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Digital Signal Processor (DSP) Architecture
• Classification of Processor Applications

• Requirements of Embedded Processors

• DSP vs. General Purpose CPUs

• DSP Cores vs. Chips

• Classification of DSP Applications

• DSP Algorithm Format

• DSP Benchmarks

• Basic Architectural Features of DSPs

• DSP Software Development Considerations

• Classification of Current DSP Architectures and example DSPs:

– Conventional DSPs:  TI  TMSC54xx

– Enhanced Conventional DSPs:  TI  TMSC55xx

– VLIW DSPs: TI TMS320C62xx, TMS320C64xx

– Superscalar DSPs: LSI Logic ZSP400 DSP core 



Processor Applications

• General Purpose Processors (GPPs) - high performance.

– Alpha’s, SPARC, MIPS ...

– Used for general purpose software 

– Heavy weight OS - UNIX, Windows

– Workstations, PC’s, Clusters

• Embedded processors and processor cores

– ARM, 486SX, Hitachi SH7000, NEC V800...

– Often require Digital signal processing (DSP) support.

– Single program

– Lightweight, often realtime OS

– Cellular phones, consumer electronics .. (e.g. CD players) 

• Microcontrollers 

– Extremely cost sensitive

– Small word size - 8 bit common

– Highest volume processors by far

– Control systems, Automobiles, toasters, thermostats, ...   
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Processor Markets$30B

$9.3B/31%

$5.7B/19%

$10B/33%
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DSP

32-bit

micro
$5.2B/17%

$1.2B/4% 32 bit DSP



The Processor Design Space
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Requirements of Embedded Processors

• Optimized for a single program - code often in on-chip ROM 

or off chip EPROM

• Minimum code size (one of the motivations initially for Java)

• Performance obtained by optimizing datapath

• Low cost

– Lowest possible area

– Technology behind the leading edge

– High level of integration of peripherals (reduces system cost)

• Fast time to market

– Compatible architectures  (e.g. ARM) allows reusable code

– Customizable cores (System-on-Chip, SoC).

• Low power if application requires portability



Area of processor cores = Cost

Nintendo processor Cellular phones



Another figure of merit:  Computation per unit area

Nintendo processor Cellular phones



Code size

• If a majority of the chip is the program stored in ROM, 

then code size is a critical issue

• The Piranha has 3 sized instructions - basic 2 byte, and 

2 byte plus 16 or 32 bit immediate



Embedded Systems vs. General Purpose 

Computing

Embedded System

• Runs a few applications 

often known at design time

• Not end-user programmable

• Operates in fixed run-time 

constraints that must be 

met, additional performance 

may not be useful/valuable

• Differentiating features:

– Application-specific 

capability (e.g DSP).

– power

– cost

– speed (must be predictable)

General purpose computing

• Intended to run a fully 

general set  of applications

• End-user programmable

• Faster is always better

• Differentiating features

– speed (need not be fully 

predictable)

– cost (largest component 

power)



Evolution of GPPs and DSPs

• General Purpose Processors (GPPs) trace roots back to Eckert, 

Mauchly, Von Neumann (ENIAC)

• DSP processors are microprocessors designed for efficient 

mathematical manipulation of digital signals.

– DSP evolved from Analog Signal Processors (ASPs), using analog 

hardware to transform physical signals (classical electrical 

engineering)

– ASP to DSP because

• DSP insensitive to environment (e.g., same response in snow or desert 

if it works at all)

• DSP performance identical even with variations in components; 2 

analog systems behavior varies even if built with same components 

with 1% variation

• Different history and different applications led to different terms, 

different metrics, some new inventions.



DSP vs. General Purpose CPUs

• DSPs tend to run one program, not many programs. 

– Hence OSes are much simpler, there is no virtual memory or 

protection, ...

• DSPs usually run applications with hard real-time 

constraints:

– You must account for anything that could happen in a time 

slot 

– All possible interrupts or exceptions must be accounted for 

and their collective time be subtracted from the time 

interval. 

– Therefore, exceptions are BAD.

• DSPs usually process infinite continuous data streams.

• The design of DSP architectures and ISAs driven by the 

requirements of DSP algorithms.



DSP vs. GPP
• The “MIPS/MFLOPS” of DSPs is speed of Multiply-Accumulate 

(MAC). 

– MAC is common in DSP algorithms that involve computing a vector dot 

product, such as digital filters, correlation, and Fourier transforms.

