd ot
L
ba S

......

A

Il
.
N
»
A

Page 380 of 465

o 2 [y o5 (52 0 (%)
1232E ax[Hocos( p )cos( ) sin| T

- —jopHo (m) Sin(_ﬂ) cos(ﬂ;ﬁ) Sin(?ﬂ
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Magnetic field in the z direction is

The electric field in

E

X

H,=0

the x direction is
1 9,
~ h?* 8x0z

2 _ (mrY | (nm) (@)2
where h_(a)+(b)+d

]

E“'=h

o? . (mnx) . (nmy
3 axaz[Eosm( a )sm( b

-Ey ¢

C(mnx) .
h? ax[s“‘( a )Sm(n_:l)s
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in(222) 2

Dr.M.Sivakumar/ECE, MSAJCE



e, = 5 ()% oo 722 sin(52) sin (222
The electric field in the y direction is
1 O,
y R Oy 0z

_ 1 9 . (mnx) | -
Y dy 0z [Eo sm( a ) sm(ﬂg‘z) cos(%)
:EQ._?_[ : (mnx) . (mtg . (prz) pn
n oy sin| — sin| sm( d ) .

5 - (3)(F) o
y  p2 \d )\ p )5S0
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T'he Magnetic ficld in the x direction is

jog OF,
)
\ ,’ & “) »

H

-
{8 [ (,sin("mx)sin(ﬂ;‘}i) cos(egz')

2 (‘).
The magnetic field in the y direction is

__[ e Ql
y h? ox

H

-3 [ rosn(75) s
X
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For either TE,,,, or TM,,,,, mode :
At resonance

(o(z,pe = h?

(5)-(5)

I
~—
3
2 |3

on = 7= (22 + (5] +(5)

Resonant frequency is given by

Jo = 2n\/Ie_ \[m _513 +(%E)2
fo = 2\/’;8‘ \/
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Rectangular cavity dominant mode field configuration (TE ;)
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Circular cavity resonator

Circular cavity resonator
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Transverse electric (TE,,,,) mode :

The magnetic field intensity in the z direction is given by

!

X
H, = HOJ,,( - p) cos (nb) sin(*”—;‘—z)

where ] n 18 the Bessel’s function of the first kind,

H,, is the amplitude of the magnetic field,
m=0,1,2,3, ... is the number of periodicity in the ¢ direction,
n=1,2,3,4,... isthe number of zeros of the field in the radial (p) direction,

P=1,2,3,4, ... is the number of half waves in the axial (z) direction,
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’

X nm

o = h
X,m is the m™ root of equation J (ha) =0
The other field components in p, ¢ and z directions are

E,=0

e
I
I
s
(=
/N
3
——
/N
IS
N—
/N
=
TS
—
N
Qo
=
/N

- x:,g p) sin (n¢) cos (%)
(55 (55 eoncrr on(22)
E, = jHomu(x;am )J;[x;mp) cos (n¢) sin( )
( (%

n a \ x::mp Pnz
E, = jHyop ;) (x' ) J,,( a )sm(m!))sm )
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Transverse magnetic TM,, , mode :

The electric field intensity in the z direction is given by
Xnm P pnz
E, = EOJ,,( 4 ]cos(nq))cos( 4 )

The other field components in p, ¢, z directions are :
H, = 0

E, = E (%)(g—) (xfm )2 J (x,,gp) sin (n4) sin (@df)

E, = —EO(EdE) ( - )J:z (x,,gp) cos (n¢) sin (PZ—Z)

xnm
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H,

X n a

xnm nz
= —j Eome( a JJ. (___E) cos (n¢) cos (Ea")

nm

X

= _j Eome( a )2 J"(xnzp) sin (n¢) cos (2_35)

nm
where J, is the Bessel’s function,

E, is the amplitude of the electric field,

m=20,1273,.........
n=1223,4,.......
p=1273,4,.......
X nm

P h

x,  is the m™ root of equation J,, (ka) =0
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Resonant frequency :
For TE,,, mode:

At resonance, ©F pE
Since h?
2
W, =

The resonant frequency for TE mode :

b\ )

rage 394 UT4‘UJ
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For TM,,,,,p mode :

At resonance, ©¢ pe
‘ X 2 2

; | 2 _ | Znm b
Since h ( p ) + ( d)
Xy |2 .

