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Electromagnetic Force

The first term in the Lorentz Force Equation represents the electric force Fe

acting on a charge q within an electric field is given by.

e
q=F E

The electromagnetic force is given by Lorentz Force Equation (After Dutch 

physicist Hendrik Antoon Lorentz (1853 – 1928))

( )q= + F E u B

The electric force is in the direction of the electric field.

The Lorentz force equation is quite useful in determining the paths charged 

particles will take as they move through electric and magnetic fields.  If we also 

know the particle mass, m, the force is related to acceleration by the equation

.m=F a



Since the magnetic force is at right angles to the magnetic field, the work done 

by the magnetic field is given by

cos90 0W d FdL= = = F L

Magnetic Force

The magnetic force is at right angles to the magnetic field. 

The magnetic force requires that the charged particle be in motion.

It should be noted that since the magnetic force acts in a direction normal to the 

particle velocity, the acceleration is normal to the velocity and the magnitude of 

the velocity vector is unaffected. 

The second term in the Lorentz Force Equation represents magnetic force 

Fm(N) on a moving charge q(C) is given by 

 
m

q= F u B

where the velocity of the charge is u (m/sec) within a field of magnetic flux 

density B (Wb/m2).  The units are confirmed by using the equivalences 

Wb=(V)(sec) and J=(N)(m)=(C)(V).



Magnetic Force

D3.10: At a particular instant in time, in a region of space where E = 0 and B = 

3ay Wb/m2, a 2 kg particle of charge 1 C moves with velocity 2ax m/sec.  What 

is the particle’s acceleration due to the magnetic field?
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P3.33: A 10. nC charge with velocity 100. m/sec in the z direction enters a 

region where the electric field intensity is 800. V/m ax and the magnetic flux 

density 12.0 Wb/m2 ay.  Determine the force vector acting on the charge. 
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Given: q= 10 nC, u = 100 az (m/sec), E = 800 ax V/m, B = 12.0 ay Wb/m2. 

Given: q= 1 nC, m = 2 kg, u = 2 ax (m/sec), E = 0, B = 3 ay Wb/m2. 

m=F a

Newtons’ Second Law Lorentz Force Equation

( ) ( )q q= +  =F E u B u B

Equating



Magnetic Force on a current Element

Consider a line conducting current in the presence of a magnetic field.  We 

wish to find the resulting force on the line.  We can look at a small, differential 

segment dQ of charge moving with velocity u, and can calculate the differential 

force on this charge from 

 d dQ= F u B

The velocity can also be written 

d

dt
=

L
u

dQ
d d

dt
= F L B

Therefore

Now, since dQ/dt (in C/sec) corresponds to the current I in the line, we have

d Id= F L B (often referred to as the motor equation)

We can use to find the force from a collection of current elements, using the integral 

12 2 2 1
.I d= F L B
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Magnetic Force – An infinite current Element

Let’s consider a line of current I in the +az direction on the z-axis.  For current 

element IdLa, we have 

a a z
.Id Id=L z a

12 2 2 1
d .I d= F L B

The magnetic flux density B1 for an infinite length line 

of current is
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We know this element produces magnetic field, but the field cannot exert 

magnetic force on the element producing it.  As an analogy, consider that the 

electric field of a point charge can exert no electric force on itself.

What about the field from a second current element IdLb on this line?

From Biot-Savart’s Law, we see that the cross product in this particular case will 

be zero, since IdL and aR will be in the same direction.  So, we can say that a 

straight line of current exerts no magnetic force on itself.



Magnetic Force – Two current Elements

By inspection of the figure we see that ρ = y and a = -ax.  Inserting 

this in the above equation and considering that dL2 = dzaz, we have

Now let us consider a second line of current parallel to the first.  

The force dF12 from the magnetic field of line 1 acting on a differential section of 

line 2 is

12 2 2 1
d I d= F L B

The magnetic flux density B1 for an infinite length 

line of current is recalled from equation to be 
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Magnetic Force on a current Element

To find the total force on a length L of line 2 from the field of line 1, we must 

integrate dF12 from +L to 0.  We are integrating in this direction to account 

for the direction of the current.  
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This gives us a repulsive force. 

Had we instead been seeking F21, the magnetic force acting on line 1 from the 

field of line 2, we would have found F21 = -F12.  

Conclusion:

1) Two parallel lines with current in opposite directions experience a force of 

repulsion.  

2) For a pair of parallel lines with current in the same direction, a force of 

attraction would result. 

a = -ax

ρ = y



Magnetic Force on a current Element

In the more general case where the two lines are not parallel, or not straight, 

we could use the Law of Biot-Savart to find B1 and arrive at 
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This equation is known as Ampere’s Law of Force between a pair of current 

carrying circuits and is analogous to Coulomb’s law of force between a pair of 

charges. 



