Unit I - Introduction

Introduction

Digital Signal Processing (DSP) refers to processing of signals by digital systems like Personal Computers (PC) and systems designed using digital Integrated Circuits (ICs), microprocessors and microcontrollers. rapid advancement in computers and IC fabrication technology leads to complete domination of DSP systems in both real-time and non-real-time applications in all fields of engineering and technology.

The basic components of a DSP system are shown in fig 1.1. The **DSP system** involves conversion of analog signal to digital signal, then processing of the digital signal by a digital system and then conversion of the processed digital signal back to analog signal

Fig 1.1: Basic components of a DSP system.

The real-world signals are analog, and only for processing by digital systems, the signals are converted to digital. For conversion of signals from analog to digital, an ADC (Analog to Digital Converter) is employed. The various steps in analog to digital conversion process are sampling and quantization of analog signals, and then converting the quantized samples to suitable binary codes. The digital signals in the form of binary codes are fed to digital system for processing, and after processing, it generates an output digital signal in the form of binary codes. The output analog signal is constructed from the output binary codes using a DAC (Digital to Analog Converter).

Advantages of Digital Signal Processing

Some of the advantages of digital processing of signals are,

- 1. The digital hardware are compact, reliable, less expensive, and programmable.
- 2 Since the DSP systems are programmable, the performance of the system can be easily upgraded/modified.
- 3 By employing high speed, sophisticated digital hardware higher precision can be achleved in processing of signals.

4. The digital signals can be permanently stored in magnetic media so that they are transportable and can be processed in non-real-time or off-line.

Applications of Digital Signal Processing

The digital processing of signal plays a vital role in almost every field of Science and Engineering. Some of the applications of digital processing of signals in various field of Science and Engineering arc listed here.

Biomedical

ECG is used to predict heart diseases.

EEG is used to study normal and abnormal behaviour of the brain.

EMG is used to study the condition of muscles

X-ray images are used to predict the bone fractures and tuberculosis.

Ultrasonic scan images of kidney and gall bladder is used to predict stones.

Ultrasonic scan images of foetus is used to predict abnormalities in a baby. MRI scan is used to study minute inner details of any part of the human body.

Speech Processing

Speech compression and decompression to reduce memory requirement of storage systems

Speech compression and decompression for effective use of transmission channels

Speech recognition for voice operated systems and voice based security systems.

Speech recognition for conversion of voice to text

Speech synthesis for various voice based warnings or announcements.

Audio and Video Equipment

The analysis of audio signals will be useful to design systems for special effects in audio systems like stereo, woofer, karoke, equalizer, attenuator, etc.

Music synthesis and composing using music keyboards

Audio and video compression for storage in DVDs

Communication

The spectrum analysis of modulated signals helps to identify the information bearing frequency component that can be used for transmission.

The analysis of signals received from radars are used to detect flying objects and their velocity. Generation and detection of DTMF signals in telephones

Echo and noise cancellation in transmission channels

Power Electronics

The spectrum analysis of the output of converters and inverters will **reveal** the harmonics present in the output, which in turn helps to design suitable filter to eliminate the harmonics. The analysis of switching currents and voltages in power devices will help to reduce losses.

Image processing

Image compression and decompression to reduce memory requirement of storage systems

Image compression and decompression for effective use of transmission channels Image recognition for security systems.

Filtering operations on images to extract the features or hidden information

Geology

The seismic signals are used to determine the magnitude of earthquakes and volcanic eruptions. The seismic signals are also used to predict nuclear explosions.

The seismic noises are also used to predict the movement of earth layers (tectonic plates).

Astronomy

The analysis of light received from a star is used to determine the condition of the star. The analysis of images of various celestial bodies gives vital information about them.

Signals, Systems, and Signal Processing

A *signal* is defined as any physical quantity that varies with time, space, or any other independent variable or variables. Mathematically, we describe a signal as a function of one or more independent variables. For example, the functions

$$Sl(t)=5t$$

$$S2(t) = 20t2$$

describe two signals, one that varies linearly with the independent variable t (time) and a second that varies quadratically with t. As another example, consider the function

$$s(x. y) = 3x + 2xy + y$$

This function describes a signal of two independent variables *x* and *y* that could represent the two spatial coordinates in a plane. Speech, electrocardiogram, and electroencephalogram signals are examples of information-bearing signals that evolve as functions of a single independent variable (viz) time. An example of a signal that is a function of two independent variables is an image signal.

System

A **system** may also be defined as a physical device that performs an operation on a signal. For example a filter used to reduce the noise and interference corrupting a desired information-bearing signal is called a system. In this case the filter performs some operation(s) on the signal, which has the effect of reducing (filtering) the noise and interference from the desired information-bearing signal. In digital processing of signals on a digital computer the operations performed on a signal consist of a number of mathematical operations as specified by a software program. In this case, the program represents an implementation of the system in *software*. Thus we have a system that is realized on a digital computer by means of a sequence of mathematical operations; that is, we have a digital signal processing system realized in software. For example a digital computer can be programmed to perform digital filtering. Alternatively the digital processing on the signal may be performed by digital *hardware* (logic circuits) configured to perform the desired specific operations. In such a realization we have a physical device that performs the specified operations. In a broader sense a digital system can be implemented as a combination of digital hardware and software each of which performs its own set of specified operations.

Classification of Signals

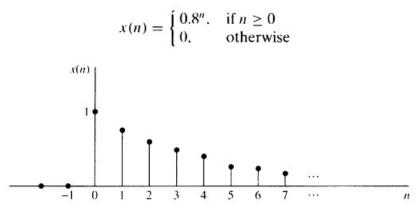
1.Multichannel and Multidimensional Signals are signals are generated by multiple sources or multiple sensors. Such signals, in turn, can be represented in vector form. If sdl), k = 1,2,3,

denotes the electrical signal from the *kth* sensor as a function of time. the set of p = 3 signals can be represented by a vector S(I), where

$$\mathbf{S}_3(t) = \begin{bmatrix} s_1(t) \\ s_2(t) \\ s_3(t) \end{bmatrix}$$

corresponding to the brightness of the three principal colors (red. green. blue) as functions of time. Hence the color TV picture is a three-channel three-dimensional signal, which can be represented by the vector

$$\mathbf{I}(x, y, t) = \begin{bmatrix} I_r(x, y, t) \\ I_g(x, y, t) \\ I_b(x, y, t) \end{bmatrix}$$


Signals can be further classified into four different categories depending on the characteristics of the time (independent) variable and the values they take.

2. Continuous time (Analog) signals and Discrete Time Signals

Continuous Time signals or analog signals are defined for every value of time and they take on values in the continuous interval (a, b), where a can be - ∞ and b can be ∞ . Mathematically, these signals can be described by functions of a continuous variable.

Discrete-time(DT) signals are defined only at certain specific values of time. These time instants need not be equidistant, but in practice they are usually taken at equally spaced intervals. we use the index II of the discrete time instants as the independent variable, the signal value

becomes a function of an integer variable (i.e., a sequence of numbers). Thus a discrete-time signal can be represented mathematically by a sequence of real or complex numbers. In discrete time signal, the time is divided uniformly using the relation t = nT, where T is the sampling time period. (The sampling time period is the inverse of sampling frequency). The discrete time signal is denoted by x(n) or x(nT).

Figure 1.2.3 Graphical representation of the discrete time signal $x(n) = 0.8^n$ for n > 0 and x(n) = 0 for n < 0.

3. Continuous-Valued and Discrete-Valued Signals

The values of a continuous-time or discrete-time signal can be continuous or discrete. If a signal takes on all possible values on a finite or an infinite range it is said to be a continuous-valued signal. Alternatively, if the signal takes on values from a finite set of possible values it is said to be a discrete-valued signal. Usually, these values are equidistant and hence can be expressed as an integer multiples of the distance between two successive values. A discrete-time signal having a set of discrete values is called a *digital signal*. Figure 1.2.5 shows a digital signal that takes on one of four possible values.

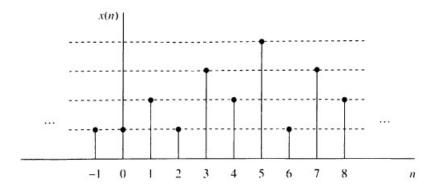


Figure 1.2.5 Digital signal with four different amplitude values.

4.Deterministic and Random Signals

Any signal that can be uniquely described by an explicit mathematical expression, a table of data, or a well-defined rule is called *deterministic*. All past, present, and future values of the signal are known precisely, without any uncertainty signals that either cannot be described to any reasonable degree of accuracy by explicit mathematical formulas. or such a description is too complicated to be of any practical use We refer to these signals as *random*. *The* output of a noise generator, the seismic signal, speech signal are examples of random signals.

Representation of Discrete time Signals

The discrete time signal can be represented by the following methods.

1. Functional representation, such as

$$x(n) = \begin{cases} 1, & \text{for } n = 1, 3 \\ 4, & \text{for } n = 2 \\ 0, & \text{elsewhere} \end{cases}$$
 (2.1.1)

2. Tabular representation, such as

$$\frac{n}{x(n)} \begin{vmatrix} \cdots & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & \dots \\ \hline 0 & 0 & 0 & 1 & 4 & 1 & 0 & 0 & \dots \end{vmatrix}$$

3. Sequence representation

An infinite-duration signal or sequence with the time origin (n = 0) indicated by the symbol \uparrow is represented as

$$x(n) = \{\dots 0, 0, 1, 4, 1, 0, 0, \dots\}$$
 (2.1.2)

A sequence x(n), which is zero for n < 0, can be represented as

$$x(n) = \{0, 1, 4, 1, 0, 0, \ldots\}$$
 (2.1.3)

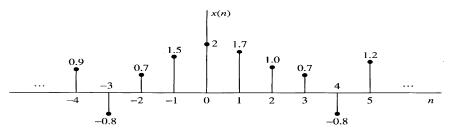
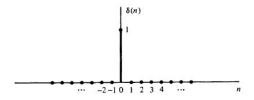


Figure 2.1.1 Graphical representation of a discrete-time signal.

4. Graphical Representation

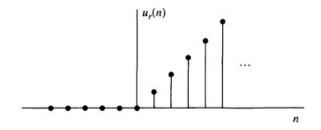

In graphical representation, the signal is represented in a two-dimensional plane. The independent variable is represented in the horizontal axis and the value of the signal is represented in the vertical axis as shown in fig 2.1.1

Some Elementary Discrete-Time Signals

1. The unit sample sequence or Unit impulse signal is denoted as $\delta(n)$ and is defined as

$$\delta(n) \equiv \begin{cases} 1, & \text{for } n = 0 \\ 0, & \text{for } n \neq 0 \end{cases}$$

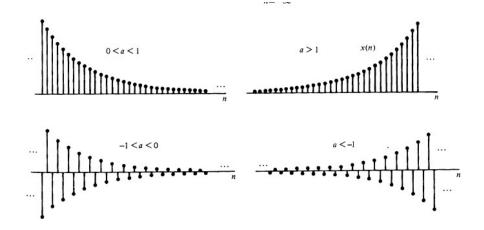
The unit sample sequence is a signal that is zero everywhere, except at n = 0 where its value is unity. This signal is sometimes referred to as a unit impulse



2. The **Unit step signal** is denoted as u(n) and is defined as

$$u(n) \equiv \begin{cases} 1, & \text{for } n \ge 0 \\ 0, & \text{for } n < 0 \end{cases}$$

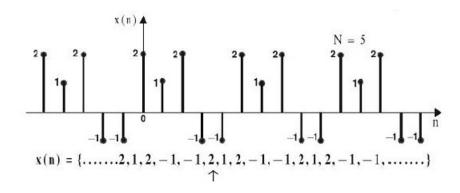
3. The unit ramp signal is denoted as ur(n) and is defined as


$$u_r(n) \equiv \begin{cases} n, & \text{for } n \ge 0 \\ 0, & \text{for } n < 0 \end{cases}$$

4. The **exponential signal** is a sequence of the form

$$x(n) = a^n$$
 for all n

If the parameter a is real, then x (n) is a real signal. Figure shown below illustrates x (n) for various values of the parameter a.


Classification of Discrete Time Signals

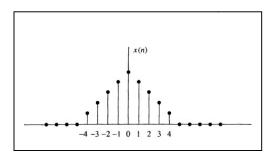
The discrete time signals are classified depending on their characteristics. Some ways of classifying discrete time signals are,

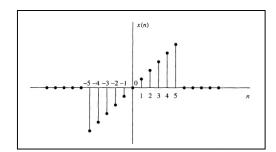
- 1.Periodic and aperiodic signals
- 2. Symmetric and antisymmetric signals
- 3. Energy and power signals
- 4. Causal and noncausal signals
- 1. Periodic signals and aperiodic signals. A signal x(n) is periodic with period N(N > 0) if and only if

$$x(n+N) = x(n)$$
 for all n

The smallest value of N which satisfies the above equation is called the (fundamental) period. If there is no value of N that satisfies, the signal is called *nonperiodic* or *aperiodic*.

2 Symmetric (even) and antisymmetric (odd) signals


A real-valued signal x(n) is called symmetric (even) if


$$x(-n) = x(n)$$

On the other hand, a signal x(n) is called antisymmetric (odd) if

$$x(-n) = -x(n)$$

We note that if x(n) is odd, then x(0) = 0.

Any arbitrary signal can be expressed as the sum of two signal components, one of which is even and the other odd. The even signal component is formed by adding x(n) to x(-n) and dividing by 2, that is,

$$x_e(n) = \frac{1}{2}[x(n) + x(-n)]$$

Similarly, we form an odd signal component xo(n) according to the relation

$$x_o(n) = \frac{1}{2}[x(n) - x(-n)]$$

3. Energy signals and power signals.

The energy E of a signal x(n) is defined as

$$E \equiv \sum_{n=-\infty}^{\infty} |x(n)|^2$$

The energy of a signal can be finite or infinite. If E is finite (i.e., 0 < E < 00), then x(n) is called an *energy signal*.

The average power of a discrete-time signal x(n) is defined as

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

If power P of a discrete time signal is finite and non-zero, then the discrete time signal is called a **power signal.** The periodic signals are examples of power signals.

For energy signals, the energy will be finite and average power will be zero.

For power signals the average power is finite and energy will be infinite.

\ For energy signal,
$$0 < E < \infty$$
 and $P = 0$
For power signal, $0 < P < \infty$ and $E = \infty$

4. Causal, Non-causal and Anticausal signals

A discrete time signal is said to be *causal*, if it is defined for n = 0. Therefore if x(n) is causal, then x(n) = 0 for n < 0.

A discrete time signal is said to be **noncausal**, if it is defined for either $n \le 0$, or for both $n \le 0$ and n > 0. Therefore if x(n) is noncausal, then $x(n) \ne 0$ for n < 0. A noncausal signal can be converted to causal signal by multiplying the noncausal signal by a unit step signal, u(n).

When a noncausal discrete time signal is defined only for $n \le 0$, it is called an *anticausal signal*.

$$x(n) = \{1, -1, 2, -2, 3, -3\}$$

$$x(n) = \{2, 2, 3, 3, \dots \}$$

$$x(n) = \{1, -1, 2, -2, 3, -3\}$$

$$x(n) = \{..., 2, 2, 3, 3\}$$

$$x(n) = \{2, 3, 4, 5, 4, 3, 2\}$$

$$x(n) = \{..., 2, 3, 4, 5, 4, 3, 2, \dots \}$$

$$Noncausal signals$$

$$x(n) = \{..., 2, 3, 4, 5, 4, 3, 2, \dots \}$$

Classification of Discrete Time Systems

Discrete time systems are classified based on their characteristics. Some of the classifications of

discrete time systems are,

- 1. Static and dynamic systems
- 2. Time invariant and time variant systems
- 3. Linear and nonlinear systems
- 4. Causal and noncausal systems
- 5. Stable and unstable systems
- 6. FIR and IIR systems

1.Static and Dynamic systems.

A discrete-time system is called **static or memoryless** if its output at any instant n depends at most on the input sample at the same time, but not on past or future samples of the input. In any other case, the system is said to be **dynamic** or to have memory. If the output of a system at time n is completely determined by the input samples in the interval from n - N to n(N :::: 0), the system is said to have *memory* of duration N. If N = 0, the system is static. If $0 < N < \infty$, the system is said to have *finite memory*, whereas if $N = \infty$, the system is said to have *infinite memory*.

The systems described by the following input-output equations

$$y(n) = ax(n)$$
$$y(n) = nx(n) + bx(n)$$

are both static or memory less. Note that there is no need to store any of the past inputs or outputs in order to compute the present output. On the other hand, the systems described by the following input-output relations

$$v(n) = x(n) + 3x(n - 1)$$

is a dynamic system or systems with memory.

2 Time-invariant versus time-variant systems.

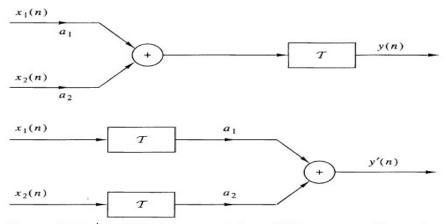
A system is called time-invariant if its input-output characteristics do not change with time.

Definition. A relaxed system is **time invariant or shift invariant** if and only if

$$x(n) \xrightarrow{\mathcal{T}} y(n)$$

$$x(n-k) \stackrel{\mathcal{T}}{\longrightarrow} y(n-k)$$

for every input signal x(n) and every time


shift k.

3. Linear and Non-linear systems.

A linear system is one that satisfies the *superposition principle*. Simply stated, the principle of superposition requires that the response of the system to a weighted sum of signals be equal to the corresponding weighted sum of the responses (outputs) of the system to each of the individual input signals.

Definition. A system is linear if and only if

$$\mathcal{T}[a_1x_1(n) + a_2x_2(n)] = a_1\mathcal{T}[x_1(n)] + a_2\mathcal{T}[x_2(n)]$$

Figure 2.2.9 Graphical representation of the superposition principle. \mathcal{T} is linear if and only if y(n) = y'(n).

4. Causal and Non-causal systems.

Definition. A system is said to be *causal* if the output of the system at any time n [i.e., y(n)] depends only on present and past inputs [i.e., x(n), x(n-1), x(n-2), ...], but does not depend on future inputs [i.e., x(n+1), x(n+2), ...].

In mathematical form the output of a causal system satisfies an equation of the form

$$y(n) = F(x(n), x(n-1), x(n-2), ...)$$

If a system does not satisfy this definition, it is called **non-causal.** Such a system has an output that depends not only on present and past inputs but also on future inputs.

5. Stable versus unstable systems.

Definition. An arbitrary relaxed system is said to be bounded input-bounded output (BIBO) stable if and only if every bounded input produces a bounded output. The condition that the input sequence x(n) and the output sequence y(n) are bounded is translated mathematically to mean that there exist some finite numbers, say Mx and My, such that

$$|x(n)| \le M_x < \infty, \qquad |y(n)| \le M_y < \infty$$

for all n. If, for some bounded input sequence x (n), the output is unbounded (infinite), the system is classified as unstable.

6. FIR and IIR systems

In FIR *system* (Finite duration Impulse Response system), the impulse response consists of finite number of samples.

In IIR system (Infinite duration Impulse Response system), the impulse response has infinite number of samples.

Sampling Techniques

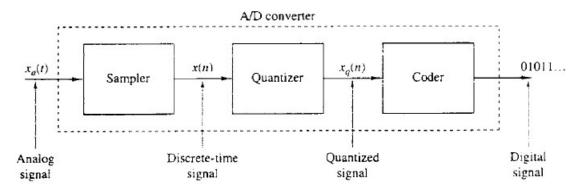
Most signals of practical interest, such as speech, biological signals, seismic signals, radar signals, sonar signals, and various communications signals such as audio and video signals, are analog. To process an analog signals by digital means, it is first necessary to convert the m into digital form, that is, to convert them to a sequence of numbers having finite precision. This procedure is called analog-to-digital (A/D) conversion, and the corresponding devices are called A/D converters (ADCs). Conceptually, we view A/D conversion as a three step process. This process is illustrated in Fig. 1.14.

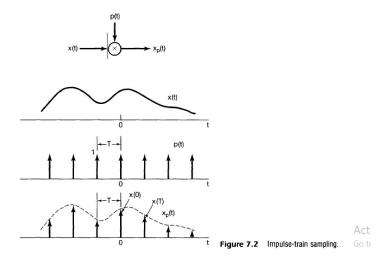
1. Sampling. This is the conversion of a continuous-time signal in to a discrete time signal obtained by taking "sample s'" of the continuous-time signal at disc rete-time instants. Thus, if x a(t) is the input to the sampler, the output is x a(n T) = x(n), where T is called the sampling interval.