– DSP are judged by whether they can keep the multipliers busy 100% of the 

time and by how many MACs are performed in each cycle.

• The "SPEC" of DSPs is 4 algorithms: 

– Inifinite Impule Response (IIR)  filters

– Finite Impule Response (FIR) filters

– FFT, and 

– convolvers

• In DSPs, target algorithms are important:

– Binary compatibility not a mojor issue

• High-level Software is not (yet) very important in DSPs. 

– People still write in assembly language for a product to minimize 

the die area for ROM in the DSP chip.



TYPES OF  DSP  PROCESSORS

• 32-BIT FLOATING POINT  (5% of market):

– TI   TMS320C3X,   TMS320C67xx

– AT&T DSP32C

– ANALOG DEVICES ADSP21xxx

– Hitachi  SH-4

• 16-BIT FIXED POINT  (95% of market):

– TI TMS320C2X, TMS320C62xx

– Infineon TC1xxx (TriCore1)

– MOTOROLA  DSP568xx,  MSC810x

– ANALOG DEVICES ADSP21xx

– Agere  Systems  DSP16xxx, Starpro2000

– LSI Logic  LSI140x (ZPS400)

– Hitachi  SH3-DSP

– StarCore SC110, SC140



DSP Cores vs. Chips

DSP are usually available as synthesizable cores or off-the-

shelf chips 

• Synthesizable Cores:

– Map into chosen fabrication process

• Speed, power, and size vary

– Choice of peripherals, etc. (SoC)

– Requires extensive hardware development effort.

• Off-the-shelf chips:

– Highly optimized for speed, energy efficiency, and/or cost.

– Limited performance, integration options.

– Tools, 3rd-party support often more mature



DSP  ARCHITECTURE

Enabling Technologies

Time Frame  Approach  Primary Application  Enabling Technologies  

Early 1970’s • Discrete logic • Non-real time

procesing

• Simulation

• Bipolar SSI, MSI

• FFT algorithm

Late 1970’s • Building block • Military radars

• Digital Comm.

• Single chip bipolar multiplier

• Flash A/D

Early 1980’s • Single Chip DSP P • Telecom

• Control

• P architectures

• NMOS/CMOS

Late 1980’s • Function/Application

specific chips
• Computers

• Communication

• Vector processing

• Parallel processing

Early 1990’s • Multiprocessing • Video/Image Processing • Advanced multiprocessing

• VLIW, MIMD, etc.

Late 1990’s • Single-chip

multiprocessing
• Wireless telephony

• Internet related

• Low power single-chip DSP

• Multiprocessing



Texas Instruments TMS320 Family 

Multiple DSP P Generations
First

Sample

Bit Size Clock

speed

(MHz)

Instruction

Throughput

MAC

execution

(ns)

MOPS Device density (#

of transistors)

Uniprocessor  

Based  

(Harvard  
Architecture)  

TMS32010 1982 16 integer 20 5 MIPS 400 5 58,000 (3)

TMS320C25 1985 16 integer 40 10 MIPS 100 20 160,000 (2)

TMS320C30 1988 32 flt.pt. 33 17 MIPS 60 33 695,000 (1)

TMS320C50 1991 16 integer 57 29 MIPS 35 60 1,000,000 (0.5)

TMS320C2XXX 1995 16 integer 40 MIPS 25 80

Multiprocessor  

Based  

TMS320C80 1996 32 integer/flt. 2 GOPS

120 MFLOP

MIMD

TMS320C62XX 1997 16 integer 1600 MIPS 5 20 GOPS VLIW

TMS310C67XX 1997 32 flt. pt. 5 1 GFLOP VLIW



DSP Applications

• Digital audio applications

– MPEG Audio

– Portable audio

• Digital cameras

• Cellular telephones

• Wearable medical appliances

• Storage products:

– disk drive servo control

• Military applications:

– radar

– sonar

• Industrial control

• Seismic exploration

• Networking:

– Wireless

– Base station

– Cable modems

– ADSL

– VDSL



DSP Applications

DSP Algorithm System Application

Speech Coding
Digital cellular telephones, personal communications systems, digital cordless telephones,
multimedia computers, secure communications.

Speech Encryption
Digital cellular telephones, personal communications systems, digital cordless telephones,
secure communications.

Speech Recognition
Advanced user interfaces, multimedia workstations, robotics, automotive applications,
cellular telephones, personal communications systems.