2 _ | Znm pn
W, HE = ( - ) + ( d )

1 (xnm )2 " ( pn )2
(00 o HE ( ({

Il
=
()

l
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TEq11 P’
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H oo-E

+ + +§+ +  + —E
G(... T +E+:T ...)*j

TEo14 P’

Circular cavity field configurations
(Left hand side is the cross-section through PP°)
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The resonant frequency for TM mode :

jo - g N (2) < (5)

where x,,, is the m™ root of the equation I’ (x) =0,

x,. is the m" root of the equation J (x) = 0.

nm

The dominant mode in a circular cavity will depend on the dimensions of the
cavity.

For d <2a, the dominant mode is TM,,

For d 22a, the dominant mode is TE,,, .

The important mode for its high quality factor Q is TE,,, .
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. A rectangular waveguide of cross section 5 cm x 2 cm is used to propagate TM
mode at 10 GHz. Determine the cutoff wavelength. [November 2011]

Given: a=35cm b=2cm

T™M mode, m=1, n= ]

- =3.714cm

Ac = -

t | —
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. A rectangular waveguide has the following dimensions /=254 cm, b = 1.27 cm.
Calculate the cutoff frequency for TE, mode. [November 2006]

Given: a=254cm b=127cm
TE, mode m=1, n= 1.

The cutoff frequency is given by,

9 2 ) 2
N e ¥ RY i
Je= 2adue W\ a b) 2\\a b
8 y. 2 . "
3x10 ] ] +[ ] ] where V=3 x 105 m/s
Je =7 | 2.54x107 127x1072

f.=13.205 GHz
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A rectangular waveguide mesures 3 x 4.5 cm internally and has a 10 GHz signal

propagated in it. Calculate the cutoff wavelength, the guide wavelength and the char-
acteristic impedance for 7E , mode [Dominant mode]. [November/December 2007]

Given: a=45cm. =3 cm. /=10GHz

TE ,mode, m=1, n=0.

1) The wavelength is free space,

¥ 3x108 .
== OQ:O.OJHI
f  10x10

/.{\ =

ii) The cutoff wavelength is given by.

pree - = A- =0.09m
J JEH /( | ) ,
L a) b Page 3&' L &S x| 0"2 - Dr.M.Sivakumar/ECE, MSAJCE

)
to

Ar =




ili) The guide wavelength is given by,

,, o 0.03
Ae = = .=0.0318m

¥ |

-2 -(e)

4

fv) Wave impedance is given by,

ZH/I S -,’ 7-
)
L/
r

/ “V\/(rn)z 2L R T
J = e PSS — ._.*"4. I~ B =3 - - . I ‘ fr
2\ d 2 V! 4,§/l(}zj
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7 3

e = e 43998760
| (3,3&‘ 9424
10 J
2, = 399.5¢)
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UNITV RF SYSTEM DESIGN CONCEPTS

Active RF components: Semiconductor basics in
RF, bipolar junction transistors, RF field effect
transistors, High electron mobility transistors
Basic concepts of RF design, Mixers, Low noise
amplifiers, voltage control oscillators, Power
amplifiers, transducer power gain and stability
considerations
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Active RF components: Semiconductor basics
In RF

The operation of the semiconductor devices depends on the physical behaviour of
the semiconductor used. The most commonly used semiconductors are germanium
(Ge), silicon (Si) and gallium arsenide (GaAs). When the temperature is zero degree
Kelvin (T°K = 0) all the electrons are bonded to their atoms and the semiconductor
behaves like insulator. When the temperature increases, some electrons attains
sufficient energy to break up the covalent bond and cross the energy gap
E, = E; — Ey. At room temperature, the band gap energy E, = 0.62 eV for Ge,
E =1.12¢V for Siand E, = 1.42 ¢V for GaAs. When an electron breaks the covalent

bond, it tends behind a positive charge vacancy which is called hole.
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Let n be the concentration of conduction electrons

p be the concentration of holes

The concentration obey Fermi statistics.

p T Nye 4
Where N is the effective carrier concentration in conduction band
Ny, is the effective carrier concentration in valence band

Er is the Fermi energy level
k is the Boltzmann’s constant

In an intrinsic semiconductor, the number of free electrons produced by thermal
excitation is equal to the number of holes.