2. Quantization. This is the conversion of a discrete time continuous value signal into a discrete-time, discrete-valued (digital) signal. The value of each signal sample is represented by a value selected from a finite set of possible values. The difference between the unquantized sample x(n) and the quantized output xq(n) is called the quantization error.

Quantization error
$$e(n)=xq(n)-x(n)$$

3. Coding. In the coding process, each discrete value $xq\{n\}$ is represented by a b-bit binary sequence.




Figure 1.14 Basic parts of an analog-to-digital (A/D) converter.

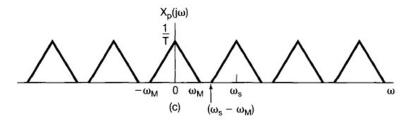
In order to develop the sampling theorem, we need a convenient way in which to represent the sampling of a continuous-time signal at regular intervals. A useful way to do this is through the use of a periodic impulse train multiplied by the continuous-time signal x(t) that we wish to sample. This mechanism, known as *impulse-train sampling*, is depicted in Figure 7 .2. The periodic impulse train p(t) is referred to as the *sampling function*, the period T as the *sampling period*, and the fundamental frequency of p(t), $\omega_s = 2\pi/T$, as the *sampling frequency*. In the time domain,

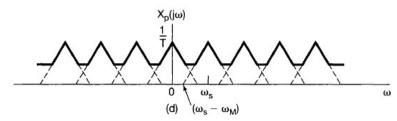
$$x_p(t) = x(t)p(t),$$

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT).$$

multiplying x(t) by a unit impulse samples the value of the signal at the point at which the impulse is located; i.e., $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$. Applying this to eq. (7.1), we see, as illustrated in Figure 7.2, that $x_p(t)$ is an impulse train with the amplitudes of

the impulses equal to the samples of x(t) at intervals spaced by T; that is,


$$x_p(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t-nT).$$


$$X_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) P(j(\omega - \theta)) d\theta.$$

Since convolution with an impulse simply shifts a signal [i.e., $X(j\omega) * \delta(\omega - \omega_0) = X(j(\omega - \omega_0))$], it follows that

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_s)).$$

That is, $X_p(j\omega)$ is a periodic function of ω consisting of a superposition of shifted replicas of $X(j\omega)$, scaled by 1/T, as illustrated in Figure 7.3. In Figure 7.3(c), $\omega_M < (\omega_s - \omega_M)$, or equivalently, $\omega_s > 2\omega_M$, and thus there is no overlap between the shifted replicas of $X(j\omega)$, whereas in Figure 7.3(d), with $\omega_s < 2\omega_M$, there is overlap. For the case illustrated in Figure 7.3(c), $X(j\omega)$ is faithfully reproduced at integer multiples of the sampling frequency. Consequently, if $\omega_s > 2\omega_M$, x(t) can be recovered exactly from $x_p(t)$ by means of

Figure 7.3 Continued (c) spectrum of sampled signal with $\omega_s > 2\omega_M$; (d) spectrum of sampled signal with $\omega_s < 2\omega_M$.

a lowpass filter with gain T and a cutoff frequency greater than ω_M and less than $\omega_s - \omega_M$, as indicated in Figure 7.4. This basic result, referred to as the *sampling theorem*, can be stated as follows: ¹

Sampling Theorem:

Let x(t) be a band-limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$. Then x(t) is uniquely determined by its samples x(nT), $n = 0, \pm 1, \pm 2, \ldots$, if

$$\omega_s > 2\omega_M$$

where

$$\omega_s = \frac{2\pi}{T}.$$

1. Test the causality of the following systems

(i)
$$y(n) = x(n) + 3x(n+4)$$
.

(ii)
$$y(n) = x(-n)$$

(iii)
$$y(n) = x(n^2)$$

Solution:

(i)
$$y(n) = x(n) + 3x(n+4)$$

For $n = -1$; $y[-1] = x[-1] + 3x[3]$
 $n = 0$; $y[0] = x[0] + 3x[4]$
 $n = 1$; $y[1] = x[1] + 3x[5]$

* For all the values of n' , the output depends on present and Future inputs. So, the system is Non-causal.

(ii) $y(n) = x[n]$

For $n = -1$; $y[-1] = x[1]$.

 $n = 0$; $y[0] = x[0]$

* For all the values of n' , the output depends on Present, Past and Future inputs. So the system is Non-causal.

(iii) $y(n) = x[n^2]$

For $n = -1$; $y[-1] = x[1]$
 $n = 0$; $y[0] = x[0]$
 $n = 1$; $y[1] = x[1]$
 $n = 0$; $y[0] = x[0]$
 $n = 0$; $y[0] = x[0]$

The output depends on Present and Future inputs. So the system is Non-causal.

2. Test the following systems for linearity.

(i)
$$y(n) = x(n) + c$$

(ii)
$$y(n) = nx^2(n)$$

(iii)
$$v(n)=a^{x(n)}$$

Solution:

(i) Given: 4[n] = x[n]+C.

For two input sequences x1[n] and x2[n] the Corresponding outputs are,

Y_[n] = x_[n] + C

Y_2[n] = x_2[n] + C

The output due to weighted sum of inputs is $Y_3[n] = T[a_1x_1[n] + a_2x_2[n]]$

= a1x1[n]+ a2 x2[n] + C -> 0 on the other hand, the linear combination of two output is,

43[n]=a, y, [n] +a2 y2[n] = q, x, [n] + a, c + a2 x2[n] $+a_2C \rightarrow \bigcirc$

Equation (1) & @ are not equal, superposition Principle is not satisfied. So the system is Non-Linear.

(ii) Given: YEn] = n x2[n].

* For two input sequences x,[n] and x2[n] the corresponding outputs are,

 $Y_{i}[n] = T[x_{i}[n]] = n x_{i}^{2}[n]$ $Y_2[n] = T[x_2[n]] = n x_2^2[n]$

* The output due to weighted Sum of input is,
$$y_3[n] = T[a_1x_1[n] + a_2x_2[n]]$$

$$= [a_1n x_1[n] + a_2x_2[n]]^2$$

$$= a_1^2n^2x_1^2[n] + a_2^2n^2x_2^2[n] + a_1a_2n^2x_1[n] x_2[n]$$

$$+ On the other hand, the linear Combination of two output is,$$

$$y_{3}[n] = \alpha y_{1}[n] + \alpha y_{2}[n]$$

$$= \alpha_{1} n x_{1}^{2}[n] + \alpha_{2} x_{2}^{2}[n] \longrightarrow (2)$$

* From equation ORD are not equal, superposition Principle is not satisfied. So, the system is Non-Linear.

(iii) Given: 4[n] = a x[n]

* For two input sequences $x_1[n]$ and $x_2[n]$ the corresponding outputs are, $y_1[n] = \overline{b[x_1[n]]} = a^{x_1[n]}$ $y_2[n] = T[x_2[n]] = a^{x_2[n]}$

* The output due to weighted Sum of input is, $y_3[n] = T[a_1x_1[n] + a_2x_2[n]] = a^{q_1x_1[n]} + a_2x_2[n]$

* On the otherhand, the Linear combination of two output is, $y_3'[n] = a_1 a_2 a_3[n] \longrightarrow (2)$

* From equation (12(3) are not equal, superposition Principle is not satisfied. So the system is Non-Linear.

3. Determine the impulse response h (n) for the system described by the second order difference equation, y(n) - 4y(n-1) + 4y(n-2) = x(n-1).

SQL: Oriven:
$$y[n] - 4y[n-1] + 4y[n-2] = x[n-1] \longrightarrow \mathbb{O}$$

Let $z[y[n]] = y(z)$
 $z[y[n-2]] = z^{-1}y(z)$
 $z[y[n-2]] = z^{-1}x(z)$
 $z[x[n-1]] = z^{-1}x(z)$

Now Take z -Transform on equation so \mathbb{O} , we have $z[y[n] - 4y[n-1] + 4y[n-2]] = z[x[n-1]]$
By Linearity Property,
 $z[y[n]] - 4z[y[n-1]] + 4z[y[n-2]] = z[x[n-1]]$
 $y(z) - 4z^{-1}y(z) + 4z^{-2}y(z) = z^{-1}x(z)$
 $y(z)[1-4z^{-1}+4z^{-2}] = z^{-1}x(z)$

4. The impulse response of a LTI system is given by $h(n) = 0.6^{n} u(n)$. Find the frequency response.

Given:
$$h(m) = (0.6)^n u[n]$$
.

Sol: $Take z - Transform on both sides$,

 $z[h[n]] = z[(0.6)^n u[n]]$
 $H(z) = z - 0.6$
 $H(\omega) = e - i\omega$
 $e - i\omega - 0.6$
 $H(\omega) = e - i\omega$
 $e - i\omega - 0.6$
 $H(\omega) = e - i\omega$
 $e - i\omega - 0.6$
 $H(\omega) = e - i\omega$
 $e - i\omega - 0.6$
 $H(\omega) = e - i\omega$

5. Test the following systems for time invariance.

(i)
$$y(n) = x(n) - x(n-1)$$

(ii)
$$y(n) = x(n)$$

(iii)
$$y(n) = x(-n)$$

(iv)
$$y(n) = x(n) - b x (n-1)$$

Solution:

Soli-

(i) Given:
$$\underline{y[n]} = \underline{x[n]} - \underline{x[n-1]}$$

* If the input is delayed by K units in time, we have

$$\underline{y[n,K]} = T[\underline{x(n-K)}] = \underline{x[n-K]} - \underline{x[n-K-1]} \rightarrow 0$$

* If we delay the output by K units in time, then

$$\underline{y[n-K]} = \underline{x[n-K)} - \underline{x[n-K-1]} \rightarrow 0$$

So the System is time invariant.

```
(ii) Given: YEN] = xEN].
   * If the input is delayed by k' units in time
and we have
           Y[n,K] = T[x[n-K]] = x[n-K] -> 0
    If we delay the output by "K' units in time, then
            4[n-k] = x[n-k] \longrightarrow 2.
        Here, D = @
         50, the system is time - invariant.
(iii) Given: 4[n] = x[-n]
     * If the input is delayed by k' units in time,
we have,
            YENIK] = T[xen-k] = x[-n-k] -> 0
     * If we dolay the output by K' Units in time
then,
            Y[n-K] = x[-(n-K)] = x[-n+K] \rightarrow \bigcirc
        Here 0 + @
           50, the system is time-variant.
(iv) Given: YEN] = XEN] - ba[n-i].
      * If the input is delayed by 'K' units in time,
we have
         Y[n_1K] = T[x(n-K)] = x[n-K] - bx[n-K-1]
      * If we delay the output by k' units in time,
          4[n-k] = x[n-k] - px[n-k-l] \longrightarrow (3)
    Here O = (1),
           50, the system is time - invariant.
```

6. Determine the step response of a LTI system whose impulse response h (n) is given by $h(n) = a^{-n} u(-n)$; o < a < 1.

Solution:

Given:
$$x(n) = u(n)$$

$$h(n) = a^{-n} u(-n).$$

Take $z = [x(n)] = \sum_{n=0}^{\infty} |z^{-n}| = \sum_$

7. Determine the steady state response for the system with impulse function.

$h(n) = (j/2)^n u(n)$ for an input $x(n) = [\cos \pi n] u(n)$

Griven:
$$hEn] = (j/2)^n u(n)$$
 $z_1[n] = (\cos z_1 n) u(n)] = (-1)^n u(n)$

Take $z = \frac{z}{z-j/2}$
 $x(z) = \frac{z}{z-j/2}$
 $x(z) = \frac{z}{z-j/2}$
 $y(z) = x(z) \cdot h(z) = \frac{z}{z-j/2} \cdot \frac{z}{z+1}$
 $\frac{y(z)}{z} = \frac{z}{(z+1)(z-j/2)}$

By partial Fraction,

$$\frac{z}{(z+1)(z-j/2)} = \frac{A(z-j/2) + B(z+1)}{(z+1)(z-j/2)}$$
 $z = A(z-j/2) + B(z+1)$

Sub $z = \frac{j}{2}$
 $z = 0 + (j/2+1)B \Rightarrow j/z = (\frac{j+2}{z})B$
 $z = \frac{j}{j+2} = \frac{j(j-2)}{j^2-2^2} = \frac{j^2-2j}{-1-4} = \frac{-1-2j}{-5}$

Sub
$$z = -1$$

$$-1 = A(-1-j/2) + 0.$$

$$-1 = \left(-\frac{2-j}{2}\right)A$$

$$\frac{-2}{-2-j} = A. \implies A = \frac{3}{9+j} \pm \frac{3}{2+j} \times \frac{2-j}{2-j}$$

$$A = \frac{4-3j}{4-j^2} = \frac{4-2j}{4+1} = \frac{4-3j}{5}.$$

$$NOW,$$

$$\frac{Y(z)}{Z} = \frac{4-2j}{5} \pm \frac{1+2j}{2-j/2}$$

$$Y(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$Y(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

$$V(z) = \frac{4-2j}{5} \cdot \frac{z}{2+j} + \frac{1+2j}{5} = \frac{z}{2-j/2}$$

8. Determine which of the following signals are periodic and determine the fundamental period also.

$$(i)x(t) = 20\sin 25\pi t$$
 $(ii)x(t) = 20\sin \sqrt{5} t$
 $(iii)x(t) = 10\cos 10\pi t$ $(iv)x(t) = 3\cos(5t + \frac{\pi}{6})$

Given:

(i) $\frac{\chi(t)}{\chi(t)} = 20 \sin 85 \pi t$.

Here $\omega_{-} = 25\pi$, The fundamental frequency is multiple of π . Therefore, the signal is periodic.

Fundamental Period (N) = 2π ($\frac{m}{25\pi}$)

The Minimum Value of m' for which N is integer as $N = 2\pi$ ($\frac{25}{25\pi}$) = 2.

Therefore the fundamental period = 2.2.

(ii) $\frac{\chi(t)}{\chi(t)} = 20 \sin \sqrt{5} t$.

Here $\omega_{0} = \sqrt{5}$, which is not a multiple of π .

Therefore, the signal is aperiodic.

Therefore, the signal is periodic.

Fundamental period (N) = 277 (Mos)

is integer is 5.

$$N = 2\pi \left(\frac{5}{10\pi}\right) = 1$$

Therefore the fundamental period = 1.

Therefore, the signal is aperiodic.

9. Determine the even and odd parts of the following:

 $(i)x(n) = A\sin\omega n + b\sin\omega n$

$$(ii)x(n) = 3\cos\omega n + 5$$

501:-

$$X_{e}(n) = \frac{\chi(n) + \chi(-n)}{2}$$
 $\chi(n) = \frac{\chi(n) - \chi(-n)}{2}$

(i) x(n) = Asinwn +Bsinwn

 $\chi_{o}(n) = A \sin \omega n + B \sin \omega n + A \sin \omega n + B \sin \omega n$

$$\chi_0(n) = A \sin \omega n + B \sin \omega n = \alpha(n)$$

(ii) X(n) = 30000n +5

$$Z_{e}(n) = \frac{300500n + 5 + 300500n + 5}{2} = 300500n + 5.$$

$$Z_0(n) = 30900n + 8 - 30000n - 8 = 0$$
.

10. Discuss whether the following are energy or power signals.(Nov/Dec'11)

(i)
$$x(n) = \left(\frac{3}{2}\right)^n u(n)$$

(ii)
$$x(n) = Ae^{jwon}$$

Griven:
$$\times [n] = (3)^n u[n]$$
.

The energy of the signal, $F = 2 |x[n]|^2$

$$= 2 |(3/2)^n|^2$$

$$= 2 |(3/2)^n|^2 = 2 |x[n]|^2$$

$$= 2 |(3/2)^n|^2 = 2 |x[n]|^2$$

$$= 2 |x[n]|^2 = 2 |x[n]|^2$$

$$= 2 |x[$$

(ii) coniver :
$$\frac{2ENJ}{A} = \frac{AeJ\omega_{o}N}{AeJ\omega_{o}N}$$

$$= \frac{A^{2}}{N} = \frac{AeJ\omega_{o}N}{N} = \frac{AeJ\omega_{o}N}{N} = \frac{A^{2}}{N} = \frac{AeJ\omega_{o}N}{N} = \frac{AeJ\omega_{o}N}{N}$$

finite. Therefore, the signal is a power signal.

11. Explain the concept of quantization. (Nov/Dec '11)

- * The process of conventing a discrete time continuous signal x(n) into a discrete time discrete amplitude signal xq(n) is known as quarkization.
- * This is done by rounding aff each sample in a(n) to newest quantization level.
 - * Then each sample in xq(n) is represented by a finite number of digits using a order.
 - * It a signal with amplitude mange R' is represented by an b+1 bit word Cincluding sign bit)
 then the number of values, or quantization levels, that can be represented is 2b+1
 - * The difference b/w adjacent levels, or the quantization step interm of the name of the signal is

9 = Range of signal Rumber of quantization Level = R 2b+1

* with fixed point representation of Fractional number, if the range of signal exceeds ±1, it is necessary to scale the signal.

+ The process of quantization is shown given below.

The time axis of the discrete time signal is labelled with sample number (n=0,1,2,...).

* Corresponding to different values of sample number in', the discrete time Continuous amplitude signal shown in above Fig.

* We can represent the sample values by a sequence,

a[n] = \ 0,0.620,0.85,0.85,0.85,0.03,-0.625,-0.85, -0.85,-0.575,0}

above sequence. With bt1 binary digits, 2 bt1 quantizal level can be obtained and the input can be resolved to one part in 2 bt1

* It the input signal has a trange of QV, then the quantization step size is equal to,

$$9 = \frac{2}{2^{b+1}} = 2^{-b}$$
.

* Id b+1 is equal to 4, the quantization step size is equal to 0.125. Thus the input signal must Change almost 0.125 inorder to produce a change in

of digits introduces an error known as quartization Noise.

* It is a sequence ecn, defined as the difference between the quantized value and the actual sample value. Thus,

	Table:	Illustration of	Quantiz	-ation Us	sing Rounding
n	sampled value	Binatly Representation	Rounding	Qualized Value agen)	Quantization Noise em = xq[n] - x[n].
0	O	0.0000000	0.000	0	0
1	0-620	0.10011110	0.101	0.625	. 0.002
2	0.85	0-11011001	0-11)	0.878	0.025
3	0.85	0. 11011001	0.111	0.875	0.025
4	0-575	0.1001001)	0.10)	0.625	0.05
5	-0.03	0.00000111	1.00	0	0.03
6	-0.626	1.10100000	(.10)	-0.625	0
7	-0.85	1.11011001	[-11]	-0.875	-0.025
8	-0.85	1.11011001	1 - 111	-0-875	-0.028
9	-0.578	1-10010011	1.101	-0.625	-0.05
lo	0	0.0000000	0.000	0	0

12. Check whether following are linear, time invariant, causal and stable.

(i)y(n) = x(n) + nx(n+1)

(ii) $y(n) = \cos x(n)$

(iii) y(n) = x(-n=5) (Nov/Dec '11) (May/June'12)

* For two input sequences & Inj and & Inj the Corresponding outputs are,

$$y_1[n] = T[\alpha_1[n]] = \alpha_1[n] + n \alpha_1[n-1]$$

$$y_2[n] = T(\alpha_2[n]) = \alpha_2[n] + n \alpha_2[n-1]$$

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_4 + \alpha_4 + \alpha_5 + \alpha_$$

The output due to weighted sum of input is

$$43[n] = T \left[a_1 \times 1[n] + a_2 \times 2[n] \right]$$

= $a_1 \times [n] + a_2 \times [n] + n \left[a_1 \times [n-1] + a_2 \times [n-1] \right]$

On the otherhand, the linear combination of two outputs is,

$$y_3'[n] = a_1y_1[n] + a_2y_2[n] = a_1x_1[n] + a_1nx_1[n-1] + a_2x_2[n] + a_2nx_2[n-1]$$

Here, ① = ②, superposition principle is satisfied.