Speech Synthesis Advanced user interfaces, robotics

Speaker Identification Security, multimedia workstations, advanced user interfaces

High-fidelity Audio
Consumer audio, consumer video, digital audio broadcast, professional audio, multimedia
computers

Modems
Digital cellular telephones, personal communications systems, digital cordless telephones,
digital audio broadcast, digital signaling on cable TV, multimedia computers, wireless
computing, navigation, data/fax

Noise cancellation Professional audio, advanced vehicular audio, industrial applications

Audio Equalization Consumer audio, professional audio, advanced vehicular audio, music

Ambient Acoustics Emulation Consumer audio, professional audio, advanced vehicular audio, music

Audio Mixing/Editing Professional audio, music, multimedia computers

Sound Synthesis Professional audio, music, multimedia computers, advanced user interfaces

Vision
Security, multimedia computers, advanced user interfaces, instrumentation, robotics,
navigation

Image Compression Digital photography, digital video, multimedia computers, videoconferencing

Image Compositing Multimedia computers, consumer video, advanced user interfaces, navigation

Beamforming Navigation, medical imaging, radar/sonar, signals intelligence

Echo cancellation Speakerphones, hands-free cellular telephones

Spectral Estimation Signals intelligence, radar/sonar, professional audio, music



DSP range of applications
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HW/SW/IC PARTITIONING
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Mapping Onto System-on-Chip (SoC)
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Example Wireless Phone Organization

C540

ARM7
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Multimedia System-on-Chip (SoC)

• Future chips will be a mix of 

processors, memory and 

dedicated hardware for 

specific algorithms and I/O

µP

DSPC
o

m
s

Video Unit

custom

Memory

Uplink Radio

Downlink Radio

Graphics Out

Video I/O

Voice I/O

Pen In

E.g. Multimedia terminal electronics



DSP Algorithm Format

• DSP culture has a graphical format to represent 

formulas.

• Like a flowchart for formulas, inner loops,

not programs.  

• Some seem natural: 

 is add, X is multiply

• Others are obtuse: 

z–1 means take variable from earlier iteration.

• These graphs are trivial to decode 



DSP Algorithm Notation

• Uses “flowchart” notation instead of equations

• Multiply is or

X

• Add is or

+ 

• Delay/Storage is or or

Delay z–1 D



Typical DSP Algorithm:

Finite-Impulse Response (FIR) Filter

• Filters reduce signal noise and enhance image or signal 

quality by removing unwanted frequencies.  

• Finite Impulse Response (FIR) filters compute:

where

– x is the input sequence

– y is the output sequence

– h is the impulse response (filter coefficients)

– N is the number of taps (coefficients) in the filter

• Output sequence depends only on input sequence and 

impulse response. 
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Typical DSP Algorithm:

Finite-impulse Response (FIR) Filter

• N most recent samples in the delay line (Xi)

• New sample moves data down delay line

• “Tap” is a multiply-add

• Each tap (N taps total) nominally requires: 

– Two data fetches 

– Multiply 

– Accumulate 

– Memory write-back to update delay line

• Goal:  at least 1 FIR Tap / DSP instruction cycle



FINITE-IMPULSE RESPONSE (FIR) FILTER
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Goal:  at least 1 FIR Tap / DSP instruction cycle



Sample Computational Rates 

for FIR Filtering

Signal type Frequency # taps Performance

Speech 8 kHz N =128 20 MOPs

Music 48 kHz N =256 24 MOPs

Video phone 6.75 MHz N*N = 81 1,090 MOPs

TV 27 MHz N*N = 81 4,370 MOPs

HDTV 144 MHz N*N = 81 23,300 MOPs

1-D FIR has nop = 2N and a 2-D FIR has nop = 2N2.  



FIR filter on (simple) 

General Purpose Processor
loop: 

lw x0, 0(r0) 

lw y0, 0(r1) 

mul a, x0,y0

add y0,a,b 

sw y0,(r2) 

inc r0 

inc r1 

inc r2 

dec ctr 

tst ctr 

jnz loop 

• Problems: Bus / memory bandwidth bottleneck, control code 

overhead



• Infinite Impulse Response (IIR) filters compute:

• Output sequence depends on input sequence, previous 

outputs, and impulse response. 

• Both FIR and IIR filters 

– Require dot product (multiply-accumulate) operations

– Use fixed coefficients

• Adaptive filters update their coefficients to minimize 

the distance between the filter output and the desired 

signal.   
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Typical DSP Algorithm:

Infinite-Impulse Response (IIR) Filter



• The Discrete Fourier Transform (DFT) allows for 

spectral analysis in the frequency domain. 