1.8, n=E p=u

np = nPage 403 of 465 Dr.M.Sivakumar/ECE, MSAJCE
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In a semiconductor both electrons and holes are contributing to the conductivity of
the material. The conductivity (o) is given by

G = qgnp,tqpp,

where ¢ is the charge of particle

1, is the mobility of electrons

1, 1s the mobility of holes

Page 404 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Free electron

E Conduction Band Ea Eos
B s mmcmismmmim s
P B s
= LTS A SOROIE. A o 1N
EVW% BN s s BN rorrrrrrrrrrrrrrrrrr

(a) Intrinsic (B il ype Or-M Svakump o) Vi e



The electron concentration in » type semiconductor
n, = ND +pn
where Np, is the donor concentration

P, is the minority hole concentration

Np +~/ N3 + 4 n’
n, € 5
~Np +~ Nj +4 n?
pn = 2
If Np >>n,, S n, = Np
412? %
pn = 2
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Py

U

~
~

4 n*

3

o

The hole concentration in p-type semiconductor

where

p, = Npytn,

N, is the acceptor concentration

n, is the minority electron concentration

NA+\/Nf\+4n,.2

IfN,>>n,,

Pp

P

n

R

2
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Bipolar junction transistors

IC(_

RB IB T— vV
— — CC
—AWVW Vce -
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Load line — 1/Rg

VBB / RB Load line — 1/RC

Saturation
]

o

(&%)

1
|
|
L
(e 0]
N
Increasing
base current

VBB VBE

o3

mo . . G ——
>
Mo T.<1-

<

O

(@]

<
0
m

(b) Input characteristic of transistor (¢c) Output characteristic of transistor
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Forward Active Mode

Reverse biased

lased .
Forward biase B iunction

junction k <-o L W

n
ng(O) @ O
C
ps ol Ic
B
npo 9/ =
2 —ex
X =dg x=dpg+dc
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The diffusion current due to holes in emitter is

I . dp, (x)
g = —4 L dy
""'(I l)l) I’ I
=T, [P O =py (= dp)
B L .
Substituting the values of p*
-¢ D" |
! = —L | B V!V "
p an d; (I R )
I E B
e, 4y, I)N() ((‘V“,/V, ]
p difl dl 2

The diffusion current due to electrons in base is

[~ 13 g
Jl!d.”' = g l)” MJ
ndi P dx

nd

9Dy [ :
Pa; 211 6fges | L (dly) =1 by Q) Sivakumar/ECE, MSAJCE




The forward base current is

q D; pf

: 0 LY
iy = _J}[;dil]' A = Ae ™ T-1)

dE
The forward emitter current I is the sum of collector current and base current.
Forward current gain . is

lrc

Iy VeE

I

Be

a Mg, dy:

I d

s 4 Ve / V

DE pt ¢y ~ ¢ DE pE e B T3> )
p I"O‘B q p 1)

Collector current to emitter current ratio o is given by

[pc =

oy = b
' = FE | VRage 412 b abs B F Dr.M.Sivakumar/ECE, MSAJCE



Reverse Active Mode

Reverse biased B Forward biased

junction \':K—o I [ /I junction
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Since emitter-base is reverse biased, minority charge concentrations (p, ) are zero.

The minority charge concentrations in base at distance x = 0 and x = dj.
B B ,Vee/VT =
n, (0)n no © 0

B = wB Yol Yy
n, (dp) n, ¢

The minority charge concentrations in collector at distance x = dy and x = d + d.

Var/V
p, (dg) = py €T
p, (dy+do) = p,

The reverse emitter current I is given by

= _JB

n diff A

dn® j
- Bl B
_— —'q D" ( dx A
et D, B B
Pagq/414 of e (0)—n p (dB) r M.Sivakumar/ECE, MSAJCE

IR



Reverse current gain [5, is given by

l’['!
P = 7

l i) Ve

B i
l)ﬂ n[}“ d(.‘

C L
D, Py, d,,

l" d('

o i, ’O.GVCIVT .,/-/ ]]
)

s

| &)

l):j )7,

Reverse collector current to reverse emitter current ratio o, is given by

(e
RE

By
14 pp

Vie
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Saturation Mode
For saturation mode, both the junctions are forward biased. The diffusion current

density in the base is the algebraic sum of forward collector current and reverse
emitter current

