EE3302 DIGITAL LOGIC CIRCUITS

VHDL

• What is VHDL?

 \underline{V} H I S C \rightarrow Very High Speed Integrated Circuit

Hardware

 $\underline{\mathcal{D}}$ escription

<u>L</u>anguage

IEEE Standard 1076-1993

History of VHDL

- Designed by IBM, Texas Instruments, and Intermetrics as part of the DoD funded VHSIC program
- Standardized by the IEEE in 1987: IEEE 1076-1987
- Enhanced version of the language defined in 1993: IEEE 1076-1993
- Additional standardized packages provide definitions of data types and expressions of timing data
 - IEEE 1164 (data types)
 - IEEE 1076.3 (numeric)
 - IEEE 1076.4 (timing)

Traditional vs. Hardware Description Languages

- Procedural programming languages provide the *how* or recipes
 - for computation
 - for data manipulation
 - for execution on a specific hardware model
- Hardware description languages describe a system
 - Systems can be described from many different points of view
 - Behavior: what does it do?
 - Structure: what is it composed of?
 - Functional properties: how do I interface to it?
 - Physical properties: how fast is it?

Usage

- Descriptions can be at different levels of abstraction
 - Switch level: model switching behavior of transistors
 - Register transfer level: model combinational and sequential logic components
 - Instruction set architecture level: functional behavior of a microprocessor
- Descriptions can used for
 - Simulation
 - Verification, performance evaluation
 - Synthesis
 - First step in hardware design

Why do we Describe Systems?

- Design Specification
 - unambiguous definition of components and interfaces in a large design
- Design Simulation
 - verify system/subsystem/chip performance prior to design implementation
- Design Synthesis
 - automated generation of a hardware design

Digital System Design Flow

- Design flows operate at multiple levels of abstraction
- Need a uniform description to translate between levels
- Increasing costs of design and fabrication necessitate greater reliance on automation via CAD tools
 - \$5M \$100M to design new chips
 - Increasing time to market pressures

Description for Manufacture

A Synthesis Design Flow

- Automation of design refinement steps
- Feedback for accurate simulation
- Example targets: ASICs, FPGAs

The Role of Hardware Description Languages

- Design is structured around a hierarchy of representations
- HDLs can describe distinct aspects of a design at multiple levels of abstraction

"Y-chart" due to Gajski & Kahn

Basic VHDL Concepts

- Interfaces
- Modeling (Behavior, Dataflow, Structure)
- Test Benches
- Analysis, elaboration, simulation
- Synthesis

Basic Structure of a VHDL File

Entity

- Entity declaration:
 interface to outside
 world; defines input
 and output signals
- Architecture: describes
 the entity, contains
 processes, components
 operating concurrently

Entity Declaration

```
entity NAME_OF_ENTITY is
    port (signal_names: mode type;
        signal_names: mode type;
        :
        signal_names: mode type);
end [NAME_OF_ENTITY] ;
```

MVL - 9			
Uninitialized	`U'	Weak 1	'H'
Don't Care	_ '	Weak 0	'L'
Forcing 1	11'	Weak Unknown	'W'
Forcing 0	10'	High Impedance	۱Z′
Forcing Unknown	۱X′		

- NAME OF ENTITY: user defined
- signal_names: list of signals (both input and output)
- mode: in, out, buffer, inout
- type: boolean, integer, character, std logic

Architecture

• Behavioral Model:

```
architecture architecture_name of NAME_OF_ENTITY
is
```

-- Declarations

• • • • •

• • • • •

begin

Statementsend architecture name;

Half Adder


```
library ieee;
use ieee.std_logic_1164.all;
entity half_adder is
port(
           x,y: in std_logic;
           sum, carry: out std_logic);
end half_adder;
architecture myadd of half adder is
          begin
                    sum \le x xor y;
                    carry \leq x and y;
```

end myadd;

Entity Examples ...

```
entity half_adder is port(

x,y: in std_logic;
sum, carry: out std_logic);
end half_adder;

A

B

FULLADDER

C

CARRY
```

Architecture Examples: Behavioral Description

Entity FULLADDER is
 port (A, B, C: in std_logic;
 SUM, CARRY: in std_logic);
 end FULLADDER;

Architecture CONCURRENT of FULLADDER is begin
 SUM <= A xor B xor C after 5 ns;
 CARRY <= (A and B) or (B and C) or (A and C) after 3 ns;
 end CONCURRENT;

Architecture Examples: Structural Description ...

architecture STRUCTURAL of FULLADDER is signal S1, C1, C2: bit; component HA port (I1, I2: in bit; S, C: out bit); end component; component OR port (I1, I2: in bit; X: out bit); end component; begin INST HA1: HA port map (I1 => B, I2 => C, S => S1, C => C1); INST HA2: HA port map (I1 => A, I2 => S1, S => SUM, C => C2); INST OR : OR port map (I1 \Rightarrow C2, I2 \Rightarrow C1, X \Rightarrow CARRY); end STRUCTURAL;

... Architecture Examples: Structural Description

```
Entity HA is

PORT (I1, I2: in bit; S, C: out bit);

end HA;

Architecture behavior of HA is

begin

S <= I1 xor I2;

C <= I1 and I2;

end behavior;

Entity OR is

PORT (I1, I2: in bit; X: out bit);

end OR;

Architecture behavior of OR is

begin

X <= I1 or I2;

end behavior;
```

Thank You