• It is computed as

for k = 0, 1, … , N-1, where 

– x is the input sequence in the time domain 

– y is an output sequence in the frequency domain

• The Inverse Discrete Fourier Transform is 

computed as

• The Fast Fourier Transform (FFT) provides an 

efficient method for computing the DFT. 
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Typical DSP Algorithm:

Discrete Fourier Transform



• The Discrete Cosine Transform (DCT) is frequently used 

in video compression (e.g., MPEG-2). 

• The DCT and Inverse DCT (IDCT) are computed as: 

where e(k) = 1/sqrt(2) if k = 0; otherwise e(k) = 1. 

• A N-Point, 1D-DCT requires N2 MAC operations. 
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Typical DSP Algorithm:

Discrete Cosine Transform (DCT) 



DSP BENCHMARKS
• DSPstone:  University of Aachen, application benchmarks

– ADPCM TRANSCODER - CCITT G.721,  REAL_UPDATE,  COMPLEX_UPDATES

– DOT_PRODUCT,  MATRIX_1X3,   CONVOLUTION

– FIR,   FIR2DIM,   HR_ONE_BIQUAD

– LMS,   FFT_INPUT_SCALED 

• BDTImark2000:  Berkeley Design Technology Inc
– 12 DSP kernels in hand-optimized assembly language

– Returns single number (higher means faster) per processor

– Use only on-chip memory (memory bandwidth is the major bottleneck in 
performance of embedded applications).

• EEMBC (pronounced “embassy”):  EDN Embedded 
Microprocessor Benchmark Consortium 

– 30 companies formed by Electronic Data News (EDN)

– Benchmark evaluates compiled C code on a variety of embedded processors 
(microcontrollers, DSPs, etc.)

– Application domains: automotive-industrial, consumer, office automation, 
networking and telecommunications





Basic Architectural Features of DSPs

• Data path configured for DSP 

– Fixed-point arithmetic

– MAC- Multiply-accumulate

• Multiple memory banks and buses -

– Harvard Architecture

– Multiple data memories

• Specialized addressing modes 

– Bit-reversed addressing

– Circular buffers

• Specialized instruction set and execution control 

– Zero-overhead loops

– Support for fast MAC

– Fast Interrupt Handling

• Specialized peripherals for DSP



DSP Data Path: Arithmetic

• DSPs dealing with numbers representing real world

=> Want “reals”/ fractions

• DSPs dealing with numbers for addresses

=> Want integers

• Support “fixed point” as well as integers

S.
radix 

point

-1 Š x < 1

S .
radix 

point

–2N–1  Š  x <  2N–1



DSP Data Path: Precision

• Word size affects precision of fixed point numbers

• DSPs have 16-bit, 20-bit, or 24-bit data words

• Floating Point DSPs cost 2X - 4X vs. fixed point, slower 

than fixed point

• DSP programmers will scale values inside code

– SW Libraries

– Separate explicit exponent

• “Blocked Floating Point” single exponent for a group of 

fractions

• Floating point support simplify development



DSP Data Path:  Overflow

• DSP are descended from analog : 

– Modulo Arithmetic.

• Set to most positive (2N–1–1) or

most negative value(–2N–1) : “saturation”

• Many DSP algorithms were developed in this 

model.



DSP Data Path: Multiplier

• Specialized hardware performs all key arithmetic 

operations in 1 cycle

• 50% of instructions can involve multiplier

=> single cycle latency multiplier

• Need to perform multiply-accumulate (MAC)

• n-bit multiplier => 2n-bit product



DSP Data Path: Accumulator

• Don’t want overflow or have to scale accumulator

• Option 1: accumalator wider than product: 

“guard bits”

– Motorola DSP: 

24b x 24b => 48b product, 56b Accumulator

• Option 2: shift right and round product before adder

Accumulator

ALU

Multiplier

Accumulator

ALU

Multiplier

Shift

G



DSP Data Path: Rounding

• Even with guard bits, will need to round when store 

accumulator into memory

• 3 DSP standard options

• Truncation: chop results

=> biases results up

• Round to nearest: 

< 1/2 round down, • 1/2 round up (more positive)

=> smaller bias

• Convergent: 

< 1/2 round down, > 1/2 round up (more positive),  = 

1/2 round to make lsb a zero (+1 if 1, +0 if 0)

=> no bias

IEEE 754 calls this round to nearest even



Data Path Comparison

DSP Processor

• Specialized hardware 

performs all key arithmetic 

operations in 1 cycle.