B
gy Jee + Jpg

Voo !V R,
= BE T BC T
I = Irc I e +1g e

The emitter current is given by

Ig = Ipp=Ipc—Igp

I
- _](;cvmz’vr +]1geVec’Vr _—S-(CVHEIVT__ 1)
‘ F
Add and subtract I,
I
Vo !V Vpe!V S . Vpg!V
Jg = ~Ige 88T +]g+]ge T —IS~B‘(c BET T~ 1)

ls
-1 (e - U 1) - ﬁzgéal\é%z{ag'r -1)+1g (e v“%’r.MEivddn)r/ECE, MSAJCE
. ;-



The collector current I~ is

Ie = lpe=lge+ g
I
= I, eVoe/ V1 _1 e Vac/ Ve =2 (eVee/ VT 1)
‘ ' R
Add and subtract Ig,
I
I = ISeVBE'VT . o Vac/ Vr +IS——S-(eVBC/VT—1)
R
I
= T (eVeE! VT = 1)_-—31;(GVBC/VT_ 1)-1Ig (e¥oc/ VT 1)

Base current I ; is given by

g = =le=lp

]
g= — . Vnc!/V — .. Vne/V
= IS [ BR (e Be PageZL710)4ét BF (e - o B.r'.l\/l.QvJumar/ECE, MSAJCE



RF FIELD EFFECT TRANSISTORS

(i) Metal Insulator Semiconductor FET (MISFET): Gate is connected to the
channel through the insulation layer. (Metal oxide semiconductor FET
(MOSFET) belongs to this type (Fig.5.11(a)).

(i) Junction FET (JFET): The reverse biased pn junction isolates the gate from
the channel. (Fig.5.11(b)).

(iij) Metal Semiconductor FET (MESFET): The reverse biased pn junction is
replaced by a Schottky contact as in JFET (Fig.5.11(c)).

(iv) Hetero FET: The hetero structures utilise abrupt transitions between layers
of different semiconductor materials (GaAlAs to GaAs). High Electron
Mobility Transistor (HEMT) belongs to this type.

Page 418 of 465 Dr.M.Sivakumar/ECE, MSAJCE



Source Gate Drain

Source Gate Drain

Insulator
Insulator

- - - ek o et s

p* substrate

p-type substrate n-channel

- b) Junction fiel '
‘a) Metal insulator semiconductor FET (MISFET) (b) Junction field effect transistor (JFET)

Source  Gate Drain
©

(27477000
n

Semi-insulaling layer g‘;:f'

Metal semiconductor EEE (MESFET) Dr.M.Sivakumar/ECE, MSAJCE
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(a) Operation in the linear region (b) Operation in the saturation region

Page 420 of 465 Dr.M.Sivakumar/ECE, MSAJCE



The resistance (R) between source and drain is

L
% W~ N

where Conductivity, o = g p, Ny

W is the gate width.

; . _ Vps

The drain current is I, = R

B 2¢5€,( V4= Ve

= GO[]— qu ( ND )]VDS

oW,
where  Conductance, G, = 3
The drain saturation voltage is
g N, d?
vl) sat 2 - (Vd - VGS)
= Vgs— V1o
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g Npd”
where  Pinch-off voltage, V,, =

2¢4¢,
Threshold voltage, Vo = V=V,
The drain saturation current is

2

MW
VI

\Y
IDsat = Go[f—(vd_vGS) 3

VGS o
- s 177

where Ipgq is maximum saturation drain current

v 2
Ipss = Go[_:;g"vd+3 v \Pk :|
p

(Vb= Vgs)
34/,
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v Ip Ip} Linear  Saturation

-

e Va5 =0

S Vgg <0

VGS" T

(a) Transfer characteristic (b) Output characteristic
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HIGH ELECTRON MOBILITY TRANSISTOR