The System is linear.

```
If the input is delayed by K' units in time, we
         Y[n,K] = x[n-K] + n x[n-K-1] \rightarrow 0
     It we delay the output by k' units in time, then
          Y[n-K] = x[n-K] + (n-K) x[n-K-I] \rightarrow 2
       0 + 0
30, the system is time-voriant.
   put n=-1; y[-1] = x[-1] + (-1) x[-2]
          n=0; 4[0] = x[0] + (0) x[-1]
          [0] x (1) + [1]x = [1]y ; 1=d
     For all the values of 'n', the output depends on
present and post inputs, so the system is Causal.
Given: 4 [-n+5]
* For two input sequences xIII and x2[n] the
Corresponding outputs are,
        9,[n]=2,[-n+5]
         42[n] = x2[-n+5]
  The output due to weighted sum of input is,
          y_3[n] = T[a_1 x_1[n] + a_2 x_2[n]]
                = a121[-n+5] + a2 x2 [-n+5] ->0
the otherhand, the Linear Combination of two
output is
          Ungerst [n] = a, y, [n] +azy, [n]
                 = a121[-n+5] + a2 82[-n+5] -> @
 Here, (0 = 0), Superposition principle is satisfied
The system is linear.
# It the input is delayed by k' units in time, we
nave
        A[u] = x[-u-k+2] \rightarrow 0
  If we delay the output by k' units in time, then
         Y[n-K] = x[-(n-K)+5] \rightarrow (2)
```

Here 0 ± 0 , so the System is time-variant n=0; y[-1]=x[6] n=0; y[0]=x[5] n=1; y[0]=x[4]For all the value's of n', the output depends Future and past inputs, so the system is Non-Causal

13. What is causality and stability of a system? Derive the necessary and sufficient condition on the impulse response of the system for causality and stability. (Nov/Dec 12)

depends on past or/and present values of input.

Derivation for causality:
Using convolution sum, we have,

 $\begin{aligned}
\forall [n] &= \underbrace{\otimes}_{K=\infty} h(K) \times [n-K] &\longrightarrow 0 \\
&= \underbrace{\otimes}_{K=\infty} h(K) \times [n-K] &+ \underbrace{\otimes}_{K=0} h(K) \times [n-K] &.
\end{aligned}$

depends on present future inputs

* From equ(1), we find that the output depends on the past an present values of the input if the index K > 0. If K > 0 then the output depends on the future values of input.

* Therefore for a Causal System whose output does not depends on the future Values of the input, the limits on the summation changes

YENJ = & hEKJ WEN-KJ -> 3

* From Equ B, we find that for causal system hckI should be zero for KCO. That is,

hckI = 0, KCO

* An LTI system is causal if and only its i impulse response is zero for negative value of n'.

* The Linuits in the convolution sum can be modified according to the type of sequence and system.

* If the input to the Causal system is a Causal sequence (ie x[n] = 0 for nzo) the limit in the convolution sum is modified as,

 $A[u] = \sum_{k=0}^{K=0} as[k] \ \mu[u-k] = \sum_{k=0}^{K=0} \mu[k] \ x[u-k].$

Stability: An LTI System is stable if it produces a bounded output sequence for every bounded imput sequence.

Derivation for Stability:

If, for some bounded input sequence x[n], the output is unbounded (infinited), the system is defined as unstable.

h[n] be the impulse response of the system and y[n] be the output sequence. Taking the magnitude of the output, we have

$$|y[n]| = \begin{cases} \sum_{k=-\infty}^{\infty} h[k] \alpha[n-k] \end{cases}$$

14. What is meant by energy and power signal? Determine whether the following signals are energy or power or neither energy nor power signals.

The power of the signal,
$$x_{1}(n) = \left(\frac{1}{2}\right)^{n} u(n) \ x_{2}(n) = \sin\left(\frac{\pi}{6}n\right), x_{3}(n) = e^{i\left(\frac{m+\pi}{3}+6\right)}, x_{4}(n) = e^{2n}u(n) \ (\text{Nov/Dec 12})$$

$$50):$$

$$E = \sum_{n=-\infty}^{\infty} |x| | |x| |x| | |x| |x| | |x|$$

: The Energy is finite and power is zero. Therefore, the signal is energy signal. (ii) Given: x2[n] = Sin(IIn). $E = \sum_{n=-\infty}^{\infty} \left| \sin^2(\sqrt[n]{n}) \right| = \sum_{n=-\infty}^{\infty} \left| \frac{1 - \cos(\sqrt[n]{n})}{2^n} \right| = \infty$ $P = Lt \frac{1}{N \to \infty} \frac{N}{2N+1} \frac{N}{2N+1} \frac{1}{2N+1} \frac$ $= Lt \qquad \qquad N \rightarrow \propto \frac{1}{2N+1} \qquad \sum_{n=-N}^{N} \frac{1-\cos(n)}{2} = \frac{1}{2} Lt \qquad \sum_{n=-N}^{N} \frac{1}{2} \sum$ = 1/2. .. The Energy is intimite and the power is finite Therefore the signal is power signal ((ii) aiven: x3[n] = e j(n)+1/6) [··e)(0+0)] $E = \sum_{n=1}^{\infty} |e^{i(\sqrt{n}n+\sqrt{n})}|^2 = \sum_{n=1}^{\infty} |e^{i(\sqrt{n}n+$ P = Lt _ S | @ j("\z" + "\z")|2 $= LE \underbrace{1}_{N\to\infty} \underbrace{2N+1}_{N-A} \underbrace{1}_{N-A} = LE \underbrace{1}_{N\to\infty} \underbrace{2N+1}_{2N+1} = 1.$.. The energy is infinite and power is finite. Therefore the signal is power signal. GY) Given: x4 [n] = e2n u(n) $E = \frac{8}{100} |x |^2 = \frac{8}{100} (e^{2n})^2 = \frac{8}{100} (e^{4n})^2 = 1 + e^{4n} + e^{8n} + e^{4n}$ P= Lt _ 12(n)|2= Lt _ 1 Se4n= Lt _ N=00 2N+1 (e4(N+1))

The signal is neither power nor energy signal.

Definition of Power singnal and Energy signal

For a discrete time signal x[n], the energy E

is defined as $E = \sum_{n=-\infty}^{\infty} |x[n]|^2$ The average power of a discrete. time signal

a [n] is defined as, $P = \text{Lt} \quad |x[n]|^2$ the total energy of the signal is finite and power

of the signal is zero. [E = finite & P = 0]

if the average power of the signal is finite and

Energy is infinite. [P = finite & E = \incidex]

the signal that do not salisfy above properties

neither energy nor power signal.

15. A discrete time systems can be (i) Static or Dynamic, (ii) Linear or Non-Linear, (iii) Time invariant or time varying & (iv) Stable or Unstable. Examine the Following system with respect to the properties above y(n) = x(n) + nx(n+1) (Nov/Dec 13)

Grivene y[n] = x[n] + n x[n+1](i) Linear on Static (Or) Dynamic

put n = -1; y[-1] = x[-1] - 1 x[0] n = 0; y[0] = x[0] + 0 n = 1; y[1] = x[1] + x[2]

The output y[n] depends on present and past imput. Therefore the system is dynamic or to have memory.

(ii) Linear (or) Non-Linear:

* For two input sequences &, [n] and &2 [n] the Corresponding output are,

y[n] = T[a,[n]] = x,[n] + n & [n+1]

Y2[n] = T[a,[n]] = x2[n] + n &2[n+1]

The output due to weighted sum of input is

```
y_3[n] = T[a_1x_1(n) + a_2x_2[n]]
= a, x, [n] + a_2x_2[n] + a, nx_1[n+1]
+ a_2nx_2[n+1]
+ a_2nx_2[n+1]
+ a_2nx_2[n+1]
+ a_2nx_2[n+1]
+ a_2x_2[n] + a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n] + a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n] + a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2x_2[n]
+ a_2
```

16. Given $y[n] = x[n^2]$. Determine whether the system is linear, time invariant, memoryless and causal. (May/Jun 13)

```
Sol: Given: y[n] = x[n^2]

# For n=-1; y[-1] = x[1]

n=0; y[0] = x[0]

N=1; y[1] = x[1]

For all values of n', (except n=0 and n=1), the system depends on future inputs. So, the system is non-causal.

# For two input sequence x_1[n] and x_2[n] the Corresponding outputs are,

y_1[n] = \overline{y}_1[n] = x_1[n^2]

y_2[n] = \overline{y}_2[n] = x_2[n^2]

The output due to weighted sum of input is,

y_3[n] = \overline{y}_1[n] = \overline{y}_2[n] = a_1x_1[n^2] + a_2x_2[n^2]

y_3[n] = \overline{y}_1[n] + a_2x_2[n] = a_1x_1[n^2] + a_2x_2[n^2]

y_3[n] = \overline{y}_1[n] + a_2x_2[n] = a_1x_1[n^2] + a_2x_2[n^2]
```

on the otherhand, the linear Combination of the two output is, $y_2'[n] = a_1y_1(n) + a_2y_2[n]$ $y_3'[n] = a_1x_1(n^2] + a_2x_2[n^2] \longrightarrow ②$ For Hence, D = @, the superposition principle is satisfied. So, the system is principle is interpret is debated by k' units in time, we have $y[n,k] = T[x(n-k)] = x[n-k^2] \longrightarrow 0$ If we delay the output by k' thirts in time, then, $y[n-k] = x[(n-k)^2] \longrightarrow \emptyset$ Here, D = @, Therefore the system is time.

* The output y[n] depends on future inputs y[n+k] = x[n+k]. So the system is Dynamic or to have memory.

17. Determine whether the following is an energy signal or power signal.

$$(1) x_1[n] = 6\cos\left(\frac{\pi}{2}n\right)$$

(2)
$$x_2[n] = 3(0.5)^n u(n)$$
. (May/Jun 13)

Solitiven: (1) $x_1[n] = 6(os(1/2 n))$

$$E = \sum_{n=-\infty}^{\infty} |x_1[n]|^2 = \sum_{n=-\infty}^{\infty} 36 |\cos^2 1/2 n|$$

$$= 36 \sum_{n=-\infty}^{\infty} \left(\frac{1 + \cos 1/2}{2} \right) = \infty,$$

$$P = Lt \quad |x_1[n]|^2 = Lt \quad |x_2[n]|^2 = Lt \quad |x_3| = 100$$

$$= 100 \text{ N} \text{ N$$

Griven: $2 \times [n] = 3(0.5)^n \text{ um}$ $E = \sum_{n=0}^{\infty} |2 \times n|^2 = \sum_{n=0}^{\infty} 3(0.5)^n = 3 \sum_{n=0}^{\infty} (1/2)^n.$ $= 3 \sum_{n=0}^{\infty} (1/4)^n = 3^2 \frac{1}{1-1/4} = 3^2 \cdot \frac{1}{4-1} = 3^2 \cdot \frac{1}{4}$ $= \frac{1}{4}.$ $P = \frac{1}{4}.$ $P = \frac{1}{4}.$ $= \frac$

UNII-2

DISCRETE TIME SYSTEM ANALYSIS

7-TRANSFORM.

The \(\frac{1}{2} - transform of \(\chi(n)\) will convert the time domain isignal \(\chi(n)\) into \(\frac{1}{2} - domain\) aignal \(\chi(x)\), where the signal becomes a function of complex variable \(\chi\).

The complex variable x is defined as, $z = u + jv = ye^{jw}$

where u -> real part of x.

H= Vue+ve = magnétude of Z.

W= tan(x) = Phase (or) digument of z.



fig1: z-plane

- 2) Properties (1)
 - 3) Invase-Iphlin

4) Stability + POC

Definition of z-transform:

Let 2(n) = Discrete time signal

X(z) = Z-biansform of x(n).

The X-brangorm of a disvult time signal,

 $X(x) = Z[x(n)] = \sum_{n=-\infty}^{\infty} y(n) x^{-n}$

(Two sided Z-transform)

 $\chi(z) = \chi[\chi(z)] = \frac{3}{3}, \chi(z) = \frac{1}{2}$ (One sided z-transfm)

Region of convergence (ROC):

The computation of X(z) involves summation of infinite twens which are tructions of X. Hence at its possible that the infinite series may not converge to the infinite series may not converge to the infinite value of Z. Threfore, for every X(z), three will be a set of values of z for which X(z) can be computed. Such set of values will the in a particular vergion of X-plane realized as Region of Convergence (ROC).

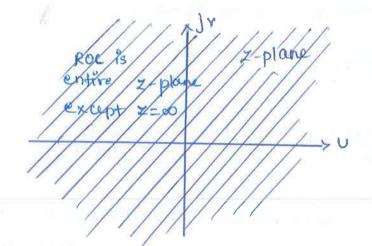
Inverse z-transform: - It is defined as,

$$\chi(n) = \frac{1}{a\pi j} \oint_{c} \chi(x) \chi^{n-1} dz$$

Region of Convergence: The ROC for following air types of signals core given below.

(ase (i) Finite deviation, viight sided (causal signal):

$$\rightarrow \chi(n)$$
 stanges from 0 to N-1
 $\chi(z) = \sum_{n=0}^{N-1} \chi(n) z^{-n}$


$$= \chi(0) + \chi(1) + \chi(2) + --- \chi(N-1) = \chi(N-1)$$

In the above summation, when z=0, all terms become ∞ except $\chi(0)$, $\chi(0)$ exists for all values of z except at z=0. Roc is entire z=0 except at z=0.

$$\chi(z) = \int_{n=-(N-1)}^{\infty} n(n) x^{-n}$$

=
$$\chi(-(N-1))\chi^{N-1} + ---- \chi(-2)\chi^2 + \chi(-1)\chi + \chi(0)$$
.

In above summation if $x=\infty$, all learns becomes ∞ except x(0). So RDC example of x(z) is entire x-plane except $x=\infty$.

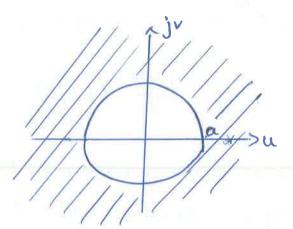
Case-(iii) Finité duration, two sided (non-causal) elg!

$$\rightarrow$$
 $x(n)$ oranges from $-\frac{(N-1)}{2}$ 15 $\frac{N-1}{2}$

: non ranges from - M 15 M.

$$X(x) = \sum_{n=-m}^{M} x(n) x^{n}$$

$$= \chi(-M) \chi^{M} + - - \chi(-\chi) \chi^{2} + \chi(-1) \chi + \chi(0) + \frac{\chi(1)}{\chi} + \frac{\chi(2)}{\chi^{2}} + - - \frac{\chi(M)}{\chi}$$


In the above summation, ROC exists for all values of z except at z=0 and $z=\infty$.

Case(iv) Infinité Duration, right sidel (causal) s/g:

Let
$$\chi(z) = a^n ; n = 0$$

 $\chi(z) = \frac{\infty}{5} \chi(n) z^n = \frac{\infty}{5} (az^1)^n$.

If
$$0<|\alpha x'|<1$$
, then $\frac{2}{3}(\alpha x')^n = \frac{1}{1-\alpha x'} = \frac{x}{x-\alpha}$

Hence the condition to be satisfied here for convergence of X(z) us,

The livem [a] supresents a circle of radius a sin x-plane. From the above varalysis, we day X(x) converges for all points external to the circle of radius a in x-plane.

the circle of radius a un z-plane.

(ase(v): Infinite duration, left sided (anticausal) s/

$$\chi(x) = \frac{\alpha^{n}}{8} \chi(x) = \frac{\alpha^$$

$$= \underbrace{S}_{n=0}^{\infty} \underbrace{a^n x^n}_{n=0} = \underbrace{S}_{n=0}^{\infty} (a^{\top} x)^n.$$

If
$$0 < |a^{-1}z| \ge 1$$
, then $S_{r}(a^{-1}z)^{n} = \frac{1}{1-a^{-1}z}$

Here the condition to be satisfied for convergence is $O(|\vec{a}|z||z|)$.

$$|\vec{a}|_{Z|Z|} \Rightarrow |\vec{a}|_{Z|Z|}$$

$$|\vec{a}|_{Z|Z|} = |\vec{a}|_{Z|Z|}$$

$$X(x) = \int_{n=-\infty}^{\infty} \left[a^n u(n) + b^n u(-n) \right] x^{-n}$$

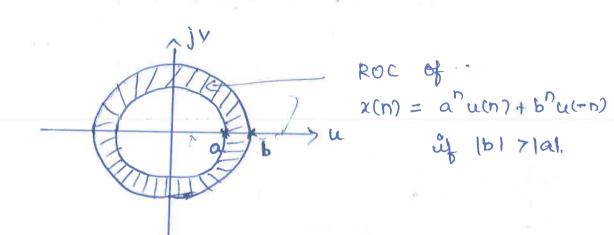
$$= \frac{8}{5} a^{n} x^{n} + \frac{8}{5} b^{n} x^{n}$$

$$= \frac{8}{5} a^{n} x^{n} + \frac{8}{5} b^{n} x^{n}$$

$$= \frac{8}{5} a^{n} x^{n} + \frac{8}{5} b^{n} x^{n}$$

$$= \frac{3}{5} a^{n} z^{n} + \frac{3}{5} b^{n} z^{n} \Rightarrow \frac{3}{5} (az^{1})^{n} + \frac{3}{5} (b^{1}z)^{n}$$

$$= \frac{3}{5} a^{n} z^{n} + \frac{3}{5} (b^{1}z)^{n} \Rightarrow \frac{3}{5} (az^{1})^{n} + \frac{3}{5} (b^{1}z)^{n}$$


$$X(z) = \frac{1}{1-az^{-1}} + \frac{1}{1-b^{-1}z}$$

The torm $\stackrel{\circ}{\mathcal{L}}_{i}(az^{i})^{n}$ converges if

02 | b | x | 2 | => [7/b | 2 | | 2 | 2 | b |.

The derm $\Xi(b^1z)^n$ converges if,

If |b| > |a|, then there will be a oregion blw 2 circles. Now x(x) will converge for all values blue 2 circles. (ie)

PROPERTIES OF ROC!

1. The ROC us va vung (or) disk un z-plane centered at origin

- 2. It cannot contain any poles
- 3. ROC must le la connected region.

- (a) finite a causal -> ROC us entire 2-plane except at z=0.
- (b) finité à centicausal -, Roc us entire x-plane except at x=0.
- (c) finite + non-causal -> ROC is entire x-plane (two sided) except at 200 4 200.

50 26 x(n) us:

- (a) unfinité a causal -> ROC us exterior of circle
- (b) ûnfinité + anticausal -> ROC is unterior of circle
- (c) infinite + non-causal _ > ROC is region blu à circles (two sided)

Propueties of 2-transform:

1. dinearity -

It stalis that &-transform of a weighted sum of 2 signals is regual to the weighted sum of individual 2-transforms.