• Hardware support for 

managing numeric fidelity:

– Shifters

– Guard bits

– Saturation

General-Purpose Processor

• Multiplies often take>1 

cycle

• Shifts often take >1 cycle

• Other operations (e.g., 

saturation, rounding) 

typically take multiple 

cycles.



TI 320C54x DSP (1995) Functional Block Diagram



First Commercial DSP (1982): Texas 

Instruments TMS32010

• 16-bit fixed-point arithmetic

• Introduced at 5Mhz (200ns) 

instruction cycle. 

• “Harvard architecture”

– separate instruction, 

data memories 

• Accumulator 

• Specialized instruction set 

– Load and Accumulate

• Two-cycle (400 ns) Multiply-

Accumulate (MAC) time.

Processor

Instruction

Memory

Data

Memory

T-Register

Accumulator

ALU

Multiplier

Datapath:

P-Register

Mem



First Generation DSP P

Texas Instruments TMS32010 - 1982

Features

• 200 ns instruction cycle (5 MIPS)

• 144 words (16 bit) on-chip data RAM

• 1.5K words (16 bit) on-chip program ROM - TMS32010

• External program memory expansion to a total of 4K words at full speed

• 16-bit instruction/data word

• single cycle 32-bit ALU/accumulator

• Single cycle 16 x 16-bit multiply in 200 ns

• Two cycle MAC (5 MOPS)

• Zero to 15-bit barrel shifter

• Eight input and eight output channels



TMS32010 BLOCK DIAGRAM



TMS32010 FIR Filter Code

• Here X4, H4, ... are direct (absolute) memory addresses: 

LT X4 ; Load T with x(n-4) 

MPY H4 ; P = H4*X4 

LTD X3 ; Load T with x(n-3); x(n-4) = x(n-3); 

; Acc = Acc + P 

MPY H3 ; P = H3*X3 

LTD X2 

MPY H2 

...

• Two instructions per tap, but requires unrolling



Micro-architectural impact - MAC

y(n) = h(m)x(n − m)
0

N−1


element of finite-impulse 

response filter computation

MPY

X Y

ACC REG

ADD/SUB



• The critical hardware unit in a DSP is the multiplier - much of 

the architecture is organized around allowing use of the 

multiplier on every cycle

• This means providing two operands on every cycle, through 

multiple data and address busses, multiple address units and 

local accumulator feedback   

1 2

3
D5

4



DX

Xn
X

b

a

Yn

aYn-1

1 3

2

4

5

6

6

Mapping of the filter onto a DSP execution unit



MAC Eg. - 320C54x DSP Functional Block Diagram



DSP Memory

• FIR Tap implies multiple memory accesses

• DSPs require multiple data ports

• Some DSPs have ad hoc techniques to reduce memory 

bandwdith demand:

– Instruction repeat buffer: do 1 instruction 256 times

– Often disables interrupts, thereby increasing interrupt 

response time

• Some recent DSPs have instruction caches

– Even then may allow programmer to “lock in” 

instructions into cache

– Option to turn cache into fast program memory

• No DSPs have data caches.

• May have multiple data memories



Conventional ``Von Neumann’’ memory



HARVARD MEMORY ARCHITECTURE in DSP

PROGRAM

MEMORY
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GLOBAL
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DSP Processor

• Harvard architecture

• 2-4 memory accesses/cycle

• No caches-on-chip SRAM

General-Purpose Processor

• Von Neumann architecture

• Typically 1 access/cycle

• Use caches

Processor

Program

Memory

Data

Memory

Processor Memory

Memory Architecture Comparison



Eg. TMS320C3x MEMORY BLOCK DIAGRAM - Harvard Architecture



Eg. TI 320C62x/67x DSP (1997)



DSP Addressing

• Have standard addressing modes: immediate, 

displacement, register indirect

• Want to keep MAC datapath busy

• Assumption: any extra instructions imply clock cycles 

of overhead in inner loop

=> complex addressing is good

=> don’t use datapath to calculate fancy address

• Autoincrement/Autodecrement register indirect

– lw r1,0(r2)+ => r1 <- M[r2]; r2<-r2+1

– Option to do it before addressing, positive or negative



DSP Addressing: FFT
• FFTs start or end with data in bufferfly order

0 (000) => 0 (000)

1 (001) => 4 (100)

2 (010) => 2 (010)

3 (011) => 6 (110)

4 (100) => 1 (001)

5 (101) => 5 (101)

6 (110) => 3 (011)

7 (111) => 7 (111)

• What can do to avoid overhead of address checking instructions for 

FFT?