Source Gate Drain

T iy
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Schottky Ef

<onlact
Eyy
Ep ~-H---}s---- .
{ EGaaas
~Eg AEe
}
o 0 X o
(a) Energy band diagram (b) Close-up view of conduction band
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To determine the potential distribution along the x-axis, Poisson’s equation is

used.
dZV(x! I’ p(x)
dx*? T8y B,
p(x) = g Np
(12V(x! _ 4Np
det T gy

where  Np is the donor concentration in GaAlAs hetero structure

€y Is the dielectric constant in GaAlAs hetero structure

By applying boundary conditions at metal-semiconductor side
AE-

where  V, is the barrier voltage
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Vg
and V(x=0)

Potential at metal-semiconductor

—Vgs + V(»)

I
o

q ND
Veedy = [[arv = -]
- qNp ,
= 28"x -E0)d
1( i
where, E (0) = E\ as— V() =V, + p +V)
1(
= Ekvos-v(}’)—v'ro)
AE
where, Threshold voltage, V,, = Vb_T v,
Pincheoff voltage, V, = o2
inch-off voltage, =
8% Vi 2 gy

Page 427 of 465 Dr.M.Sivakumar/ECE, MSAJCE



The electron drain current is given by

Ip
But o
Ip

Ip

But o

where L

Ip

= cEyA

qg 1, Np and A=wd

Il

qu,NpE, wd

dV dV
= ‘IHnNo(W)wd [ Ey=?{;:|
=8 —“nQ _-p'an
~ wld ~  d

[ "+ Surface charger density Q, = —O‘]

is the channel length

1, Q.
d g[‘:'“’d

= GE,A =

dV
p‘nQSWE = p'nQSw—
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LOW NOISE AMPLIFIER

Bipolar LNA

The simple common emitter LNA is shown in Fig.5.16(a). The transistor Q, and
current 1, are used to bias the transistor Q. Resistor R, isolates the signal path from
the noise of Q,. IR, >> Ry, the effect of bias circuit upon the LNA’s performance

qan be neglected.

The input referred noise voltage per unit bandwidth is given by

= - S B Vg

V;, = 4Kk (r,,-*'m) = 4 k'l (r,,+2lc)
V'I‘

Ry ™ r,,+:',j;‘
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<

+Vee +Vee

Rs R,
L T e ST ot
" é'>+ -:l—: ==C,

(a) Simple bipolar I.NA (h) LNA with base shot noise
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The total input referred noise voltage including the source resistance Ry is

| .u,,,l{f;
Vi - 4A|(RS-»~,~,,+%, + 12 )

&

-~ e

v2
vlnl - l & "ln + l & s m
4 kT R R¢" 2g, Rg" 2P

.. The noise figure, NIF =

Two Stage LNA e

+Vee
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Cascode CMOS LNA
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MIXERS

RF power
Mixer amplifier

IF RF

LNA Mixer

NG IF
L~

LO

(a) Upconversion (b) Down conversion
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Signal Ended Mixer Design

Vgre(t) N) T
Lé il - o Vie(t)
Vio(t) C’\D
Vre(t) ~> l
Vv _T_
& '9) —1 —
(a) Diode Mixer (b) FET Mixer
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Double Balanced Mixer
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VOLTAGE CONTROLLED OSCILLATOR

L3

RFC §
Cs

+Vee

Ce
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l‘" lu
T AWy

LT
Pt
Vin f, Ry hoo > R
l.3 < 02
o - .—'-_.

Equivalent circuit of VCO using varactor diode

I
i

Gy

=’
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Power Amplifiers - Introduction

RF amplifier designs are differ significantly from low-frequency circuit
approaches and require special considerations.

Most of the amplifiers can oscillate when terminated with certain source and load
impedances.

Matching networks can help stabilize the amplifier by keeping the source and
load impedances in the appropriate range.

In the amplifier design process, stability analysis is a first step.

Gain and noise figure circles are the basic requirements needed to develop an

amplifier circuits to meet the requirements of gain, gain flatness, output power,
bandwidth, and bias conditions.
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Amplifier Power Relations

* Generic single stage amplifier configuration with input and output
matching networks is shown in fig.