 $Z[x(n-K)] = \overline{z}^{k}x(x)$

1:3. Time Reversal :- It,

21n) < > X(z) ROC: TI < |Z| < Y2

then, $\chi(z)$ $\langle \chi(z) \rangle$ Roc: $\frac{1}{2}$ $< |z| < \frac{1}{2}$

 $\frac{P9100f}{Z[\chi(-n)]} = \frac{\infty}{S_1} \chi(-n)\overline{z}^n$

oub -n=m

$$Z\left[\chi(-n)\right] = \frac{-\infty}{4} \chi(m) \chi^{m}$$

$$= \sum_{m=-\infty}^{\infty} \chi(m) = \sum_{m=-\infty}^{\infty} \chi(m) (z^{-1})^{m}$$

$$z[x(-n)] = x(z')$$

According to time ouvoid property, tolding the aignal in time adomain is equivalent to replacing the X by z^{-1} . Further, ROC of X(z) is 91/2|2|2

which becomes $21, 2|2^{-1}|29_2$ (01) $\frac{1}{91_1}|2|2|$

4. Multiplication by n.

Z[x(n)] = x(z), then $Z[nx(n)] = -z \frac{d}{dz}x(z)$

Proof: Let $\chi(\chi) = \sum_{n=-\infty}^{\infty} \chi(n) \chi(n)$

$$Z[n x(n)] = \sum_{n=-\infty}^{\infty} nx(n) x^{n}$$

$$X[n x(n)] = x \sum_{n=-\infty}^{\infty} nx(n) x^{n-1}$$

$$= x \sum_{n=-\infty}^{\infty} x(n) \left(nx^{n-1} \right)$$

$$= x \sum_{n=-\infty}^{\infty} x(n) \left(-\frac{1}{dx} \left(x^{n} \right) \right)$$

$$= -x \sum_{n=-\infty}^{\infty} x(n) \left(-\frac{1}{dx} \left(x^{n} \right) \right)$$

$$= -x \sum_{n=-\infty}^{\infty} x(n) \left(-\frac{1}{dx} \left(x^{n} \right) \right)$$

$$= -x \sum_{n=-\infty}^{\infty} x(n) \left(-\frac{1}{dx} \left(x^{n} \right) \right)$$

$$= -x \sum_{n=-\infty}^{\infty} x(n) \left(-\frac{1}{dx} \left(x^{n} \right) \right)$$

$$= -x \sum_{n=-\infty}^{\infty} x(n) \left(-\frac{1}{dx} \left(x^{n} \right) \right)$$

$$= -x \sum_{n=-\infty}^{\infty} x(n) \left(-\frac{1}{dx} \left(x^{n} \right) \right)$$

Multiplication by an Exponential

$$Z[x(n)] = X(z)$$
, then

 $Z[a^n x(n)] = X[a^i z]$

Privol:

 $Z[a^n x(n)] = \sum_{n=-\infty}^{\infty} a^n x(n) z^n$
 $Z[a^n x(n)] = \sum_{n=-\infty}^{\infty} a^n x(n) z^n$

Parsevel's theorem / Pareval's outation 2b $Z[x_1(n)] = X_1(z)$ vand $Z[x_2(n)] = X_2(x)$ Then Pourval's relation states that, $\frac{2}{2\pi i} \chi_1(n) \chi_2^*(n) = \frac{1}{2\pi i} \oint \chi_1(z) \chi_2^*(\frac{1}{z^*}) \chi_2^* dz$ Proof: By definition of Inverse Z-transform $\chi_{i}(n) = \frac{1}{2\pi i j} \oint \chi_{i}(z) z^{n-1} dz = \frac{1}{2\pi i j} \oint \chi_{i}(\mathbf{z}) (\mathbf{z})^{n-1} dv \rightarrow \mathbf{D}$ Now, by definition of z-transform, Let z=Y. $Z\left[\chi_{2}(n)\right] = \sum_{n=-\infty}^{\infty} \chi_{2}(n) z^{n} \qquad (2)$ $\chi[\chi_{(n)} \chi_{\sharp}^{*}(n)] = \frac{3}{n - \infty} \chi_{(n)} \chi_{\sharp}^{*}(n) \chi^{-n} \longrightarrow 3$ $\frac{3}{N=-\infty} x_1(n) x_2^{*}(n) x_2^{-1} = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2\pi i j} \int x_1(\mathbf{x}) \mathbf{y}^{n-1} d\mathbf{v} \right] x_2^{*}(n) x_2^{n}$ Interchanging the vorder of summation and integration. = 1 9 x(v) [2 2 12 (n) 2 n] v dv $= \frac{1}{2\pi i} \int_{\mathbb{R}^{2}} x_{1}(v) \left[\sum_{n=-\infty}^{\infty} x_{n}^{*}(n) \left(\frac{x}{v^{*}} \right)^{-n} \right] v' dv$

$$=\frac{1}{2\pi i} \oint \chi_{i}(v) \left[\sum_{n=-\infty}^{\infty} \chi_{2}^{*}(n) \left(\frac{z^{*}}{v^{*}} \right)^{-n} \right] \sqrt{1} dv$$

=
$$\frac{1}{2\pi i} \oint X_i(v) \times_2^* \left(\frac{z^*}{v^*}\right) v^i dv$$

Jaking Lt z-11 in above egn,

Lt
$$S_1 \approx x_1(n) \times_2^*(n) = Lt = \int_C x_1(v) \times_2^* \left(\frac{z}{v^*}\right)^{\frac{1}{2}} dv$$

$$\times 1 = \sum_{n=-\infty}^{\infty} x_1(n) \times_2^*(n) = \sum_{n=-\infty}^{\infty} x_1(v) \times_2^*(n) = \sum_{n=-\infty}^{\infty} x_1(v) \times_2^*(n) = \sum_{n=-\infty}^{\infty} x_1(n) = \sum_{n=-\infty}$$

$$\sum_{n=-\infty}^{\infty} \chi_1(n) \chi_2^*(n) = \frac{1}{2\pi i} \oint_C \chi_1(v) \chi_2^* \left(\frac{1}{v^*}\right) v^i dv$$

$$\sum_{n=-\infty}^{\infty} x_1(n) x_2^{*}(n) = \frac{1}{2\pi i} \oint_{C} x_1(x) x_2^{*} \left(\frac{1}{2\pi}\right) z^{i} dz$$

[Let v=Z]

(b) Time expansion: - []
$$z[x(n)] = x(x)$$
, then.

$$z[x_k(n)] = x(z^k).$$

Private:
$$z[x_k(n)] = \sum_{n=-\infty}^{\infty} x(\frac{n}{k}) z^n$$

where n is a multiple of k', asub $\frac{n}{k} = l$.

$$z[x_k(n)] = \sum_{l=-\infty}^{\infty} x(l) z^{l}$$

$$= \sum_{l=-\infty}^{\infty} x(l) (z^{k}).$$

$$z[x_k(n)] = x(z^{k}).$$

Prinof:
$$y(n) = \sum_{k=-\infty}^{\infty} \chi(k) h(n-k)$$

$$y(k) = \sum_{n=-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} n(k) h(n-k) \right] z^{-n}$$

Mul by x . x > \$ [\$ n(k) h(n-k)] z^n. x . z . x

$$= \underbrace{\sum_{k=-\infty}^{\infty} \chi(k) z^{-K}}_{k=-\infty} \underbrace{\sum_{n=-\infty}^{\infty} \lambda(n-k)}_{n=-\infty} z^{-(n-k)}$$

$$= \underbrace{\sum_{k=-\infty}^{\infty} \chi(k) z^{-K}}_{n=-\infty} \underbrace{\sum_{k=-\infty}^{\infty} \lambda(n-k)}_{n=-\infty} z^{-(n-k)}$$

$$= \underbrace{\sum_{k=-\infty}^{\infty} \chi(k) z^{-K}}_{n=-\infty} \underbrace{\sum_{k=-\infty}^{\infty} \lambda(n-k)}_{n=-\infty} z^{-(n-k)}$$

$$= \underbrace{\sum_{k=-\infty}^{\infty} \chi(k) z^{-K}}_{n=-\infty} \underbrace{\sum_{k=-\infty}^{\infty} \lambda(n-k)}_{n=-\infty} z^{-(n-k)}$$

Enitial Value Theorem: If
$$x(x) = z[x(n)]$$
, where $x(n) \rightarrow causal$, then.

$$\chi[0] = \underset{z \to \infty}{\text{Lt}} \chi(z)$$

$$\chi(x) = \sum_{n=0}^{\infty} \chi(n) x$$

ting
$$\chi \rightarrow \infty$$
 can both sides,

Let $\chi(\chi) = Let \int_{\chi \rightarrow \infty} \chi(x) + \chi(x) + \chi(x) = Let \int_{\chi \rightarrow \infty} \chi(x) + \chi(x) = Let \int_{\chi$

$$2 \rightarrow 0$$

$$2 \rightarrow 0$$

$$2 \rightarrow 0$$

$$1 \rightarrow 0$$

$$1 \rightarrow 0$$

(9) Final Value theorem: - 26 Z[x(n)] = x(z), where x(n) is a sausal signal and ROC of x(z) has no poles on (a) outside the went circle, $\chi(\infty) = \frac{1}{z} \left\{ \frac{\gamma - 1}{z} \right\} \times (z)(0R) + (1 - \overline{z}^{1})\chi(z)$ then. Proof: By definition of one-sided z-transform, $Z[x(n)] = \frac{S}{2} z(n) z^n$ RHS = $\frac{2}{3}$ [x(n-i) - x(n)] $\frac{1}{z}$ n LHS = Z[x(n-1) - x(n)] = $\frac{1}{z-21} \frac{2}{n-2} \left[x(n-1) - x(n) \right] \frac{1}{z}$ $= Z[\chi(n-1)] - Z[\chi(n)]$ $= z' \times (z) + x(-1) - x(z)$ $= \sum_{n=0}^{\infty} \left[\chi(n-1) - \chi(n) \right] (1)^{-n}$ $= x(-1) - (1-\overline{z}^1) \times (x)$ = Lt { x(-1) - (1-21) x(x)} = Lt [x(-1) - x(0)] + [x(0) - x(1)] + (Jaking limit x->1) ---+[x(p-2)-x(p-1)]+ LUS = X(-1) - Lt (1-21) X(x) [x(p-1)] - x(p)= Ht [2(-1) - x(p)] RHS= 2(-1) _ 2(00) -> 2 Equating (1) + (2) x(-1)- Lt (1-21) x(2) = x(-1)- x(0) $\chi(\infty) = Lt (1-\bar{z}^1)\chi(\chi)$ $\chi(\infty) = \chi(\infty)$

Picoblems: -

(P)
$$\chi(n) = \alpha(n-n_0)$$
.

 $\chi(n) = \alpha^{n+1} = \frac{1}{2}$

By applying them shifting (light shifted) property.

 $\chi(n) = \alpha^{n-1} = \frac{1}{2}$
 $\chi(n) = \frac{1}{2}$

(30) x (1 - 1) AL + (%) x

X

Practice: 1. $2(n) = (2/3)^n a(n) + (-1/2)^n u(n)$

$$\chi(n) = \{2, -\sqrt{0.3}, 4\}$$

$$\chi(z) = \{2, -\sqrt{0.3}, 4\}$$
Arrow denotes
$$\chi(z) = \{2, -\sqrt{0.3}, 4\}$$

Arrow denotes n=0 $= 2(0)x + 2(1)x + 2(2)x^{2} + 2(3)x^{3}$

$$= 2(6)2 + 2(1)2 + 2(2)2 + 2(4)24$$

$$= 24 - 2 + 0 + 323 + 424$$

$$= 2 - 2 + 323 + 424$$

$$= 2 - 2 + 323 + 424$$

ROC us 121>0

$$\chi(n) = \{1, -2, 3, -1, 2\}$$

 $X(z) = \sum_{n=-4}^{6} \chi(n) z^{n}$

$$= z^{4} - 2z^{3} + 3z^{2} - z + 2$$

ROC is |Z| < 00

X(2)= 5-2 N=0

$$= 1 + \frac{1}{2} + \frac{1}{2} + - - \frac{1}{2}$$

$$= \frac{1}{1 - \frac{1}{2}} \quad \text{...} \quad \text{Roc is } |\frac{1}{2}| < 1$$

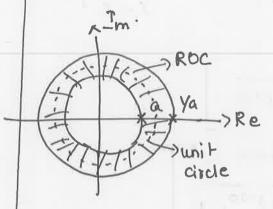
$$X(z) = U(-n)$$

$$X(z) = \sum_{n=-\infty}^{\infty} z^{n}$$

$$= \sum_{n=0}^{\infty} z^{n}$$

$$= 1 + z + z + - - = \frac{1}{1-z}$$

$$Roc: |z| < 1.$$


$$= az \left[\frac{1}{1-az} \right] \implies Roc: |az| < 1$$

$$|z| < \frac{1}{a}$$

$$|z| < \frac{1}{a}$$

Now add 1 +2

$$\chi(z) = \frac{z}{z-\alpha} - \frac{z}{z-\sqrt{\alpha}}$$

Since given as a 21.

$$\chi(2) = \sum_{n=0}^{\infty} e^{j\omega_0 n} = n$$

$$= \sum_{n=0}^{\infty} \left(\sum_{n=0}^{\infty} \frac{e^{j\omega_0 n}}{2} \right)^n$$

$$\chi(z) = \frac{z}{z - e^{j\omega_0}}$$

$$\frac{1}{2} \left[e^{j\omega_0 n} + e^{-j\omega_0 n} \right]$$

$$= \frac{1}{2} \left[e^{j\omega_0 n} + e^{-j\omega_0 n} \right]$$

$$\frac{1}{2} \left[e^{j\omega_0 n} \right] = \frac{1}{2} \left[e^{j\omega_0 n} \right] = \frac{1}{2} \left[e^{j\omega_0 n} \right]$$

$$\frac{1}{2} \left[e^{j\omega_0 n} \right] = \frac{1}{2} \left[e^{j\omega_0 n} \right] = \frac{1}{2} \left[e^{j\omega_0 n} \right]$$

$$\frac{1}{2} \left[e^{j\omega_0 n} \right] = \frac{1}{2} \left[e^{j\omega_0 n} \right] = \frac{1}{2} \left[e^{j\omega_0 n} \right]$$

$$x(x) = \frac{1}{2} \left[\frac{x}{x - e^{j\omega 0}} + \frac{x}{x - e^{j\omega 0}} \right]$$

$$= \frac{x}{2} \left[\frac{x - e^{-j\omega 0}}{x^2 - x e^{-j\omega 0}} + \frac{x - e^{j\omega 0}}{x^2 - x e^{j\omega 0}} - \frac{x - e^{j\omega 0}}{x - x e^{j\omega 0}} \right]$$

$$= \frac{x}{2} \left[\frac{2x - (e^{j\omega 0} + e^{-j\omega 0})}{x^2 - x (e^{j\omega 0} + e^{-j\omega 0})} \right]$$

$$= \frac{x}{2} \left[\frac{2x - (e^{j\omega 0} + e^{-j\omega 0})}{x^2 - x (e^{j\omega 0} + e^{-j\omega 0})} \right]$$

$$=\frac{\chi}{2}\left[\frac{2\chi-2\cos\omega_0}{\chi^2-2\chi\cos\omega_0+1}\right]$$

$$=\frac{\chi}{\chi}\left[\chi(\chi-\cos\omega_0)\right]$$

$$\chi(\chi) = \frac{1-\chi' \cos \omega_0}{1-2\chi' \cos \omega_0 + \chi'^2}$$

= \frac{\frac{1}{2} \left[\frac{2}{2} - 2z\losup_0 + 1\right]}{\frac{1}{2} \left[\frac{2}{2} - 2z\losup_0 + 1\right]} \tag{Taking 2 as common from denominated}

$$\chi(\chi) = \frac{\chi(\chi - \cos w_0)}{\chi^2 - \alpha \chi(\cos w_0 + 1)}$$

If the Question is xin) = an coswn u(n) -> Find Z[coswn u(n)] and verplace & by a Z in ut.

Z sin wn u(n)] ? Find 2(n) = sinwn u(n). $\chi(x) = \frac{8}{2} \chi(n) z^{-n}$ = Sy sinwn u(n) z $= \frac{3}{5} \left[\frac{e^{jun} - jwn}{2^{j}} - \frac{1}{2} \right]$ $= \frac{5}{100} \left[\frac{e^{jun} - jwn}{2^{j}} - \frac{1}{2} \right]$ $= \frac{3}{100} \left[\frac{e^{jun} - jwn}{2^{j}} - \frac{1}{2} \right]$ $=\frac{1}{2}\int_{0}^{\infty}\frac{dy}{y}=\frac{1}{2}\int_{0}^{\infty}\frac{$ $=\frac{1}{2}\left\{\begin{array}{c}\infty\\S\\n=0\end{array}\right.\left(\begin{array}{c}-j\omega\\z\end{array}\right)^{n}-\begin{array}{c}\infty\\S\\n=0\end{array}\left(\begin{array}{c}-j\omega\\z\end{array}\right)^{n}\right\}$ $=\frac{1}{aj} \begin{cases} \frac{1}{1-e^{j\omega-1}} & -\frac{1}{1-e^{-j\omega-1}} \\ \frac{1}{1-e^{-j\omega-1}} & \frac{1}{1-e^{-j\omega-1}} \end{cases}$ $=\frac{1}{2j}\left(\frac{z}{z-e^{j\omega}}-\frac{z}{z-e^{j\omega}}\right)$ $=\frac{1}{2}\int \frac{\chi^2-ze^{j\omega}}{z^2-ze^{j\omega}-ze^{j\omega}+e^{j\omega}-j\omega}$ [:ejwe-jw] = $z[e^{j\omega}-j\omega]/2j$ = $z\sin\omega$ $z^{2} - \chi(e^{j\omega} + e^{-j\omega}) + 1$ $z^{2} - 2\chi\cos\omega + 1$. X(Z) = Zsinw $\chi^2 - 27 \cos \omega + 1$

$$\left|\frac{e^{j\omega}}{z}\right| < 1$$

ROC :-

$$(1/2)^n u(-n)$$

By multiplication properly, suplace x by (1/2) Z

$$\chi(\chi) = \frac{1}{1-2\chi}$$

$$Z\left[u(n-6)\right] = \overline{z}^{b}\left(\frac{z}{z-1}\right) \longrightarrow \widehat{\mathbb{O}}$$

$$Z\left[u(n-10)\right] = \frac{-10}{2}\left(\frac{z}{z-1}\right) \rightarrow 0$$

$$\chi(z) = \left(z^{-b} - z^{-10}\right)\left[\frac{z}{z-1}\right]$$

$$X(z) = z^{-5} - 2$$
 $z - 1$

$$2[u(n)] = Z$$

$$Z-1$$

Applying differentiation property in Z,

$$Z[nu(n)] = +z\frac{d}{dx}X(z)$$

$$= -z\frac{d}{dx}\left(\frac{z}{z-1}\right)$$

$$= -z\left[\frac{(z-1)(1)-z(1)}{(z-1)^2}\right]$$

$$= -z\left[\frac{k-1}{(z-1)^2}\right] = \frac{z}{(z-1)^2}$$

$$Z\left[u(n-1)\right] = \overline{z}'\left(\frac{z}{z-1}\right) = \frac{1}{z-1}$$

Convolution in time domain = multiplication infogqdomain

$$u(n) * u(n-1) = \frac{z}{(z-1)^2}$$

RHS is nothing but Z[nu(n)].

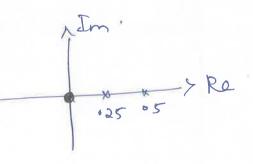
Findx(2),
$$\chi(n) = \left(\left(\frac{1}{2} \right)^n - \left(\frac{1}{4} \right)^n \right] u(n)$$
. Plot poles and zeros.

$$\chi_1(n) = (1/2)^n u(n) \leftrightarrow \frac{\chi}{Z - 1/2}$$

$$\chi_{2}(n) = (\gamma_{4})^{n} u(n) \leftarrow \frac{\chi}{z - \gamma_{4}}$$

$$\chi(n) = \chi_1(n) - \chi_2(n)$$

$$X(z) = X_1(z) - X_2(z)$$


$$= \frac{Z}{(Z-0.5)} - \frac{Z}{(Z-0.25)}$$

$$= \frac{\chi(\chi-0.25) - \chi(\chi-0.5)}{(\chi-0.5)(\chi-0.25)}$$

$$(z-0.5)(z-0.25)$$

No zeros

Poles at 10.5 & 0.25

Find unitial & schal values of stollowing sunctions.

(i)
$$\chi(z) = \frac{z}{4z^2 - 5z + 1}$$
 Roc: |z|7|

Inital value:

Final ratue: First check if poles one on (or) unside the unit circle. Only then Final value theorem can be valid.

Jo find poles of:
$$4x^2-5z+1$$

$$4[z^2-54z+14] = 4[z^2-z-4z+14]$$

$$= 4[z(z-1)-14(z-1)]$$

$$= 4[(z-1)(z-1/4)].$$

The poles are at z=1, and z=1/4

lie unide (or) on unit circle. La finalvalue therem can be applied.

Final value thrown: -

$$\chi(\infty) = \frac{1}{2-31} \frac{(2/1)}{4(2/1)(2-1/4)}$$

$$= \frac{1}{4(1-1/4)} = \frac{1}{3}$$

$$\chi(\infty) = \frac{1}{3}$$

Inverse z-transform.

26 X(Z) is given, the sequence x(n) is determined by following methods.

- (i) Partial quaction method (ii) Power Series Expansion (or) Long division
- (ii) Residue method of contour Integration method.