• Have an optional “bit reverse” address addressing mode for use with 

autoincrement addressing

• Many DSPs have “bit reverse” addressing for radix-2 FFT



BIT REVERSED ADDRESSING

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

F(0)

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

Four 2-point 
DFTs

Two 4-point 
DFTs

One 8-point DFT

000

100

010

110

001

101

011

111

Data flow in the radix-2 decimation-in-time FFT algorithm



DSP Addressing: Buffers

• DSPs dealing with continuous I/O

• Often interact with an I/O buffer (delay lines)

• To save memory, buffers often organized as circular 

buffers

• What can do to avoid overhead of address checking 

instructions for circular buffer?

• Option 1: Keep start register and end register per 

address register for use with autoincrement addressing, 

reset to start when reach end of buffer

• Option 2: Keep a buffer length register, assuming 

buffers starts on aligned address, reset to start when 

reach end

• Every DSP has “modulo” or “circular” addressing



CIRCULAR BUFFERS

Instructions accomodate three 

elements:

• buffer address

• buffer size

• increment

Allows for cycling through:

• delay elements

• coefficients in data memory



Addressing Comparison

DSP Processor

• Dedicated address 

generation units

• Specialized addressing 

modes; e.g.:

– Autoincrement

– Modulo (circular)

– Bit-reversed (for FFT)

• Good immediate data 

support

General-Purpose Processor

• Often, no separate address 

generation unit

• General-purpose addressing 

modes



Address calculation unit for  DSPs

• Supports modulo and bit 

reversal  arithmetic

• Often duplicated to 

calculate multiple 

addresses per cycle



DSP Instructions and Execution

• May specify multiple operations in a single instruction

• Must support Multiply-Accumulate (MAC)

• Need parallel move support

• Usually have special loop support to reduce branch 

overhead

– Loop an instruction or sequence

– 0 value in register usually means loop maximum number of 

times

– Must be sure if calculate loop count that 0 does not mean 0

• May have saturating shift left arithmetic

• May have conditional execution to reduce branches



ADSP 2100: ZERO-OVERHEAD LOOP

Address Generation 
PCS = PC + 1

if (PC = x && ! condition)

PC = PCS

else

PC = PC +1

DO <addr> UNTIL condition”

X

DO X ...

• Eliminates a few instructions in loops -

• Important in loops with small bodies



Instruction Set Comparison

DSP Processor

• Specialized, complex 
instructions

• Multiple operations per 
instruction

General-Purpose Processor

• General-purpose 

instructions

• Typically only one operation 

per instruction

mac x0,y0,a    x: (r0) + ,x0    y: (r4) + ,y0 mov *r0,x0

mov *r1,y0

mpy x0, y0, a

add a, b

mov y0, *r2

inc r0

inc rl



Specialized Peripherals for DSPs

• Synchronous serial 

ports

• Parallel ports

• Timers

• On-chip A/D, D/A 

converters

• Host ports

• Bit I/O ports

• On-chip DMA 

controller

• Clock generators

• On-chip peripherals often designed for 

“background” operation, even when core is 

powered down.

Instruction
Memory

Data
Memory

A/D Converter

D/A Converter

S
e
ri
a
l 
P
o
rt

s

DSP
Core



Specialized DSP peripherals



TI TMS320C203/LC203 BLOCK DIAGRAM 

DSP Core Approach - 1995



Summary of Architectural Features of DSPs

• Data path configured for DSP 

– Fixed-point arithmetic

– MAC- Multiply-accumulate

• Multiple memory banks and buses -

– Harvard Architecture

– Multiple data memories

• Specialized addressing modes 

– Bit-reversed addressing

– Circular buffers

• Specialized instruction set and execution control 

– Zero-overhead loops

– Support for MAC

• Specialized peripherals for DSP

• THE ULTIMATE IN BENCHMARK DRIVEN ARCHITECTURE 

DESIGN.



DSP Software Development Considerations

• Different from general-purpose software development:

– Resource-hungry, complex algorithms.

– Specialized and/or complex processor architectures.

– Severe cost/storage limitations.

– Hard real-time constraints.

– Optimization is essential.

– Increased testing challenges.

• Essential tools:

– Assembler, linker.

– Instruction set simulator.

– HLL Code generation:  C compiler.

– Debugging and profiling tools.

• Increasingly important:

– Software libraries.