Magnetic Force

D3.11: A pair of parallel infinite length lines each carry current I = 2A in the 

same direction.  Determine the magnitude of the force per unit length between 

the two lines if their separation distance is (a) 10 cm, (b)100 cm.  Is the force 

repulsive or attractive? (Ans: (a) 8 mN/m, (b) 0.8 mN/m, attractive)
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Case (a) y = 10 cm

Magnetic force between two current elements 

when current flow is in the same direction

Magnetic force per unit length
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Case (a) y = 10 cm
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Magnetic Materials 

and 

Boundary Conditions



Magnetic Materials

Material r

Diamagnetic bismuth

gold

silver

copper

water

0.99983

0.99986

0.99998

0.999991

0.999991

Paramagnetic air

aluminum

platinum

1.0000004

1.00002

1.0003

Ferromagnetic

(nonlinear)

cobalt

nickel

iron (99.8% pure)

iron (99.96% pure)

Mo/Ni superalloy

250

600

5000

280,000

1,000,000

The degree to which a material can 

influence the magnetic field is given by 

its relative permeability,r, analogous to 

relative permittivity r for dielectrics.  

In free space (a vacuum), r = 1 and 

there is no effect on the field. 

We know that current through a coil of

wire will produce a magnetic field akin to

that of a bar magnet.

We also know that we can greatly

enhance the field by wrapping the wire

around an iron core. The iron is

considered a magnetic material since it

can influence, in this case amplify, the

magnetic field.

Relative permeabilities for a 

variety of materials. 



In the presence of an external magnetic field, a magnetic material gets  magnetized 

(similar to an iron core). This property is referred to as magnetization M defined as

(1 ) =
o m o r

    = + =B H H H

where  is the material’s permeability, related to free space permittivity by 

the factor r, called the relative permeability.

1
r m

 = +

Magnetic Flux Density

Where

m
=M H

where m (“chi”) is the material’s magnetic susceptibility.

The total magnetic flux density inside the magnetic material including the effect of 

magnetization M in the presence of an external magnetic field H can be written as

+
o o

 =B H M

m
=M HSubstituting



Magnetostatic Boundary Conditions

Will use Ampere’s circuital law and Gauss’s law to derive normal and 

tangential boundary conditions for magnetostatics. 

Ampere’s circuit law:

enc
d I= H L

.
enc
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The current enclosed by the path is 

We can break up the circulation of H into four integrals:

( ) .
b c d a

a b c d

d d K w= + + + =     H L H L

T1 T T T1

0

.

b w

a

d H dL H w



= =  H L a a

( )
0 / 2

N1 N N N2 N N N1 N2

/ 2 0
2

c h

b h

h
d H dL H dL H H

−




= + − +=  H L a a a a

Path 1

Path 3

P
a

th
 2P

a
th

 4

Path 1:

Path 2:



( )
0 / 2

N2 N N N1 N N N1 N2

/ 2 0
2

a h

d h

h
d H dL H dL H H



−


= + = +  H L a a a a

T1 T2
H H K− =

Now combining our results (i.e., Path 1 + Path 2 + Path 3 + Path 4), we obtain

A more general expression for the first magnetostatic boundary 

condition can be written as 

( )21 1 2
 − =a H H K

where a21 is a unit vector normal going from media 2 to media 1. 

Magnetostatic Boundary Conditions
0
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Equating

Tangential BC:

enc
d I= H LACL:



The tangential magnetic field intensity is 

continuous across the boundary when the 

surface current density is zero. 

o r
 =B HWe know that

Important Note:

Special Case: If the surface current density K = 0, we get

Magnetostatic Boundary Conditions

T1 T2
H H=

If K = 0

T1 T2
H H K− =

1 2
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Using the above relation, we obtain

T1 T2H H=

The tangential component of the magnetic flux density B is not continuous 

across the boundary.

Therefore, we can say that T1 T2B B
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Magnetostatic Boundary Conditions

Gauss’s Law for Magnetostatic fields:

= 0d B S

To find the second boundary condition, we center a Gaussian pillbox 

across the interface as shown in Figure. 

We can shrink h such that the flux out of the side of the pillbox is 

negligible.  Then we have 
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N1 N 2
.B B=Normal BC:



Magnetostatic Boundary Conditions

Thus, we see that the normal component of the 

magnetic flux density must be continuous across 

the boundary. 

We know that

Important Note:

Using the above relation, we obtain

The normal component of the magnetic field intensity is not continuous 

across the boundary (but the magnetic flux density is continuous).

Therefore, we can say that

N1 N2
B B=Normal BC:

o r
 =B H
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B B=

N1 N2H H



Magnetostatic Boundary Conditions
Example 3.11:  The magnetic field intensity is given as H1 = 6ax + 2ay + 3az

(A/m) in a medium with r1 = 6000 that exists for z < 0.  We want to find H2 in 

a medium with r2 = 3000 for z >0. 

Step (a) and (b): The first step is to break H1 into its normal component (a) and 

its tangential component (b).  

Step (c): With no current at the interface, the tangential component is the same 

on both sides of the boundary.  

Step (d): Next, we find BN1 by multiplying HN1 by the permeability in medium 1.  

Step (e): This normal component B is the same on both sides of the boundary. 

Step (f): Then we can find HN2 by dividing BN2 by the permeability of medium 2.  

Step (g): The last step is to sum the fields . 



Thank You
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