Partial fraction method

(i) Find unverse
$$\chi$$
-transform of
$$\chi(\chi) = \frac{1 - 1/3 z^{-1}}{(1 - z^{-1})(1 + 2z^{-1})}$$
 ROC: $|z| 72$

$$X(z) = \frac{z(z-1/3)}{(z-1)(z+2)}$$

$$\frac{X(z)}{z} = \frac{A_1}{(z-1)} + \frac{A_2}{(z+2)}$$

$$\frac{(z-1/3)}{(z-1)(z+2)} = \underbrace{A_1(z+2) + A_2(z-1)}_{(z-1)(z+2)}$$

$$(z-1/3) = A_1(z+2) + A_2(z-1) \longrightarrow \bigcirc$$

Sub
$$z=-2$$
, in eqn(1) $A_2=7/9$

$$\frac{X(z)}{z} = \frac{2}{9(z-1)} + \frac{4}{9(z+2)}$$

$$X(z) = \frac{1}{9} \left(\frac{2x}{(x-1)} + \frac{7z}{(x+2)} \right)$$

Falung

$$X(z) = \frac{1+z^{-1}}{1-z^{-1}+0.5z^{-2}}$$

Solution:
$$X(z) = 1 + z$$
 $\times z^2$ $1 - z + 0.5z^2$ $\times z^2$

$$= \frac{z^2}{z^2 + z} = \frac{z(z+1)}{z^2 - z + 0.5}$$

$$\frac{2}{z} = \frac{z+1}{(0.5+0.5j)} \left\{ z - (0.5j) \right\}$$

$$\begin{cases}
\frac{A}{2-(0.5+j0.5)} + \frac{B}{2-(0.5-j0.5)} \\
\frac{1+\sqrt{-1}}{2} = \frac{1+\sqrt{-1}}{2}
\end{cases}$$

Jo find poles of denominator
$$Z = -b \pm \sqrt{b^2 - 4ac}$$

$$= 1 \pm \sqrt{1 - 4(\frac{1}{2})}$$
denominator
$$\begin{vmatrix} a = 1 \\ b = -1 \end{vmatrix}$$

$$C = 0.5$$

$$\frac{Z+1}{\{Z-(0.5+0.5j)\}\{Z+(0.5-0.5j)\}} = A(Z-(0.5-j0.5)) + B(Z-(0.5+j0.5))$$

$$0.5+j0.5+1 = A \left\{ 0.5+j0.5 - 0.5+j0.5 \right\} + 0$$
 $1.5+j0.5 = jA$
 $A = 0.5+j0.5$

$$0.5-0.5j+1 = 0 + B[0.5-0.5j-0.5j]$$

 $1.5-0.5j = B[-j]$

$$\frac{X(\chi)}{\chi} = \frac{0.5 - \text{j}[.5]}{2 - (0.5 + \text{j}0.5)} + \frac{0.5 + 1.5 \text{j}}{2 - (0.5 - \text{j}0.5)}.$$

$$\vec{x}(x) = (0.5 - j1.5)$$
 \vec{z} $+ (0.5 + 1.5j)$ \vec{z} $- (0.5 - j0.5)$

$$\chi(n) = (0.5 - j0.5)(0.5 + j0.5) u(n) + (0.5 + 1.5 j)(0.5 - j0.5) u(n)$$

D By using long division method, find unvoise 2-transform.

$$\chi(\chi) = \frac{\chi + 0.2}{(\chi + 0.5)(\chi - 1)}$$

$$= \frac{2+0.2}{2^{2}+2+0.5} = \frac{2+0.2}{2^{2}-0.5}$$

$$x^{2} + 0.7z^{2} + 0.85x^{2}$$

$$x^{2} - 0.5x - 0.5$$

$$x^{2} + 0.5z - 0.5z^{2}$$

$$x^{3} + 0.5z^{2} + 0.35z^{2}$$

$$x^{4} + 0.5z^{2} + 0.35z^{2}$$

$$x^{5} + 0.35z^{2} + 0.35z^{2}$$

$$x^{6} + 0.85z^{2} + 0.425z^{2} - 0.425z^{3}$$

$$x^{6} + 0.775z^{2} + 0.425z^{3}$$

$$x^{6} + 0.775z^{2} + 0.425z^{3}$$

$$x^{7} + 0.775z^{2} + 0.425z^{3}$$

$$x^{7} + 0.775z^{2} + 0.85x^{3} + ----$$

$$x^{7} + 0.85x^{3} + 0.425z^{3}$$

$$x^{7} + 0.425$$

 $x(z) = \int_{-\infty}^{\infty} t(n)z'$ $n = -\infty$ The can find x(n) by, $x(n) = \int_{-\infty}^{\infty} Residues ob(x(x) z^{n-1})$

Of x(z)

Revidue =
$$\frac{1}{(m-1)!} \lim_{x \to a} \left[\frac{d^{m-1}}{dx^{m-1}} (x-a)^m \times (x) \times^{n-1} \right]$$
 $m = \text{ order of pole at } x = a$.

Problem 1) Find $x(n)$ using varidue method. If

 $x(x) = \frac{x}{(x-1)(x-2)}$

If has poles at $z = 1$ and $z = 2$.

Residue at $z = 1$, $m = 1$
 $x \to 2$
 $x \to 2$

-> Find unvouse 2-transform uning Pautial fraction multipol.

$$(x-3)(x-4)$$

$$\frac{77-23}{(2-3)(7-4)} = \frac{A}{2-3} + \frac{B}{2-4}$$

Put
$$z=4$$
, $28-23=B(1)$

[B=5]

Put
$$z=3$$
,
 $21-23 = A(-1)$
 $A=2$

$$X(\chi) = \frac{2}{\chi - 3} + \frac{5}{\chi - 4}$$

$$\chi(n) = \left[2(3)^{n-1} + 5(4)^{n-1}\right] u(n-1)$$

$$\int_{a}^{a} \frac{1}{z-a} = a^{n-1}u(n-1)$$

$$\chi(z) = z(z^2 + z - 30)$$

$$(\chi-2)(z-4)^3$$

$$\frac{X(x)}{z} = \frac{z^2 + z - 30}{(z-2)(z-4)}$$

$$\frac{\chi^{2}+\chi-30}{(\chi-2)(\chi-4)^{3}} = \frac{A_{1}}{\chi-2} + \frac{A_{2}}{(\chi-4)^{3}} + \frac{A_{3}}{(\chi-4)^{2}} + \frac{A_{4}}{(\chi-4)^{3}}$$

$$x^{2}+x-30 = A_{1}(x-4)^{3}+A_{2}(x-2)+A_{3}(x-4)(x-2)+A_{4}(x-2)$$

$$(x-4)^{2}$$

Sub
$$\chi=2$$
, =) $A_1=3$
Sub $\chi=4$, =) $A_2=-5$

$$z^{2}+z-30 = 3(z-4)^{3} - 5(z-2) + A_{3}(z-4)(z-2) + A_{4}(z-2)(z-4)^{2}$$

$$\chi^{2}_{+\chi-30} = 3(\chi^{3}_{-12}\chi^{2}_{+48}\chi^{-64}) - 5(\chi-2) + A_{3}(\chi^{2}_{-6}\chi^{+8})$$

 $+A_{4}(\chi^{3}_{-10}\chi^{2}_{+32}\chi^{-32})$

Compare coefficients of 2,

$$\frac{1}{x} \times (x) = \frac{3x}{x-2} - \frac{5x}{(x-4)^3} + \frac{4x}{(x-4)^2} - \frac{3x}{x-4}$$

$$\frac{x}{x-2} - \frac{z^{-1}}{(x-4)^3} + \frac{4x}{(x-4)^2} - \frac{3x}{x-4}$$

$$\frac{x}{x-2} - \frac{z^{-1}}{(x-4)^3} + \frac{4x}{(x-4)^2} - \frac{3x}{x-4}$$

$$\frac{x}{x-4} - \frac{z^{-1}}{x-4} + \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{z}{x-4} - \frac{z}{x-4} + \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} + \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{x-4}$$

$$\frac{x}{x-4} - \frac{x}{x-4} - \frac{x}{$$

From the above table, n-2 n-1 n-1

$$\chi(n) = \left\{3(2)^n - \frac{5}{32}n(n-1)(4)^n + \frac{1}{4}n(4)^n - 3(4)^n\right\} u(n).$$

(3)
$$= 5 z^3 - 29 z^2 + 8 z + 61$$

This vie the case with circational stystem function.

So, dividing the numerator polynomial by the denominator polynomial,

52+6

22-72+10 523-2922+82+61

$$X(\chi) = 1 + \frac{5\chi + 6}{\chi^2 - 7\chi + 10} = 1 + \frac{5\chi + 6}{(\chi - 5)(\chi - Q)}$$

$$\pi(n) = \frac{z'}{z'} \left[1 + \frac{5z+6}{(z-5)(z-2)} \right]$$

$$= \frac{z'}{z'} \left[1 + \frac{5z+6}{(z-5)(z-2)} \right]$$

$$\frac{Z}{Z}$$
, $\frac{5Z+6}{Z-2}$ = $\frac{A}{Z}$ + $\frac{B}{Z-5}$ + $\frac{C}{Z-2}$

$$\frac{\chi(\chi)}{\chi} = \frac{5\chi + 6}{\chi(z - 5\chi(z - 2))}$$

$$5\chi+6 = A(\chi-5)(\chi-2) + B\chi(\chi-2) + C\chi(\chi-5)$$

Sub $\chi=0$,

$$6 = A(-5)(-2)$$
 =), $A = 3/5$

Sub
$$z=5$$
, $5(5)+6-B(5)(3)$. => $18=31$

$$6ubz=2$$
, $5(2)+6=c(2)(-3)=2$

$$\frac{X(\chi)}{\chi} = \frac{315}{\chi} + 31/5 \cdot \frac{1}{z-5} - \frac{813}{z-2}$$

$$X(z) = 3/5 + 31/15 = -8/3 = \frac{z}{z-2}$$

$$\chi(n) = S(n) + \frac{3}{5}S(n) + \frac{31}{15}(5)^{n}u(n) - \frac{8}{3}(2)^{n}u(n)$$

Residue nultrod

Tind
$$x(n)$$
 using sundue method, if $x(x) = \frac{z^{-1}}{|-10\overline{z}| + 24\overline{x}^2}$, $4 < |z| < 6$

mul+div by
$$\frac{2}{x^2-10x+24} = \frac{x}{(x-4)(x-6)}$$
.

Residue =
$$\frac{1}{(m-1)!}$$
 $\lim_{\chi \to a} \left[\frac{d^{m-1}}{d\chi^{m-1}} (\chi - a)^m \chi(\chi) \chi^{n-1} \right].$

$$= \frac{4(4)^{n-1}}{4-6} = \frac{-1}{2}(4^n)$$

Residue at z=6, m=1

Residue =
$$\frac{1}{(m-1)!}$$
 $\lim_{x\to a} \left[\frac{d^{m-1}}{dz^{m-1}} (z-a)^m \times (z) \times z^{n-1} \right]$

=
$$\lim_{z\to 6} \left[(z-6) \frac{z}{(z-4)(z-6)} \right]$$

$$= \frac{6(6)^{n-1}}{(6-4)} = \frac{6(6)^{n-1}}{2}$$

$$= \frac{1}{2}(-6)^{n}u(-n-1)$$

Adding both the rusidues,
$$\chi(n) = \frac{-1}{2} (4)^n u(n) + \frac{1}{2} (-6)^n u(-n-1)$$

Residence = 1 lim
$$\begin{cases} d^{m-1}(z-a)^m \times (z) \times n^{-1} \end{cases}$$
 out $(m-1)! \times a \begin{cases} d^{m-1}(z-a)^m \times (z) \times n^{-1} \end{cases}$

=
$$\lim_{x \to 1/2} \left[\frac{d}{dx} \times x^{n-1} \right]$$

=
$$\lim_{z \to 1/2} \int \frac{d}{dz} (z^n)^2 = \lim_{z \to 1/2} nz^{n-1}$$

$$= n\left(\frac{1}{2}\right)^{n-1} \Rightarrow \left[2(n) = 2n\left(\frac{1}{2}\right)^n u(n)\right]$$

(3)
$$\chi(\chi) = 1+\chi^{-1}$$
, $|z| > 5$

mul & dir by 2,

$$= \frac{\chi(\chi+1)}{\chi^2+8\chi+15} = \frac{\chi(\chi+1)}{(\chi+3)(\chi+5)}$$

Residue at x=-3, m=1

Residue =
$$\frac{1}{(m-1)!}$$
 lim $\int \frac{d^{m-1}}{dx^{m-1}} (x-a)^m \times (x) \times n^{-1}$

=
$$\lim_{z\to -3} \left\{ (z+3) \cdot \frac{z(z+1)}{(z+3)(z+5)} z^{n-1} \right\}$$

$$= \frac{-3(-3+1)}{(-3+5)} (-3)^{n-1}$$

$$= -\frac{5(-2)(-3)^{n}}{5(-2)} = -(-3)^{n} u(n).$$

Residue at z=-5,

=
$$\frac{1}{(m-1)!}$$
 $\lim_{z\to 9} \left\{ \frac{d^{m-1}}{dz^{m-1}} (z-9)^m x(z) \times n^{-1} \right\}$

$$=\lim_{z\to -5} \left\{ (z+8) \cdot \frac{z(z+1)}{(z+3)(z+5)} \right\}$$

 $= (-5)(-4)(-5)^{n-1}$ = (-2).= 2(-5)n u(n) $\chi(n) = \{-(-3)^n + 2(-5)^n\}_{u(n)}$ Rudden at re- 3, m. 1

Difference Equation - Solution By X-transform.

Détermine the impulse ousponse and forequency ousponse of given linear constant coefficient différence upuation.

$$y(n) - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = x(n) - \frac{1}{2}x(n-1)$$

Making 2-transform on both vides,

$$y(x) - \frac{5}{6}y(x)\bar{z} + \frac{1}{6}y(z)\bar{z}^2 = x(z) - \frac{1}{2}\bar{z}^2 \times (z)$$

$$H(x) = \frac{Y(x)}{x(x)} = \frac{1 - \frac{1}{2}x^{\frac{1}{2}}}{1 - \frac{5}{5}x^{\frac{1}{2}} + \frac{1}{5}z^{\frac{2}{2}}} \times \frac{z^{2}}{z^{2}}$$

system trunction

$$= \frac{z^2 - 1/2 z}{z^2 - 5/6 z + 1/6} = \frac{z(z - 1/2)}{(z - 1/2)(z - 1/3)}$$

$$= \frac{z}{z - 1/3} \xrightarrow{IZT} (\frac{1}{3})^n u(n).$$

$$\int dh(n) = \left(\frac{1}{3}\right)^n u(n)$$

② Using x-transform, determine ourponse y (n) for
$$n7/0$$
 uf, $y(n) = \frac{1}{2}y(n-1) + x(n)$ (May 2013). where $x(n) = \left(\frac{1}{3}\right)^n u(n) + y(-1) = 1$.

$$y(n) = \frac{1}{2}y(n-1) + (\frac{1}{3})^n u(n).$$

$$y(x) = \frac{1}{2} \left\{ \overline{z}^{1} y(x) + y(-1) + \overline{z} \times (z) \right\}.$$

$$y(z) = \frac{1}{2} \left[z' y(z) + 1 \right] + \frac{z}{z - 1/3}$$

$$Y(z)[1-0.5z'] = \frac{z}{z-1/3} + 0.5$$

$$Y(z) \left[\frac{z-0.5}{z} \right] = \left(\frac{z}{z-1/3} \right) \left(\frac{z-0.5}{z-0.5} \right) + 0.5 \left(\frac{z}{z-0.5} \right)$$

$$Y(z) = \frac{z^2}{(z-1/3)(z-0.5)} + \frac{0.5z}{z-0.5}$$

$$\frac{Y(\chi)}{\chi} = \frac{\chi}{(\chi - 1/3)(\chi - 0.5)} + \frac{0.5}{(\chi - 0.5)}.$$

$$\frac{\chi}{(z-1/3)(z-0.5)} = \frac{A}{z-1/3} + \frac{B}{z-0.5}$$

$$Z = A(z-0.5) + B(z-1/3)$$

Mary Cold

$$\frac{1}{2} \times \frac{8}{5} = B = 3$$

Put
$$z=1/3$$
, $\frac{1}{3} = A[\frac{1}{3}, \frac{1}{2}] + 0$

$$\frac{1}{3} = A \left[\frac{2-3}{6} \right]$$

$$\frac{1}{8} \times (-6) = A =) A = -2$$

$$\frac{y(z)}{z} = \frac{-2}{z - \sqrt{3}} + \frac{3}{z - 0.5} + \frac{0.5}{z - 0.5}$$

$$y(n) = \left(-2\left(\frac{1}{3}\right)^{n} + 3\left(0.5\right)^{n} + 0.5\left(0.5\right)^{n}\right) u(n)$$

B determine the outponse of the system, whose dinear constant coeff difference egn is given by, y(n) - 0.1y(n-1) - 0.12y(n-2) = x(n) - 0.4x(n-1) if y(-1) = y(-2) = 2 and $x(n) = (0.4)^n u(n)$

Erlution: - If unitial conditions are given, une them in solution, otherwise take them as of Yaking 2-transform on either sides, Y(x)-0.1[Y(x)x+y(-1)]-0.12[Y(x)x+y(-1)x+y(-2)]

= X(X) - 0.4 [X(X) \(\frac{7}{2} + \frac{7}{2}(-1)]

Take 21-17=0, since ils not given.

Y(x)-001[Y(x)x+2]-0012[Y(x)x2+2x+2]=x(x)-004x

Y(x) -0.12 Y(x) -0.2 -0.12 Y(x) 2 -0.24 = x(x) [1-0.42]

Given x(n) = (0.4) u(n) 2. x(x)= x = 1-0.4x

Sub X(z) in above egn,

Y(x)[1-0.12 -0.12 2] +0.242 -0.44 = 1 (1-0.421)

Y(x)[1-0.12]-0.122] = 1+0.242+0.44

Y(x) = 1.44+0.24z XZ 1-0.12 -0.122 22

$$y(x) = \frac{1.44x^{2} + 0.24x}{x^{2} - 0.1x - 0.12}$$

$$\frac{y(x)}{x} = \frac{0.24 + 1.44x}{(x-0.4)(x+0.3)}$$

Put 220.3

$$Y(x) = \frac{1.172}{2-0.4} + \frac{0.272}{2+0.3}$$

4) Evaluate the frequency ourporse of the system discribed by system function

$$H(x) = 1$$
 $1-0.5x^{-1} = \frac{7}{2-0.5}$

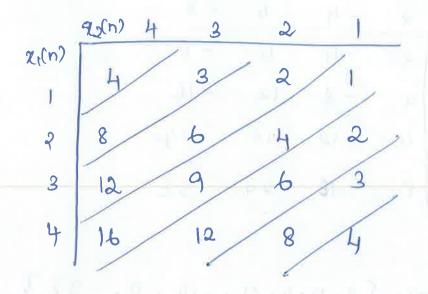
Young suspense, Sub $x=e^{j\omega}$

$$H(e^{jw}) = \frac{1}{1 - 0.5\overline{e}^{jw}} = \frac{1}{1 - 0.5\overline{e}^{jw}} = \frac{e^{jw}}{e^{jw}}$$

$$H(e^{jw}) = cosw+jsinw$$

$$cosw+jsinw-0.5$$

CONVOLUTION


Let $\chi_1(n) + \chi_2(n)$ were two finite duration exquence. Then convolution of 2 sequence is given by $\chi_3(n)$.

$$\int d_3(n) = n_1(n) * x_2(n)$$

types > Linear Convolution > Circular Convolution .

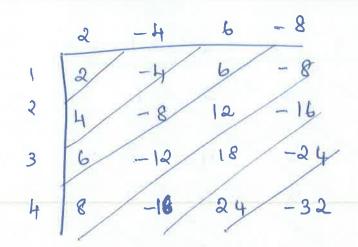
Linear Convolution

Tength of old sequence =
$$1 + m - 1$$

Where $1 \rightarrow \text{dength}$ of first sequence - $x_1(n)$
 $m \rightarrow v$ second $v \rightarrow x_2(n)$

y (n)= {4,11,20,30,20,11,43,

In this problem, in x(n) + x2(n), une arrow is given so dake first value as $\chi_1(0)$ (or) $\chi_2(0)$.

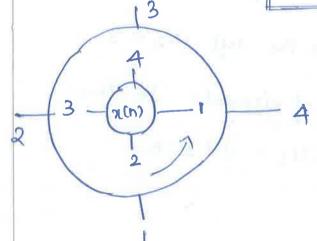

② Find linear Convolution of $\chi(n) = \{1, 2, 3, 4\}$ & $\chi(n) = \{2, -4, 6, -8\}$

tength of ofp sequence = 4+4-1 = 4.

Whidth of the sequence to the left, N1 = 2

Whidth of and sequence h(n) to the deft, N2 = 3

Shofp sequence, the uno of elements to the left is given by, N1+N2 = 2+3=5.