– Real-time operating systems.



Classification of Current DSP Architectures

• Modern Conventional DSPs:

– Similar to the original DSPs of the early 1980s   

– Single instruction/cycle.  Example:  TI TMS320C54x

• Enhanced Conventional DSPs:

– Add parallel execution units:  SIMD operation

– Complex, compound instructions.  Example:  TI TMS320C55x

• Multiple-Issue DSPs:

– VLIW  Example:   TI TMS320C62xx, TMS320C64xx

– Superscalar,  Example:  LSI Logic ZPS400



A Conventional DSP:  

TI  TMSC54xx

• 16-bit fixed-point DSP.

• Issues one 16-bit instruction/cycle

• Modified Harvard memory architecture

• Peripherals typical of conventional DSPs:

– 2-3 synch. Serial ports, parallel port

– Bit I/O, Timer, DMA

• Inexpensive (100 MHz ~$5 qty 10K).

• Low power (60 mW @ 1.8V, 100 MHz).



A Current Conventional DSP:  

TI  TMSC54xx



• The TMS320C55xx is based on Texas Instruments' earlier 

TMS320C54xx family, but adds significant enhancements to 

the architecture and instruction set, including:

– Two instructions/cycle

• Instructions are scheduled for parallel execution by the assembly 

programmer or compiler.

– Two MAC units.

• Complex, compound instructions:

– Assembly source code compatible with C54xx

– Mixed-width instructions:  8 to 48 bits.

– 200 MHz  @ 1.5 V, ~130 mW , $17  qty 10k

• Poor compiler target.

An Enhanced Conventional DSP:  

TI  TMSC55xx



An Enhanced Conventional DSP:  

TI  TMSC55xx



16-bit Fixed-Point VLIW DSP:

TI TMS320C6201 Revision 2 (1997)

C6201 CPU Megamodule

Data Path 1

D1M1S1L1

A Register File

Data Path 2

L2S2M2D2

B Register File

Instruction Dispatch

Program Fetch

Interrupts 

Control 

Registers 

Control 

Logic 

Emulation 

Test

Ext. 

Memory 

Interface

4-DMA

Program Cache / Program Memory
32-bit address, 256-Bit data512K Bits RAM

Host 

Port 

Interface

2 Timers

2 Multi-

channel 

buffered 

serial ports 

(T1/E1)

Data Memory
32-Bit address,  8-, 16-, 32-Bit data

512K Bits RAM

Pwr 

Dwn

Instruction Decode

The TMS320C62xx is the

first fixed-point DSP 

processor from Texas

Instruments that is based 

on a VLIW-like architecture 

which allows it to execute up 

to eight 32-bit RISC-like 

instructions per clock cycle.



C6201 Internal Memory Architecture

• Separate Internal Program and Data Spaces 

• Program

– 16K 32-bit instructions (2K Fetch Packets)

– 256-bit Fetch Width

– Configurable as either

• Direct Mapped Cache, Memory Mapped Program Memory

• Data

– 32K x 16

– Single Ported Accessible by Both CPU Data Buses

– 4 x 8K 16-bit Banks

• 2 Possible Simultaneous Memory Accesses (4 Banks)

• 4-Way Interleave,  Banks and Interleave Minimize Access Conflicts



C62x Datapaths

Cross Paths

40-bit Write Paths (8 MSBs)

40-bit Read Paths/Store Paths

DDATA_I2

(load data)

D2
DS1S2

M1
D S1 S2

D1
D S1 S2

DDATA_O2

(store data)
DADR2

(address)

DADR1

(address)

DDATA_I1

(load data)

DDATA_O1

(store data)

2X1X

L1 S1
S1 S2 DLSL SLD DL S2S1D 

M2 L2S2
S2D DL SLSL D DLS2 S1S1S2 D S1

Registers B0 - B15Registers A0 - A15



C62x  Functional Units

• L-Unit (L1, L2)
– 40-bit  Integer ALU, Comparisons
– Bit Counting, Normalization