I's i
'_¢—_! {:L ¢' ‘:
RF 5 M;?Er?itng 5 ’ o '
- . —— Matchin '
source E Network »5 @ E“' Networl? —:v-H-» Load
&—| M) 1 & ] L | ©omN) E
- ! + i @
Fin DC bias |

Fig. Generic amplifier system
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* Input and output matching networks are needed to reduce undesired
reflections and improve the power flow capabilities

* Here amplifier is characterized through its S-parameter matrix at a
particular DC bias point

Key Parameters of amplifier, to evaluate its performance are
i. Gain and gain flatness (in dB)

ii. Operating frequency and bandwidth (in Hz)

iii. Output power (in dBm)

iv. Power supply requirements (in V and A)

v. Input and output reflection coefficients(VSWR)

vi. Noise figure (in dB)
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I's r , I's
by [ 31—~ by | 22 b1
o —o— 3 ;
Zs ; inct i*i Zs |
it o E A T |
Vs Lo i Vs :
] L] 1 ] ?_
a, |B1== —a| b ay
rin l_‘nut 1_‘in
(a) Simplified schematics of a single-stage amplifier
b b1, 1 81 Sy b, a by Dby
O—»—7=0—>—0 - -0
Ish V84 Sph I :;> 1:@ Fin
1 |
O—e0 — 0—4—0'
a; b1 S12 9 b a;

(b) Signal flow graph

Source and load connected tossingle-stage amplifier netwarle vsaxe



RF Source

* RF source is connected to the amplifier network

Incident Wave power:

The incident wave power at node by is given by,
2

bl
P; _ b
inc 2
— 1 |bS|2 91
2 |1_Finrs|
v Zo
Where, Source node b, = Vs
Zs+Z,

Z, — Characteristics Impedance , Zs —Source Impedance

I's- Source Reflection Coefficient and I, - Input Reflection Coefficient

This incident power is nothing but the power launched toward the amplifier.
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Input power:

The actual input power Pin at the input terminal of the
amplifier is composed of the incident and reflected power waves

P,=PI-IL,[) o2

in

Sub P;,. value in above equation,

p=t Bl -
2 Il _r:nr.?lz

3 G

rin
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Maximum Power Transfer:

If the input impedance is matched with complex conjugate of
source impedance (Z;,= Z;) or in terms of reflection coefficients
(I, = 1Y), then the maximum power transfer from the source to the

amplifier will be occur.
The maximum power transfer from the source P, is,

Py = Pinlr‘m: I

2
B 1 thI 2 Ir ‘(]_ll‘m‘z)
2|1_rmrS| Lin=Ts
2
- 3]
2 2 o
1- Tl
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000000

This expression (4), mainly dependent on I’

If I, =0 and I' #0, then equation (4) becomes,
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Transducer power gain is nothing but the gain of the amplifier when
placed between source and load.

Power delivered totheload ,
~ Available power from the source

G

p=tpllomf) e
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Substitute equations (4) and (7) in equation (6), we get

2
b 2 2)
6y =2 (- ) (-1
bs
From the Fig we can get b, and bs
b, = S,
1-S,,I}
I Szlsner . la
bs— 1—(S”+1—Szzrt. S_ |
- S.S T T, )
=|1-| S, T, + AVl A a
1_S22rl, |
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(1 "'Szzrf,)

b

- 7
(l - Snrs )(1 - Szzrz,)" Szlslzrl,rs

—

a ... (10)

b

From the equ (9) and (10), the required ratio —= can be calculated

b2 SZI

bs B (1 - Surs )(1 o Szer)" SZISIZFLFS°

Substitute equ (11) in equ (8), we get

S

S 1) N
I(l - Surs )(1 - Szer )" Szlslerrslz
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Unilateral power gain(Gry):

When feedback effect of amplifier is neglectec} 1.e.S); = 0. It is called unilateral
power gain.

Gry = LI s b-Irsf) 13
I]___FLSEI-"«L_S“I,SZ ....... (13)
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Additional power relations

Available Power Gain (G,4) at Load:
The available power gain for load side matching (I';, = I[;,;) is given as

Power available from teh network

Gy = ;
47 Power available from the source

I
oo lz"u

G, = al ! ( ul ' (14
" (1"' Out )Il Snrsl
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Power Gain (Operating Power Gain):

The operating power gain is defined as “the ratio of the power

delivered to the load to the power supplied to the amplifier”.
Power delivered to the load

b= Power supplied to the amplifier
s PL — GT _I_)_/_\_
Pin Pi"
2 2
_P,_ P,  [-[nl sl
P, P, (l—ri,, Z)I‘Szzrl.'z
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Stability Considerations