Circular Convolution: > Circle method
> Matrix method

O Find Circular convolution of sequence

$$x(n) = \{1, 2, 3, 4\}$$
 $h(n) = \{4, 3, 2, 1\}$

When length of the sequences are unequal, add zeros to make it equal Ly zero Padding.

$$y(0) = (1x4) + (2x1) + (3x2) + (4x3)$$

$$y(2) = (3x2) + (4x1) + (4x1) + (2x1)$$

$$y(2) = 24$$

$$y(3) = (4x4) + (3x3) + (2x2) + (1x1)$$

$$y(3) = 30$$

$$x(n) = \begin{cases} 1 & 4 & 3 & 2 \\ 2 & 1 & 4 & 3 \\ 3 & 2 & 1 & 4 \\ 3 & 3 & 2 & 1 & 4 \\ 4 & 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 &$$

$$4(n) = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$

$$y(n) = \chi(n) \odot h(n).$$

$$= \begin{bmatrix} r & 4 & 3 & 2 \\ 2 & 1 & 4 & 3 \\ 3 & 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 24 \\ 22 \\ 24 \\ 30 \end{bmatrix}$$

Relation between Z-transform and

Disvule Time Foweier Gransform

Disvule Time Foweier Gransform

DIFF) us

given by, $X(e^{jW}) = \sum_{n=-\infty}^{\infty} x(n) e^{jwn} \longrightarrow (1)$

$$Z$$
-transform of x(n) is given by, $X(z) = \sum_{n=-\infty}^{\infty} x(n) \overline{z}^n$ $\longrightarrow (2)$

If ROC of X(x) contains unit circle, Then X(ejw) equals X(z) evaluated on unit evicle. That is $X(ejw)^* = X(z) |_{Z=ejw} - X(z)$

Using egn 3, Fourier Transform us found by substituting zzejw provided 2(11) is summable.

Abscrete Jime Houser Transform (DTFT)

Note: It you aplace x by e ju un x-transform, you get DTFT.

Properties of DTFT in

1. Linearily: If x, (n) DIFT X, (e) w).

then Axi(n)+ Bx2(n) DTFT A X,(e)w)+BX2(ejw)

Parof: X, (6.) = 5, 2, (n) & jwn.

 $X_2(e^{jw}) = \frac{8}{5}$, $x_2(n) e^{-jwn}$

{AIxIn + Bx2(n)} DTFT & AIXIN = jwn & Bx2(n)e in n=-0

Proof:
$$\gamma(n) = \sum_{n=-\infty}^{\infty} \chi(n) e^{-j\omega n}$$

$$\chi(n-n_0) = \sum_{n=-\infty}^{\infty} \chi(n-n_0) e^{-j\omega n}.$$

$$\chi(n-n_0) \stackrel{\text{DTFT}}{\longleftrightarrow} \stackrel{\text{OD}}{\underset{m=-\infty}{\longrightarrow}} \chi(m) \stackrel{\text{j}}{\underset{e}{\longleftrightarrow}} (m+n_0)$$

$$= \underbrace{\sum_{n=-\infty}^{\infty} \chi(n)}_{n=-\infty} e^{jn(\omega-\omega_0)}.$$

$$= \underbrace{\sum_{n=-\infty}^{\infty} \chi(n)}_{n=-\infty} e^{jn(\omega-\omega_0)}.$$

Privof:
$$\chi(-n) \stackrel{\text{Diff}}{=} \sum_{n=-\infty}^{\infty} \chi(-n) \stackrel{\text{-jwn}}{=}$$

$$\frac{1(-m)}{m=-\infty} = \frac{1}{2(-w)m}$$

$$= \frac{1}{2(-w)m}$$

$$= \frac{1}{2(-w)m}$$

$$\chi(-n) \stackrel{\text{DTFT}}{\longleftrightarrow} \chi(e^{-jw})$$

for vary untiger k.

Scaling: If
$$x(n) \in DTFT$$
, $x(e^{j\omega})$,

then $x(an) \in DTFT$, $x(e^{j\omega})$
 $x(an) \in DTFT$, $x(e^{j\omega}) \in JP\omega$
 $x(an) \in DTFT$, $x(e^{j\omega}) \in JP\omega$

And $x(e^{j\omega}) \in JP\omega$

Differentiating on $x(e^{j\omega}) \in JP\omega$
 $x(e$

8 Confugation: - 2
$$\chi(n) \geq DTFT$$
, $\chi(ejw)$, then

 $\chi^*(n) \geq DTFT$, $\chi^*(e^{-jw})$
 $\chi(ejw) = \chi(n)e^{-jwn}$
 $\chi^*(ejw) = \chi^*(n)e^{-jwn}$
 $\chi^*(ejw) = \chi^*(n)e^{-j(-w)n}$
 $\chi^*(n) = \chi^*(n)e^{-j(-w)n}$

$$n = -\infty$$
 $2 * (n) e^{-j} (-w) n$
 $n = -\infty$

$$\sqrt{\chi^*(n)} = \chi^*(e^{-jw})$$

then 2,107 * 22(n) (DIFT, X,(ejw) X2(ejw)

When 2 signals are convolved, ycm = 21(n) * x2(n) y(ejw)= 2, x(m). 2, x(n-m.) ejwn

$$Y(e^{j\omega}) = \underset{m=-\infty}{\overset{\circ}{\sum}} \chi_{1}(m) \overset{\circ}{\underset{p=-\infty}{\overset{\circ}{\sum}}} \chi_{2}(p) \cdot e^{-j\omega(p+m)}$$

$$= \underset{m=-\infty}{\overset{\circ}{\sum}} \chi_{1}(m) e^{-j\omega m} \overset{\circ}{\underset{p=-\infty}{\overset{\circ}{\sum}}} \chi_{2}(p) e^{-j\omega p}$$

$$= \chi_{1}(n) \times \chi_{2}(n) = \chi_{1}(e^{j\omega}) \chi_{2}(e^{j\omega})$$

Parsevel's theorem:
$$\frac{2}{2\pi} |x(n)|^2 = \frac{1}{2\pi} \int_{2\pi}^{2\pi} |x(e^{j\omega})|^2 d\omega$$
.

The above relation states that average power in a DT puriodic signal is equal to the squared magnitude of K(cjw)

$$\frac{\partial x}{\partial x} \left[x(n) \right]^{2} = \frac{\partial x}{\partial x} x^{*}(n) x(n)$$

$$= \frac{\partial x}{\partial x} x^{*}(n) \left[\frac{1}{\partial x} \int_{x} x(e^{jw}) e^{jw} dw \right]$$

$$= \frac{\partial x}{\partial x} x^{*}(n) \left[\frac{1}{\partial x} \int_{x} x(e^{jw}) e^{jw} dw \right]$$

=
$$\frac{1}{2\pi} \int_{2\pi} \chi(e^{j\omega}) \left[\sum_{n=-\infty}^{\infty} \chi^*(n) e^{j\omega n} d\omega \right]$$

$$\int_{n=-\infty}^{\infty} |\chi(n)|^2 = \frac{1}{2\pi} \int_{2\pi} |\chi(e^{jw})|^2 dw$$

Modulation Property:-

1
$$\chi(n) \simeq DTFT$$
, $\chi(ej^{i}w)$, thun

 $\chi(n) \simeq \omega_0 n \Leftrightarrow DTFT$, $\chi(ej^{i}w+\omega_0)] + \chi[e^{j(\omega-\omega_0)}]$

Proof:-

 $\chi(n) \simeq \omega_0 n \Leftrightarrow DTFT$, $\chi(n) \simeq \omega_0 n \Leftrightarrow 0$
 $\chi(n) \simeq \omega_0 n$

Problem: (1) Find DTFT of 2(n) = (1) u(n) & plot
the magnitude & phase spectrum.

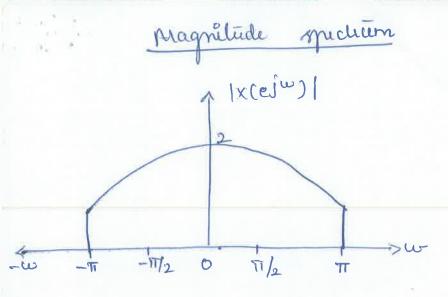
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_{n}e^{-j\omega n}$$

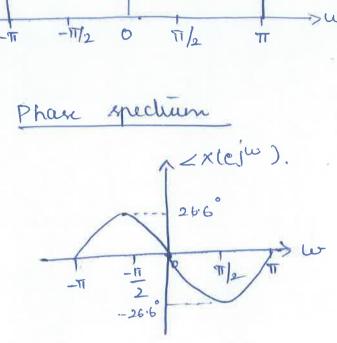
$$= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^{n} u_{n}e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \left(y_{2}e^{-j\omega}\right)^{n}$$

$$= \frac{1}{1-\frac{1}{2}e^{-j\omega}}$$

$$= \frac{1}{1-\frac{1}{2}e^{-j\omega}}$$


$$= \frac{1}{1-\frac{1}{2}e^{-j\omega}}$$


$$= \frac{1}{1-\frac{1}{2}e^{-j\omega}}$$

Mangitude =>
$$\sqrt{(1-\cos w)^2 + \sin^2 w} = |\times(e^{jw})|$$

phase =>
$$-\frac{fan'}{sinw/2}$$
 = $2 \times (e^{j\omega})$.

ω	-11	-11/2	0	11/2	T
(x(e)w)	0.667	0 '894	2	0.894	0.667
Lx(ejw)	O	26.6°	0	-26.P	0

Relation Between Causality Stability & ROC

Let h(n) be impulse ousponse. a fi(z) le system function of an LII 814.

-> For a causal øystem,

(ie) Deque of numerator polynomial schould be less than denominator polynomial.

(b) ROC should be outside the outermost pole.

-> For a stable system,

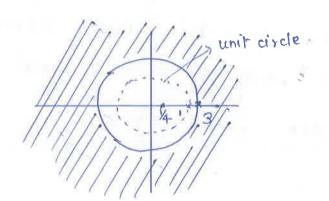
ROC ahould include the unit circle.

(ie) |X| = 1.

and stable, if and only if all poles of H(x) lie inside the unit circle.

$$H(x) = \left(2 - \frac{13}{4} \bar{z}^{1}\right)$$

$$\left(1 - \frac{1}{4} \bar{z}^{1}\right) \left(1 - 3\bar{z}^{1}\right)$$


Deturnine causality + stability of the sly

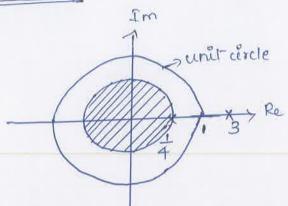
- (a) ROC: |x| >3
- (b) ROC: 121 21/4
- (c) ROC: 1 < 12/28.

Solution :

$$H(x) = \frac{z(2x-13/4)}{(z-13/4)(z-3)}$$

(a) ROC: 12173.

- POC is outside


 ROC is outside

 outomost pole. So

 system is causal.
 - -> ROC doesn't indude unit circle. do system is unstable.

Causal + Unstable sly

(b) ROC: 12121/4

-> H(z) is rational but ROC is inside the unnumber pole. So system is non-causal.

-> ROC doesn't include unit circle. Lo unstable

sly is unstable + non-causal

(c) $ROC : \frac{1}{4} < |z| < 3$ Im

unit circle

Re

-> H(z) is reational. but ROC is left of outcomest pole & to right of innumest pole.

So sly is non-causal.

-> ROC undudes unit circle. So Sly is stable.

I stable 2 Non-caused sly

leanurem coleurous is girl

Discrete Fourier Transform:

The Discrete Pourier Transform (DFT) is a powerful computation tool which allows us to evaluate the Fourier Transform X(esw). on a digital computer or specially designed hardware. Unlike DTFT, which is defined for finite and infinite sequences, DFT is defined only for sequences of tinite length. Since X(esw) is Continuous and periodic, DFT is obtained by sampling one period of the Fourier Transform at a finite number of frequency Points. DFT plays an important role in the implementation of many signal processing algorithms. Apart from determining the frequency Content of a signal, DFT is used to perform linear filtering operations in the frequency domain.

Definition of DFT:

It is a finite duration discrete frequency

Sequence which is obtained by sampling one period

sequence which is obtained by sampling one period

of fourier transform. sampling is done at N' equally

of fourier transform. sampling is done at N' equally

spaced points, over the period extending from

spaced points, over the period extending from w = 0 to $w = 2\pi$.

Mathematical Equations:

The DFT of discrete sequence x(n) is denoted by X(x). It is given by,

-j27711/N

(k). It us given by, $-j2\pink/N$ $X(k) = <math>\frac{N-1}{2}$ x(n)e , k=0,1,...N-1.

Since this summation is taken for 'N' points; it is called as 'N' point DFT.

we can obtain discrete sequence x(n) from its DFT. It is given by,

 $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k)e^{\frac{2\pi nk}{N}}, n = 0,1,...N-1$

This is called as 'N' point IDFT.

Now we will define the new term 'w' as,

 $W_{N} = e^{-j2\pi/N}$

This is called twiddle factor. Twiddle factor makes the computation of DFT a bit easy and fast.

Using twiddle factor we can write equations of DFT and IDFT as follows:

$$X(k) = \sum_{n=0}^{N-1} secn) W_{N}^{Kn}$$
, $K = 0, 1, ..., N-1$

and $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k) \cdot w^{-kn}, n = 0, 1...N-1$

Find the DFT of a sequence
$$x(n) = \begin{cases} 1,1,0,0 \end{cases}$$
 and $\frac{1}{1}$ and $\frac{1}{1}$ being the of the sequence $\frac{1}{1}$ and $\frac{1}{1}$ we have $x(k) = \frac{N-1}{2} \times (n) e^{-\frac{1}{2}\pi n(k)/n}$. $\frac{1}{2} \times (n) e^{-\frac{1}{2}\pi n(k)/n}$. $\frac{1}{2} \times (n) e^{0} = \frac{3}{2} \times (n) e^{0} =$

$$X(3) = \sum_{n=0}^{1} x(n) e^{-j\alpha nn(3)/4} = \sum_{n=0}^{3} x(n) e^{-j\beta nn} \frac{1}{2}$$

$$= x(0) + x(1) \left[\cos \frac{3\pi}{4} - \frac{3}{5} \sin \frac{3\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3}{5} \sin \frac{3\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3}{5} \sin \frac{\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3}{5} \sin \frac{\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3}{5} \sin \frac{\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3}{5} \sin \frac{\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3}{5} \sin \frac{\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3}{5} \sin \frac{\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} \right] + \frac{1}{2} \left[\cos \frac{9\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4$$

$$\chi_{p}(n)$$
fig(1) b. Periodic extension of the Sequence for N=4.

From fig(b) we find
$$\chi(0) = 1, \chi(1) = 1, \chi(2) = 1, \chi(3) = 0$$

For N=4

$$\chi(k) = \sum_{n=0}^{N-1} \chi(n) e^{-\frac{1}{2}\pi n k/k}, \quad k = 0, 1 \dots N-1$$

$$\chi(k) = \sum_{n=0}^{3} \chi(n) e^{-\frac{1}{2}\pi n k/k}, \quad k = 0, 1, 2, 3$$
for k=0,
$$\chi(0) = \sum_{n=0}^{3} \chi(n) e^{-\frac{1}{2}\pi n k/k}, \quad k = 0, 1, 2, 3$$

$$\chi(0) = \sum_{n=0}^{3} \chi(n) e^{-\frac{1}{2}\pi n k/k}, \quad k = 0, 1, 2, 3$$
for k=0,
$$\chi(0) = \sum_{n=0}^{3} \chi(n) e^{-\frac{1}{2}\pi n k/k}, \quad k = 0, 1, 2, 3$$

$$\chi(0) = \sum_{n=0}^{3} \chi(n) e^{-\frac{1}{2}\pi n k/k}, \quad k = 0, 1, 2, 3$$

$$\chi(0) = \sum_{n=0}^{3} \chi(n) = \sum_{n=0}^{3} \chi($$

For
$$k=3$$
,

 $X(2) = \sum_{n=0}^{3} x(n)e^{-j\pi}$
 $= x(0) + x(1)e^{-j\pi} + x(2)e^{-j2\pi}$
 $= 1 + \cos \pi - j\sin \pi + \cos 2\pi - j\sin \pi + 0$
 $= 1 - 1 + 1 = 1$
 $= 1 + \cos \pi - j\sin \pi + \cos 2\pi - j\sin \pi + 0$
 $= 1 - 1 + 1 = 1$
 $= 1 + \cos \pi - j\sin \pi + \cos 2\pi - j\sin \pi + 0$
 $= 1 + \cos \pi - j\sin \pi - j\sin \pi + \cos \pi - j\sin \pi - j\sin \pi - \cos \pi - j\sin \pi - j\cos \pi - j\sin \pi - j\sin \pi - j\cos \pi - j\sin \pi - j\cos \pi$

FOR N=8 the periodic extension of xcn) shown in fig(3) can be obtained by adding flue teros (: N-L Teros). x(0) = 1, x(1) = 1, x(2) = 1, and x(n) = 0 for $3 \le n \le 7$. sep (n) -8-7-6-5-4-3-2-1012345678910 n figl3) periodic extension of the sequence xin) for N=8. We have $X(k) = \sum_{i=1}^{N-1} x(n) e^{-j2\pi n k/N}$, k = 0, 1, ..., N-1FOR N = 8. $X(k) = \frac{8-1}{2\pi n k/8}$ k = 0, 1 - ... 8-1 $X(K) = \sum_{i=1}^{N} x(i) e^{-i \pi n K/4}, \quad K=0,1...7$ FOR 16 = 0 $X(0) = \frac{7}{2} \times (n)e^{0} = \frac{7}{2} \times (n) = \frac{7}{2} \times (n) + 2(n) + 2(n$ + x(6) + x(7) = 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 = 3 $\left[X(0) = 3 \right]$ Therefore |x(0)| = 3, |x(0)| = 0FOR K=1, $\chi(1) = \frac{7}{5} \chi(0) e^{-\frac{1}{5}\pi n/4} = \chi(0) + \chi(1) e^{-\frac{1}{5}\pi/4} + \chi(12) e^{-\frac{1}{5}\pi/2} + 0 + 0 + 0 + 0$ = 1+0.707-10.707+0-9 =1,707-51,707

Therefore,
$$|x(1)| = 2.414$$
, $|x(1)| = -\pi/4$.

FOR $x = 2$.

 $|x(2)| = \frac{7}{8} x(n) e^{-j\pi n/2}$
 $|x(3)| = \frac{7}{8} x(n) e^{-j\pi n/2}$
 $|x(3)| = \frac{7}{8} x(n) e^{-j\pi n/2} + x(3) = -j\pi n$
 $|x(3)| = \frac{7}{8} x(n) e^{-j3\pi n/4}$
 $|x(3)| = \frac{7}{8} x(n) e^{-j\pi n} = x(n) + x(n) e^{-j\pi n/4}$

FOR $x = 4$
 $|x(4)| = \frac{7}{8} x(n) e^{-j\pi n/4}$
 $|x(4)| = \frac{7}{8} x(n) e^{-j\pi n/4}$

$$= 1 + \cos \frac{5\pi}{4} - i \sin \frac{5\pi}{4} + \cos \frac{5\pi}{4} - i \sin \frac{5\pi}{2}$$

$$= 1 - 0.707 + i 0.707 - i = 0.293 - i 0.293$$

$$| X(5) = 0.293 - i 0.293$$

$$| X(5) = 0.414, | X(5) = -7/4.$$

$$= 1 + \cos \frac{3\pi}{2} - i \sin \frac{3\pi}{2} + \cos \frac{3\pi}{2} - i \sin \frac{3\pi}{2}$$

$$= 1 + \cos \frac{3\pi}{2} - i \sin \frac{3\pi}{2} + \cos \frac{3\pi}{2} - i \sin \frac{3\pi}{2}$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - 1 = i$$

$$| X(6) = i$$

$$= 1 + i - i - i$$

$$| X(6) = i$$

$$= 1 + i - i - i$$

$$| X(6) = i - i - i - i$$

$$= 1 + i - i - i - i - i$$

$$| X(6) = i - i - i - i - i$$

$$= 1 + i - i - i - i - i - i$$

$$| X(7) = 1 - 707 + i - 707 + i$$

$$| X(7) = 1 - 707 + i - 707 + i$$

$$| X(7) = 1 - 707 + i - 707 + i$$

$$| X(7) = 1 - 707 + i - 707 + i$$

$$| X(7) = 1 - 707 + i - 707 + i$$

$$| X(8) = i - 707 + i - 707 + i$$

$$| X(1) = 2 - 414 + 1$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 2 - 414 + 1$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(2) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(2) = 707 + i - 707 + i$$

$$| X(3) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(2) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(2) = 707 + i - 707 + i$$

$$| X(3) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(2) = 707 + i - 707 + i$$

$$| X(1) = 707 + i - 707 + i$$

$$| X(2) = 707 + i$$

$$| X($$

Comments: Based on the fig (2) and fig (4) we can observe the following.