• S-Unit (S1, S2)
– 32-bit ALU,  40-bit Shifter
– Bitfield Operations, Branching

• M-Unit (M1, M2)
– 16 x 16 -> 32

• D-Unit (D1, D2)
– 32-bit Add/Subtract
– Address Calculations



Example 1

C62x Instruction Packing

Instruction Packing Advanced VLIW

• Fetch Packet

– CPU fetches 8 instructions/cycle

• Execute Packet

– CPU executes 1 to 8 instructions/cycle

– Fetch packets can contain multiple execute packets

• Parallelism determined at compile / assembly time

• Examples

– 1) 8 parallel instructions

– 2) 8 serial instructions

– 3) Mixed Serial/Parallel Groups

• A // B

• C

• D

• E // F // G // H

• Reduces Codesize, Number of Program Fetches, Power 

Consumption

A B C D E F G H

A
B
C
D
E
F
G
H

Example 2

A B
C
D
E
F G H

Example 3



Fetch

PG PS PW PR DP DC E1 E2 E3 E4 E5

Decode Execute

C62x Pipeline Operation

Pipeline Phases

• Single-Cycle Throughput

• Operate in Lock Step

• Fetch

– PG Program Address Generate

– PS Program Address Send

– PW Program Access Ready Wait

– PR Program Fetch Packet Receive

• Decode

– DP Instruction Dispatch

– DC Instruction Decode

• Execute

– E1 - E5 Execute 1 through Execute 5

PG PS PW PR DP DC E1 E2 E3 E4 E5

Execute Packet 2 PG PS PW PR DP DC E1 E2 E3 E4 E5

Execute Packet 3 PG PS PW PR DP DC E1 E2 E3 E4 E5

Execute Packet 4 PG PS PW PR DP DC E1 E2 E3 E4 E5

Execute Packet 5 PG PS PW PR DP DC E1 E2 E3 E4 E5

Execute Packet 6 PG PS PW PR DP DC E1 E2 E3 E4 E5

Execute Packet 7 PG PS PW PR DP DC E1 E2 E3 E4 E5



C62x Pipeline Operation

Delay Slots
• Delay Slots: number of extra cycles until result is:

– written to register file

– available for use by a subsequent instructions

– Multi-cycle NOP instruction can fill delay slots while minimizing 

code size impact

PGPSPWPRDPDC E1 5 Delay SlotsBranch Target

E1Branches

E1 E2 E3 E4 E5 4 Delay SlotsLoads

E1 E2 1 Delay SlotsInteger Multiply

E1 No DelayMost Instructions



C6000 Instruction Set Features
Conditional Instructions

• All Instructions can be Conditional

– A1, A2, B0, B1, B2 can be used as Conditions

– Based on Zero or Non-Zero Value

– Compare Instructions can allow other Conditions (<, >, 

etc)

• Reduces Branching

• Increases Parallelism



C6000 Instruction Set Addressing 

Features

• Load-Store Architecture

• Two Addressing Units (D1, D2)

• Orthogonal
– Any Register can be used for Addressing or Indexing

• Signed/Unsigned Byte, Half-Word, Word, Double-
Word Addressable
– Indexes are Scaled by Type

• Register or 5-Bit Unsigned Constant Index



C6000 Instruction Set Addressing 

Features
• Indirect Addressing Modes

– Pre-Increment *++R[index]

– Post-Increment *R++[index]

– Pre-Decrement *--R[index]

– Post-Decrement *R--[index]

– Positive Offset *+R[index]

– Negative Offset *-R[index]

• 15-bit Positive/Negative Constant Offset from Either B14 
or B15

• Circular Addressing
– Fast and Low Cost: Power of 2 Sizes and Alignment

– Up to 8 Different Pointers/Buffers,  Up to 2 Different Buffer 
Sizes

• Dual Endian Support







TI TMS320C64xx
• Announced in February 2000, the TMS320C64xx is an extension 

of Texas Instruments' earlier TMS320C62xx architecture.

• The TMS320C64xx has 64 32-bit general-purpose registers, twice 

as many as the TMS320C62xx. 

• The TMS320C64xx instruction set is a superset of that used in the 

TMS320C62xx, and, among other enhancements, adds significant 

SIMD processing capabilities:

– 8-bit operations for image/video processing.

• 600 MHz clock speed, but:

– 11-stage pipeline with long latencies

– Dynamic caches. 

• $100 qty 10k.

• The only DSP family with compatible fixed and floating-point 

versions.



Superscalar DSP:

LSI Logic ZSP400

• A 4-way superscalar  dynamically scheduled  16-bit fixed-

point DSP core.

• 16-bit RISC-like instructions

• Separate on-chip caches for instructions and data

• Two MAC units, two ALU/shifter units

– Limited SIMD support.

– MACS can be combined for 32-bit operations.

• Disadvantage:

– Dynamic behavior complicates DSP software development:

• Ensuring real-time behavior

• Optimizing code.





Thank You
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