* An amplifier circuit must be stable over the entire frequency range

* The RF circuits (amplifier) tend to oscillate depending on operating
frequency and termination

(i) If |I'| >1, then the magnitude of the return voltage wave
increases called positive feedback, which causes instability

(oscillator)

(ii) If || < 1, the return voltage wave is totally avoided (amplifier). Its
called as negative feedback

Two port network amplifier is characterized by its S-parameters

The amplifier is stable, when the magnitudes of reflection coefficients
are less than unity

IT; | <1 and
IT5| <1
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Stability Circle

Output Stability Circle: The output stability circle equation is given by
(rlf —C:ﬁu )2 + (1_‘[{ _Céut )2 =roit

Iy ITinl=1
4 TN
Tl =1 AN
Cout l
ssssssssss
|Cout|
—— I“R

Output Stability circle

1",." |=F1advmﬂwwomplex [‘L planedrM.sivakumar/ECE, MSAJCE



_ |812S2||

Circle radius T
Out |S22|2 _ IAIZ

Where, A = 8,55 851,57

Center of output stability circle C,, =C} + jC.

Qut Out

(Szz -SI*IA).
|Sn|2 "'|A|2

When I, =0, then

1“in

= |S, : | , two stability domains of output stability circles are
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(i) For |S,,| < 1, the origin ( the point I', =0) part is in stable region. Here

shaded region is stable.

Unstable 4 T .

/

|ITLl=1

Output Stability Circle denoting the stable regions when 1Su| <1
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(i) For |S,,| > 1, the origin (the point T, =0) part is in unstable region.

--------
L d -

Stable

| Cout | R
L

Unstable

d

IT |=1

Output Stability Circle denoting the stable regions when |S,,




Input Stability Circle:
Input stability circle equation is given by

(CF-cFf + () -cLY =r

. in
S8y -
- - 12™21
Circle radius r, = |
Syl -|al
| n| "‘l |

Center of the input stability circle C,, =C} + jc!

— (Sn "'ngA).

S 2 2
1 T A
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IFs|=1

—

Input stability Circle [T,,,|=].in the complex. L. plane

OPe 458



Two stability domains of input stability circles are:
(1) When |S22| < 1, the center (I'y =0) must be stable.

Unstable

Isl=1

Input Stability Circle denoting the stable regions when LS <1
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(ii) When |S,, | > 1, the center (I's=0) becomes unstable.

Stable

Unstable

‘_..I"S

IFsl=1

Inp;t— Stability Circle denoting the.stable regionsDr_wJ@agggr,Jg ﬁwLCg 1



Stabilization Methods:

If the operation of a FET or BJT is unstable, we take steps to make

them stable

The instability conditions |I;,,| > 1 and || > 1 can be written

in terms of the input a

nd output impedances

~1 Above expression implies that

Re(Zin) <0 and

|F- | — Zin "Zo
" Zin +Zo

r = Zout _ZO
™ Zout +Zo

> 1 Re(zout) < 0

To stabilize the active devices, a series resistance or a

conductance will be ad

ded to the port
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Configuration at input port:

In the input port, the addition of R,(Z¢) must compensate the
negative contribution of R,(Z;,,)

’

Zin * Rjj
[
_ Rin
T e T
Active Device
Source — ™ | (BJT or FET)
o1 1  }ee---

Zin
Stabilization of input port through series resistance
Re(Z, +R,, +Zg) >0
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Stabilization of input port through addition of shunt conductance.
Yin + Gin

| G. Active device
Source —=3 Cin (BJT or FET)

- Yin
Stabilization of input port through shunt conductance

Re(Y,, +G.. +Yg) >0
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Configuration at output port:

In the output port, the addition of R,(Z;) must compensate the
negative contribution of R,(Z,,;)

Re(Z,, +R., +Z,) >0

r
Zout * Rout

’
Rout
...... ___W O—
Active Device et Load
(BJT or FET) -
______ -O—
Zout

Stabilization of output.pert through serigs, resistance



| ]
Yout + Gout

"""" Active O—
device . Load
(BJT or Sout -
FET) "
| |
Yout

Stabilization of output port through shunt conductance

Re(Y,, +G., +Y.) >0
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