From fig (2) we can observe that, with N=4, it is difficult to extrapolate the entire frequency spectrum. For low values of N, the spacing between successive samples is high, which results in poor resolution. On the other hand when N=8, from fig (4) we can observe that it is possible to extrapolate the frequency of spectrum. That is ten padding gives a high density spectrum and provides a better displayed version tor plotting.

3. Determine 8-point DFT of the sequence

$$x(n) = \{1, 1, 1, 1, 1, 1, 0, 0\}$$

FOR N = 8

$$X(k) = \frac{7}{52\pi n k}$$
 $N(k) = \frac{7}{52\pi n k}$
 $N(k) = \frac{7}{52\pi n k}$

FOR K = 0

$$X(0) = \sum_{n=0}^{7} x(n) = 2(co) + 2(i) + 2(2) + 2(3) + 2(4)$$

$$+ 2(5) + 2(6) + 2(7)$$

FOR K=1

$$X(i) = \sum_{n=0}^{7} x(n) e^{-\frac{1}{2}\pi n} / \frac{1}{8}$$

$$= \chi(0) + \chi(1) e^{j\pi/4} + \chi(2) e^{-j\pi/2} + \chi(3) e^{-j3\pi/4} + \chi(4) e^{j\pi} + \chi(5) e^{-j5\pi/4} + \chi(6) e^{-j3\pi/2} + \chi(7) e^{j7\pi/2}$$

FOR
$$K=5$$

$$X(5) = \sum_{n=0}^{\infty} x(n) e^{\frac{1}{2}5\pi n/4} + x(3) e^{\frac{1}{2}5\pi /2} + x(3) e^{\frac{1}{2}5\pi /4} + x(1) e^{\frac{1}{2}5\pi /2} + x(1) e^{\frac{1}{2}5\pi /2}$$

Find IDFT of sequence
$$Y(k) = \begin{cases} 1,0,11,0 \end{cases}$$
, $S_{0}^{(1)} = \frac{1}{N} = \frac{1}{$

5. Find IDFT of the sequence
$$X(k) = \{5, 0, 1-j, 0, 1, 0, 3, 1, 0, 3, 1+j', 0, 3\}$$

$$X(m) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi nk/N}, \qquad n = 0, 1, \dots, N-1$$
FOX N = 8
$$X(n) = \frac{1}{8} \sum_{k=0}^{N-1} X(k) e^{j\pi kn/N}, \qquad n = 0, 1, \dots, 7$$
FOX n = 0
$$X(n) = \frac{1}{8} \sum_{k=0}^{N-1} X(k) = \frac{1}{8} \left[x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) \right]$$

$$= 5 + 0 + 1 - 3 + 0 + 1 + 0 + 1 + 3 + 0$$

$$X(0) = 1$$
FOX n = 1
$$X(1) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(2) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(3) = 0.25$$
FOX n = 4
$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$X(4) = \frac{1}{8} \left[\sum_{k=0}^{N-1} X(k) e^{j\pi k/N} \right]$$

$$\frac{1}{2} \sum_{k=0}^{n=5} x(k) e^{\frac{1}{5} \pi k / \frac{1}{6}}$$

$$\frac{1}{8} \sum_{k=0}^{7} x(k) e^{\frac{1}{3} \pi k / \frac{1}{2}}$$

$$\frac{1}{8}$$

$$X(b) = \frac{3}{2} \times (n)e^{-\frac{1}{2}\pi n(b)}/4 = \frac{3}{2\pi n(b)}$$

$$= \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + 0 = 3/3 = 1$$

$$X(a) = \frac{3}{2} \times (n)e^{-\frac{1}{2}\pi n(b)}/4 = \frac{3}{2\pi n(b)} \times (n)e^{-\frac{1}{2}\pi n(b)}/4 = \frac{3}{2$$

For
$$V = 3$$

$$X(3) = \frac{3}{2} \times (n) e^{\frac{3}{2} \times nn(3)} + \frac{3}{2} \times (n) e^{-\frac{3}{2} \times nn(3)} + \frac{3}{2} \times (n) e^{-\frac{3}{2} \times nn(3)} = \frac{1}{3} \cdot \frac{1}{3} \cdot$$

$$X(K) = \sum_{n=0}^{N-1} x(n) e^{-\frac{j2\pi nK}{N}}, \quad k=0,1...N-1$$

$$N=0$$
FOX N=4
$$X(k) = \sum_{n=0}^{3} x(n) e^{-\frac{j2\pi nK}{N}}, \quad k=0,1,2,3$$

$$X(0) = \sum_{n=0}^{3} x(n) e^{-\frac{j2\pi n(0)}{N}} = \sum_{n=0}^{3} x(n) e^{-\frac{j2\pi n(0)}{$$

$$X(2) = \frac{3}{n=0} \times (n) e^{-\frac{1}{2}\frac{\pi n}{4}} = \frac{3}{3} \times (n) e^{-\frac{1}{2}n\pi}$$

$$= \chi(0) + \chi(1) e^{-\frac{1}{2}n} + \chi(2) e^{-\frac{1}{2}2\pi} + \chi(3) e^{-\frac{1}{2}3\pi}$$

$$= \chi(0) + \chi(1) e^{-\frac{1}{2}n} + \chi(2) e^{-\frac{1}{2}2\pi} + \chi(3) e^{-\frac{1}{2}3\pi}$$

$$= \chi(0) + \chi(1) e^{-\frac{1}{2}3\frac{\pi}{2}} + \chi(2) e^{-\frac{1}{2}3\frac{\pi}{2}} + \chi(3) e^{-\frac{1}{2}3\frac{\pi}{2}}$$

$$= \chi(0) + \chi(1) e^{-\frac{1}{2}3\frac{\pi}{2}} + \chi(2) e^{-\frac{1}{2}3\frac{\pi}{2}} + \chi(3) e^{-\frac{1}{2}3\frac{\pi}{2}}$$

$$= 1 - 1(\omega s 3\frac{\pi}{2} + \frac{1}{2}sin3\frac{\pi}{2}) + 1(\omega s 3\pi - \frac{1}{2}sin3\pi) - 1(\omega s 9\pi/2 - \frac{1}{2}sin9\pi/2)$$

$$= \chi(3) = 0$$

$$\chi(3) = \frac{3}{n=0} \times (n) e^{-\frac{1}{2}3\frac{\pi}{2}} + \chi(3) e^{-\frac{1}{2}3\frac{\pi}{2}} + \chi(3) e^{-\frac{1}{2}3\frac{\pi}{2}} + \chi(3) e^{-\frac{1}{2}3\frac{\pi}{2}}$$

$$= 1 - 1(\omega s 3\frac{\pi}{2} + \frac{1}{2}sin3\frac{\pi}{2}) + 1(\omega s 3\pi - \frac{1}{2}sin3\pi) - 1(\omega s 9\pi/2 - \frac{1}{2}sin9\pi/2)$$

$$= \chi(3) = 0$$

$$\chi(3) = \frac{3}{n=0} \times (n) e^{-\frac{1}{2}\frac{\pi}{2}} + \chi(3) e^{-\frac$$

15. Perform the circular convolution of the following Sequences
$$x(n) = \{1,1,2,1\}$$
, $h(n) = \{1,2,3,4\}$, using DFT and EDFT method.

Soln

We know $X_3(k) = X_1(k) X_2(k)$
 $X_1(k) = \{1,1,2,1\}$ and $X_2(k) = X_1(k) X_2(k)$

Given $X_1(n) = \{1,1,2,1\}$ and $X_2(n) = \{1,2,2,1\}$ and $X_2(n) = \{1,2,2,2\}$ and $X_2(n) = \{1,2,2,2\}$ and $X_2(n) = \{1,2,2\}$ and $X_$

$$X_{1}(2) = \underbrace{\frac{3}{3}}_{n=0} x_{1}(n) e^{-\frac{1}{3}\pi n} = 1 - 1 + 2 - 1 = 1$$

$$X_{1}(3) = \underbrace{\frac{3}{3}}_{n=0} x_{1}(n) e^{-\frac{1}{3}3\pi n/2} = 1 + \frac{1}{3} - 2 - \frac{1}{3} = -1$$

$$X_{1}(k) = \left\{5, -1, 1, -1\right\}$$

$$X_{2}(k) = \underbrace{\frac{N-1}{2}}_{n=0} x_{2}(n) e^{-\frac{1}{3}\pi n/2} + k = 10.$$

$$X_{2}(0) = \underbrace{\frac{3}{3}}_{n=0} x_{2}(n) e^{-\frac{1}{3}\pi n/2} = 1 + 2(-\frac{1}{3}) + 3(-\frac{1}{3}) + 4(-\frac{1}{3})$$

$$= -2 + 2\frac{1}{3}$$

$$X_{2}(3) = \underbrace{\frac{3}{3}}_{n=0} x_{2}(n) e^{-\frac{1}{3}\pi n/2} = 1 + 2(-\frac{1}{3}) + 3(-\frac{1}{3}) + 4(-\frac{1}{3})$$

$$= -2$$

$$X_{2}(3) = \underbrace{\frac{3}{3}}_{n=0} x_{2}(n) e^{-\frac{1}{3}\pi n/2} = 1 + 2(\frac{1}{3}) + 3(-\frac{1}{3}) + 4(-\frac{1}{3})$$

$$= -2$$

$$\times_2(k) = \{10, -2+j^2, -2, -2-j^2\}.$$

$$X_{3}(k) = X_{1}(k) \cdot X_{2}(k) = \begin{cases} 50, 2-j2, -2, 2+j2 \end{cases}$$

$$X_{3}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_{3}(k) e^{j2\pi nk/N}, \quad n=0,1...N-1$$

$$X_{3}(0) = \frac{1}{4} \sum_{k=0}^{3} X_{3}(k) = \frac{1}{4} (50+2-j2-2+2+j2)$$

$$= 13.$$

$$X_{5}(1) = \frac{1}{4} \left[\sum_{k=0}^{3} X_{3}(k) e^{j\pi k/2} \right]$$

$$= \frac{1}{4} \left[50 + (2-j2)j + (-2)(-1) + (2+j2)(-j) \right]$$

$$= 14$$

$$23(2) = \frac{1}{4} \left[\sum_{k=0}^{3} X_{3}(k) e^{j\pi k/2} \right]$$

$$= \frac{1}{4} \left[50 + (2-j2)(-1) + (-2)(1) + (2+j2)(-1) \right]$$

$$= 11$$

$$2(3(3)) = \frac{1}{4} \left[\sum_{k=0}^{3} X_{3}(k) e^{j3\pi k/2} \right]$$

$$= \frac{1}{4} \left[50 + (2-j2)(-j) + (-2)(-1) + (2+j2)(-1) \right]$$

$$= 12$$

$$2(3(n)) = \left[13, 14, 11, 12 \right]$$

. Fast Fourier Transform:

The Fast Fourier transform is a highly efficient procedure for computing the DFT of a finite series and requires less number of computations by series and requires less number of computations by taking advantage of the fact that the calculation of DFT. It reduces than that of direct evaluation of DFT. It reduces the computations by taking advantage of the fact that the calculation of the coefficients of fact that the calculation of the coefficients of the DFT can be caused out Prevatively. Due to this, FFT computation technique is used in digital this, FFT computation technique is used in digital spectral analysis, filter simulation, autoconstation and pattern recognition.

The FFT is based on decomposition and breaking the transform into smaller transforms and combining them to get the total transform. FFT reduces the computation time transform. FFT reduces the computation time required to compute a discrete Fourier transform and improves the performance by a factor 100 or more over direct evaluation of the DFT.

Consider the tollowing DFT where N=8 $X(k) = \sum_{k=0}^{7} x(n) e^{-j2\pi kn}, \quad k=0$ K=0

Substituting (k27/8) = K in the above equation we get,

 $Y(k) = \chi(0) e^{-jk0} + \chi(1) e^{-jk2} + \chi(2) e^{-jk2} + \chi(3) e^{-jk3}$ $\chi(14) e^{-jk4} + \chi(5) e^{-jk5} + \chi(6) e^{-jk7}$

k=0,1,...7

From eqn(a) has eight teams in the right hand side in which each team contains multiplication of a real team with complex exponential. Thus, for example $2(1)e^{-jk} = 2(1)(\cos k - j\sin k)$ requires two multiplications and one addition for each value of k where $k = 2\pi k$, k = 0, 1, 2, ..., 7. Thus, in eqn(a) each term in the right hand side requires eight complex multiplications and seven additions, the spoint DFT therefore requires $8 \times 8 = 8^2 = 64$ complex multiplications $8 \times 7 = 8(8-1) = 56$ additions.

In general, for an N point DFT, N2 multiplications and N(N-1) additions are required. For N=1024, about 108 multiplications and equal number of additions are required which usuits in Computational buden. Further such a læge huge number of mathematical operations limit the bandwidth of digital signal processors. several algorethms have been developed to reduce the Computation burden and ease the impleme -ntation of DFT. The algorithm developed by Cooley and Tuxey in 1965 is the most etticient one and is called past fourier fransform (FFT) The application FFT algorithms are discussed below with illustrated examples.

Radine - 2 FFT Algorithms:

for efficients computation of DFT. Several algorithms have been developed based on divide and conquest Conquer methods. However, the method is applicable for N & not being a prime number,

Consider the case when $N = Y_1 Y_2 Y_3 ... Y_r$ where the (Y_j) are prime. If $Y_1 = Y_2 = Y_3 = ... = Y_r$, then $N = Y^r$. In such a case the DFTs are of size Y_r . The number Y_r called the radix of the FFT algorithm. The most widely used FFT algorithms are radix and radix - 4 algorithms and are discussed in the following sections.

For performing radin-2 FFT, the Value of N should be such that, N=2^m. Here the decimation can be performed m times, where m = log N

In direct computation of N-point DFT, the total number of complex addition are N(N-1) and total number of complex.

multiplications are N². In radix - 2 FFT, the total number of complex additions are reduced to N log N and total number of complex multiplications are (N) log N. Comparison of number of computations by DFT and FFT is shown in table.

Table:	Companison	0+	number	of	computations	by
		DF	T and	FFT	. The same and the	0

Number	Direct Co.	mputation	Radin -2 FFT		
of Points	Addition	mu Hiplication	Addition	Multiplication	
N	N(N-1)	N2	N logan	(N/2) log N/2	
. 4	12	16	8	4	
8	56	64	24	12	
16	240	256	64	32	
32	992	1024	160	80	
64	4032	4096	384	192	

classical DFT approach does not use the two important properties of twiddle factor namely symmetry and periodicity properties which are given below.

$$W_{N}^{k+N/2} = -W_{N}^{k}$$

$$W_{N}^{k+N} = W_{N}^{k}$$

Radin - 2 FFT algorithm emploits these two properties thereby removing redundant. Obtained using FFT algorithms is exactly the same as that of DFT. Further, the efficiency Of FFT algorithm increases as N is increased. FOI example, if N = 512, DFT requires nearly 110 times more multiplications than FFT algorithm. The basic Punciple of FFT algorithm is therefore to decompose DFT into successively Smaller DFTs. The manner in which this decomposition is done leads to different FFT algorithms. The two basic classes of algorithms 1. Decimation in Time (DIT) 2. Decimation in Frequency (DIF)

In the algorithm developed by DIT,
the sequence zing is decomposed into
successively smaller subsequences. In DIF
algorithm, the sequence of DFT coefficients

The N-Point DFT of x(n) can be written as X(K) = 5 x(n) WN K=0,1, ... N-1 Separationg secons into even and odd indexed Values of sein), we obtain X(k) = 5 x(n) WN + 5 x(n) WN (even) (odd) $= \sum_{N=1}^{\frac{N}{2}-1} 2(2n) W_{N}^{2n} + \sum_{N=1}^{\frac{N}{2}-1} 2(2n+1) W_{N}^{(2n+1)} R$ $= \sum_{N=1}^{\frac{N}{2}-1} 2(2n) W_N^{2nk} + W_N^{k} \sum_{N=1}^{\frac{N}{2}-1} 2(2n+1) W_N^{2nk}$

substituting eqn (1) in eqn (3) we have

$$X(k) = \underbrace{\sum_{n=0}^{N-1} x_{e(n)}}_{n=0} W_{N}^{2nk} + W_{N}^{k} \underbrace{\sum_{n=0}^{N-1} x_{o(n)}}_{N} W_{N}^{2nk}$$

we can write

$$W_{N}^{2} = \left(e^{-j2\pi/N}\right)^{2} = e^{-j2\pi/N/2} = W_{N/2}$$
ie., $W_{N}^{2} = W_{N/2}$

Substituting egn(5) in egn(4) we get $X(k) = \sum_{k=1}^{N-1} x_{e}(n) W_{N/2}^{nk} + W_{N}^{k} \sum_{k=1}^{N-1} x_{o}(n) W_{N/2}^{nk}$.N/2 - Puint DFT of. N/2 point DFT even indexed Of odd indexed sequence 8 equence = Xe(k) + WN Xo(k) Each of the sums i'n eqn (6) is an N - point DFT, the first sum being the Na -point DFT of the even-indexed soquence and the second being the N -Point DFT of the odd -indexed Sequence. Although the index k ranges from K = 0,1, ... N-1, each of the sums is computed only for $k = 0, 1, \dots, \frac{N}{a} - 1$, since Xe(k) and $X_0(k)$ are periodie in k with period $\frac{N}{2}$. After the two DFTs are computed, they are combined a coording to egn (7) to get the N-Point DFT

of X(x). So eqn(7) holds for the values of

 $K = 0, 1, \dots \frac{N}{2} - 1$

FOR
$$k \ge N/2$$

$$W_N^{K+N/2} = -W_N^{K} \qquad (8)$$
Now $X(K)$ for $k > N/$ " given k

$$X(k) = Xe(k - \frac{N}{a}) - W_{N}^{k-N/2} \times_{o}(k - \frac{N}{a})$$

for
$$k = \frac{N}{2}, \frac{N}{2} + 1, \dots N - 1$$
.

Let us take N=8:

Then Keck) and Kock) are 4-Point (N/2) DFTS

Of even-indexed sequence xe(n) and odd-indexed Sequence 2600 respectively. Where

$$x_{e(0)} = x_{e(0)}; \quad x_{o(0)} = x_{(1)}$$

$$\chi(2) = \chi(4); \quad \chi_0(2) = \chi(5)$$

$$\Re(3) = \Re(6); \qquad \Re(3) = \Re(7)$$

From egn (7) and egn (9) we have

$$X(K) = Xe(K) + W_8^k X_0(K)$$
 for $0 \le K \le 3$

$$X(K) = Xe(K-4) - W_8^{K-4} \times_0 CK-4)$$
 for $4 \le K \le 7$

--- (10)

By substituting défferent values of k we get

$$X(3) = Xe(2) + W_8^2 Xo(2)$$
; $X(6) = Xe(2) - W_8^2 Xo(2)$

$$X(4) = Xe(3) + W_8^3 X_0(3); \quad X(7) = Xe(3) - W_8^3 X_0(3)$$

From the above set of equations we can find that X(0) and X(4), X(1) and X(5), X(2) and X(6). X(3) and X(7) have some inputs. X(0) is obtained by multiplying X₀(0) as with W₈ and adding the product to Xe(0). Similarly X(4) is obtained by multiplying X₀(0) with W₈ and subtracting the Product form Xe(0). This operation can be lepusented by a butterfly diagram as shown in fig. 1.

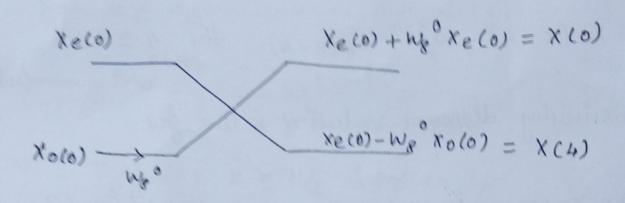
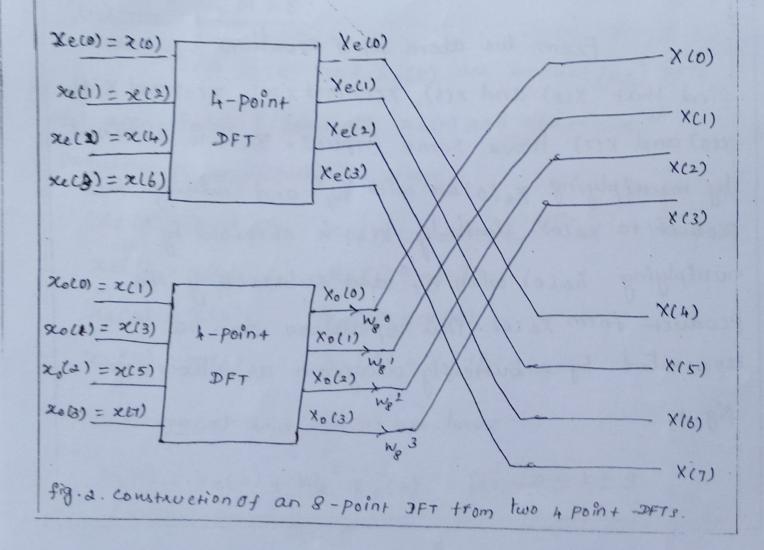



fig. 1. Flow graph of butterfly diagram for equil.

Now the values X(k) for k=0,1,2,3,4,5,6,7 can be obtained and an 8-point DFT flowgraph can be Constructed from two 4-point DFTs as shown in fig (2).

From fig (a) we can find that initially the sequence x(n) is shuttled into even indexed sequence x(n) and then transformed to give Xe(k) and Xo(k). For k=0,1,2,3 the values Xe(k) and Xo(k) are obtained according to epns (11) and using butterfly structure shown in sign. I the 8-point DFT is obtained. The inputs to the butterfly is separated by Ny Samples is. I samples and the power of the twiddle factors associated in this set ob butterflies are in natural order.

Now we apply the same appreach to decompose each of N/2 sample DFT. This can be done by dividing the sequence xech) and xo(n) into two sequences consisting of even and odd numbers of the sequences. The N/2 - Point DFTs can be expressed as a combination of $\frac{N}{h}$ - Point DFTs. That is, Xe(k) for $0 \le k \le \frac{N}{a} - 1$ can be wilten as $Xe(k) = Xee(k) + W_N^{ak} Xeo(k) \text{ for } 0 \le k \le \frac{N}{a} - 1$ $= Xee(k - \frac{N}{h}) - W_N^{a(k - N/h)} Xeo(k - \frac{N}{h}) \text{ for } N \le k \le \frac{N}{a} - 1$

where Xee(k) is $\frac{N}{4}$ point DFT of the even members of xe(n) and Xeo(k) is $\frac{N}{4}$ - Point of DFT of the odd members of xe(n).

In the same way

$$X_{0}(K) = X_{0}e(K) + W_{N}^{ak} X_{00}(k)$$
 for $0 \le k \le \frac{N}{2} - 1$
= $X_{0}e(k - \frac{N}{4}) - W_{N}^{a(k - \frac{N}{4})} X_{00}(k - \frac{N}{4})$

for $\frac{N}{4} \le k \le \frac{N}{2} - 1$

- (13)

where $X_{0e}(k)$ is $\frac{N}{4}$ - Point DFT of the even members of $X_{0o}(n)$ and $X_{0o}(k)$ is $\frac{N}{4}$ - Point of DFT of the odd members of $X_{0o}(n)$.

FOR N=8 the sequence xe(n) can be divided into even and odd indexed sequences as

Xee(0) = xe(0); xee(1) = xe(2)

2 eo (0) = xe(1); xeo(1) = xe(3)

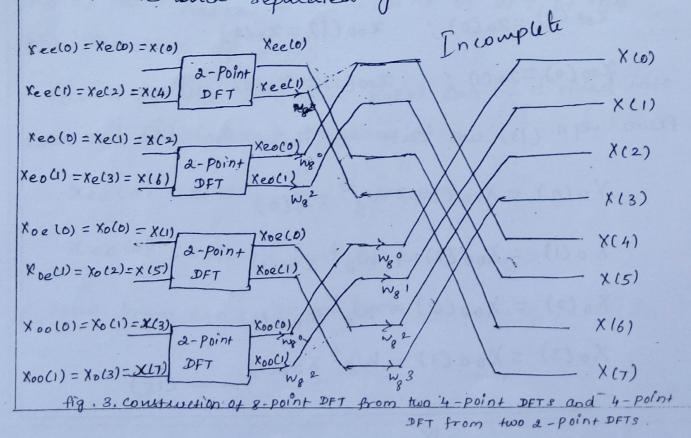
Now from egn (12) we have

$$Xe(0) = Xee(0) + W_8^6 \times e(0)$$

 $Xe(1) = Xee(1) + W_8^2 \times eo(1)$
 $Xe(1) = Xee(0) - W_8^6 \times eo(0)$
 $Xe(3) = Xee(1) - W_8^2 \times eo(1)$
 $Xe(3) = Xee(1) - W_8^2 \times eo(1)$

of xetn) and Xeo(k) is the a-point DFT of even members of xetn) and Xeo(k) is the a-point DFT of odd members of xecn).

similarly the sequence xorn) can be divided into even and odd membered sequence as


from egn (13) we can obtain

members of 20(n).

X 00 (k) is the 2-point DFT of the odd members of xo(n). Fig. 3. Shows the resulting flow graph when the four-point DFTs of tiges are evaluated as in eqn (14) and eqn (15).

From fig. 3 we find that the input sequence is again reacted recordered, the input samples of to each butterfly are separated by I samples is., a samples and there are two sers of butterflies.

In each set of butterflies the twiddle factor exponents are same and separated by two,

For an 8-point DFT the number of stages required is three. So far we have seen the decomposition for stage 3 and stage 2. For stage 1 the two point DFT can be easily found by adding and subtracting the input sequences as the twiddle factor ausociated with first stage is Wg = 1. That is the first stage involves no multiplication but addition and subtraction. Now we have

Xee(0) = Xee(0) + Xee(1) = Xe(0) + Xe(2) = X(0) + X(4) Xee(1) = Xee(0) - Xee(1) = Xe(0) - Xe(2) = X(0) - X(4)-(16)

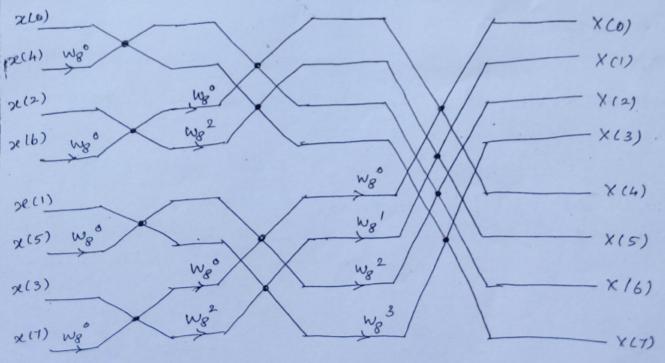
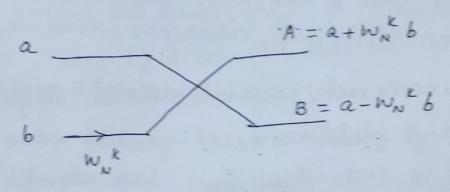



fig. 4. Flow graph of Decimation -in -time Algorithm

The algorithm has been called decimation in time since at each stage, the input sequence is divided into Smaller sequences, i.e., the input gaquences are decimated at each stage. From the flow graph several important observations can be made.

The basic flow graph of DIT algorithm is

BI+ Reversal:

In DIT algorithm, the output sequence is in a natural order, the input sequence is in a shuffled order.

That shuffled order is called the bit reversel order and ear be explained as follows,

orall and come	Binary representation.	Bltroversed	Bit revewed
input sample index	Birray representation.	Binary	sample index
0	000	000	0
	001	100	4
3	010	010	2
4	100	110	6
	101	001	1
>	110	101	5
b	11.1	011	3
7	""	111	7

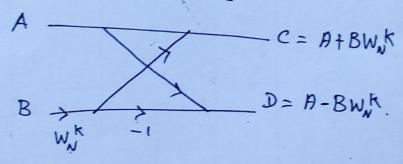
Example: 1. Find the DFT of a sequence x(n) = {1,2,3,4,4,3,2,1} using DIT algouthm. The twiddle factors associated with the flowgraph are $W_8^0 = 1$, $W_8^1 = \left(e^{-\frac{32\pi}{8}}\right)^1 = e^{-\frac{17}{4}} = \cos \frac{\pi}{4} - \frac{1\sin \frac{\pi}{4}}{4}$ Wg = cos 45-jsin45 = 0.707-jo.707 $W_8^2 = (e^{-j27/8})^2 = e^{-j7/2} = \cos \pi - j \sin \pi = \cos 90 - j \sin 90$ $w_8^3 = (-j^2 \frac{7}{3})^3 = e^{-j^3 \frac{7}{4}} = \cos 3\frac{7}{4} - j \sin \frac{3\pi}{4} = -0.707 - j 0.707$ W2 = -j stage 2 ilp stage1 x(0)=1_ x(2) = 0 - 3 x(4) = 4 _ wo X(3) = 70.172-jo.41 -3+J 2(2)=3 x(4)= 0 5 x(5)=-0.172+j0.414 x(1) = 2 -1-31 Wg=0-707-59.707 x(5) = 3 x16) = 0 XC7) = -5.828-+52.414 2(3)=4 -1+35 x(7) = 1 Wp 3 - 0.707-50-707 Wpd=-j 210

F			-	
F		1		
1	1/9	olp of stage 1	old of stage a	Op of stage 3
	ı	1+4 = 5	5+5=10	10+10=20
4		1-4=-3	-3+(-j)(1) = -3-j	-3-1+(0.707-50.707)(-1-31)
Martin School See				= -5.828 - 12.414
3		3+2=5	5-5=0	0
0.0	2	3-2=1	-3-(-1)(1) = -3+1	(-3.+1)+(-0-707-10-707)(-1+31)
				= -0.172 - 50.414
2	-	0+3=5	5+5=10	10-10 = 0
3		2-3=-1	-1+(-1)3=-1-31	(-3-1) - (0-707-10-701) (-1-31)
		4+1=5		= - 6.172 +50.414
1			5-5 = 0	0
1		4-1=3	-1-(-i)3=-1+3i	(-3+1) - (-0.707-10.707) (-1+31)
-	1			= -5.828+j2.414

$$X(k) = \{ao, -5.8a8 - ja.414, 0, -0.17a - jo.414, 0, -0.17a - jo.414, 0, -0.5a8 + ja.414 \}$$

0

An 8-point DFT is given by xx1= [2,2,2,2,1,1,1,1]. Compute 8 point DFT of ocal by wing radix-2 DIT-FFT. Also sketch magnitude and Phase spectrum.


Soln:
Given,

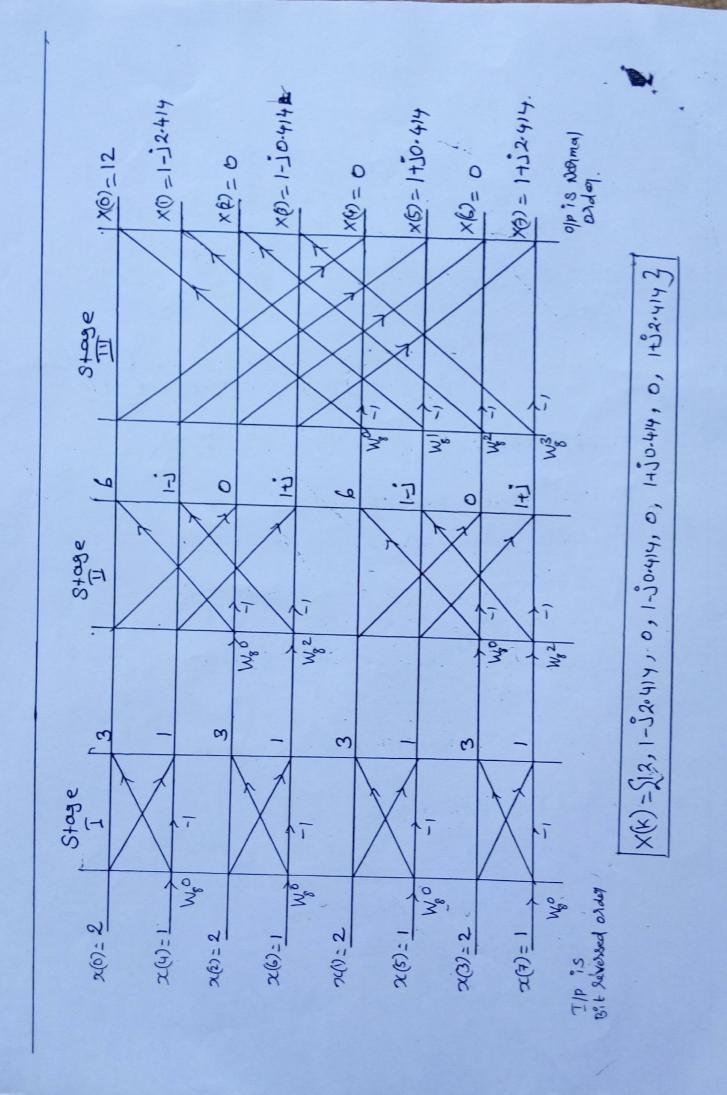
 $x(n) = \begin{cases} 2, 2, 2, 2, 1, 1, 1, 1, 1 \end{cases}$ x(0) x(0) x(0) x(0) x(0) x(0) x(0) x(0)

* DIT-FFT Algasing.

1. The input is Bit-Reversed.

2. The basic operation is

3. The output is in Normal order.


* The Twiddle factors are

$$W_8^0 = 1$$

$$W_8^1 = 0.707 - 10.707.$$

$$W_8^2 = -1$$

$$W_8^3 = -0.707 - 10.707.$$

$$B=1$$
 $D=A-BW_{N}^{k}=2+1(1)=3$
 $D=A-BW_{N}^{k}=2-1=1$
 W_{8}^{0}

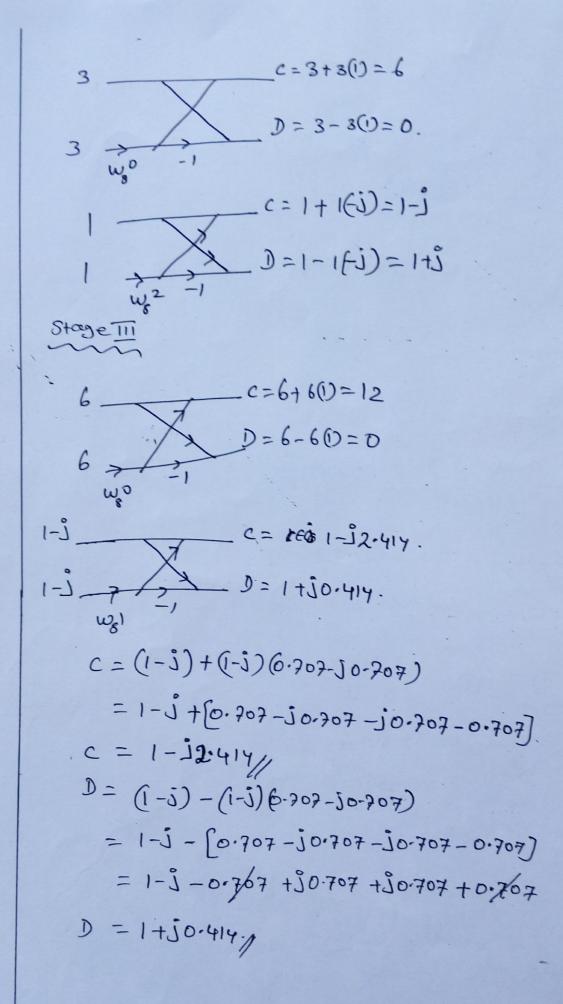
$$2 - \frac{C = 2 + 1(1) = 3}{D = 2 - 1(1) = 1}$$

$$2 = 2 + 1(1) = 3$$

$$1 = 2 - 1(1) = 1$$

$$1 = 2 - 1(1) = 1$$

$$2 - C = 2 + 10 = 3$$


$$1 - D = 2 - 10 = 1$$

$$3 - \frac{c = 3 + 3(0) = 6}{D = 3 - 3(0) = 0}$$

$$C = 1 + 1(-i) = 1 - i$$

$$D = 1 - 1(-i) = 1 + i$$

$$W_8^2$$

DIF Algorithm:

- Decimation in trequency FFT decomposes the DFT by secursively splitting the sequence elements X(K) in the frequency domain into sets of smaller and smaller. Subsequences.
- To derive the decimation in frequency FFT algorithm for N, a power of 2; the input sequence xen) is divided into the first half and the last half of the points.
- In this algorithm the input sequence x(n) is

 Partitioned into two sequences each of length of samples.

 The first sequence x(n) comults of first of samples of x(n) and the second sequence x2(n) consults of the last of samples of x(n) i.e.,

$$\chi_{1}(n) = \chi(n)$$
, $n = 0, 1, 2, \dots, \frac{N}{a} - 1$
 $-(1)$
 $\chi_{2}(n) = \chi(n + \frac{N}{a})$, $n = 0, 1, 2, \dots, \frac{N}{a} - 1$
 $-(2)$

If N=8 the first sequence $x_1(n)$ has values for $0 \le n \le 3$ and $x_2(n)$ has values for $4 \le n \le 7$.

The N-Point DFT of x(n) can be whiten as

$$X(k) = \sum_{N=1}^{N-1} x_{1}(n) W_{N}^{nk} + \sum_{N=1}^{N-1} x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_{N}^{nk} + \sum_{N=0}^{N-1} x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_{N}^{nk} + W_{N}^{nk} = \sum_{N=0}^{N-1} x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_{N}^{nk} + \sum_{N=0}^{N-1} x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_{N}^{nk} + \sum_{N=0}^{N-1} x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_{N}^{nk} + \sum_{N=0}^{N-1} x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) + x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) + x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) + x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) + x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) + x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) + x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) + x_{2}(n) W_{N}^{nk}$$

$$= \sum_{N=0}^{N-1} x_{1}(n) W_$$

Eqn (3.a) is the Non-point DFT of the Non-point sequence f(n) obtained by adding the first-half and the last-half of the input sequence. When k is odd

$$\chi(2k+1) = \sum_{n=0}^{N-1} \left[\chi_1(n) - \chi_2(n) \right] W_N^{(2k+1)n}$$

$$= \underbrace{\sum_{N=1}^{N-1} \left[x_1(n) - x_2(n) \right] W_N^n W_{N/2}^n}_{N/2}$$

$$\chi(2k+1) = \frac{\frac{N}{2}-1}{\sum_{n=0}^{\infty} g(n)} W_{N/2}^{nk}$$

$$= 0 \qquad (4)$$

where

$$g(n) = (x_1(n) - x_2(n)) W_N^n$$
 (5)

Eqn (4) is the N - point DFT of the sequence gln)
obtained by subtracting the second half of the input
sequence from the first half and then multiplying the
westing sequence with W,

From eqn (3,a) and (4) we find that the even and odd samples of the DFT can be obtained from the N-point DFTS of fin) and gin) respectively.

The en (3.6) and eqn(5) can be represented by a butterfly as shown in fig (1). Thus is the basic operation of DIF algorithm.

From egn (3), for N=8, we have

$$X(0) = \frac{3}{5} \left[\chi_1(n) + \chi_2(n) \right] = \frac{3}{5} f(n)$$
 $\frac{3}{n=0}$

$$= f(0) + f(1) + f(2) + f(3)$$
--- (6

$$\frac{\chi_{1}(n)}{\chi_{2}(n)} + \frac{\chi_{3}(n)}{\chi_{1}(n)} = f(n)$$

$$\chi_{1}(n) - \chi_{2}(n) \int_{N}^{n} w_{1}^{n} = g(n)$$

fig. 1. flow graph of basic butterfly diagram for DIF algorithm.

$$X(2) = \frac{3}{5} (\pi(n) + \pi_2(n)) W_8^{2n} = \frac{3}{5} f(n) W_8^{2n}$$

$$\chi(2) = f(0) + f(1) W_8^2 - f(2) - f(3) W_8^2 \qquad [w_8^4 - (+j^2)^3]_{=-1}^4$$

$$-(7) \qquad w_8^8 - (j^2)^8 = 1$$

$$\chi(4) = \sum_{n=0}^{\infty} [\chi_1(n) + \chi_2(n)] W_8^{4n} = \sum_{n=0}^{\infty} f(n) W_8^{4n} = \sum_{n=0}^{\infty} f(n) (-1)^n$$

$$= f(0) - f(1) + f(2) - f(3) \qquad -(8)$$

$$\chi(b) = \sum_{n=0}^{3} \left(x_{n}(n) + 2\omega(n) \right) W_{g}^{bn} = \sum_{n=0}^{3} f(n) \left(-w_{g}^{2} \right)^{n}$$

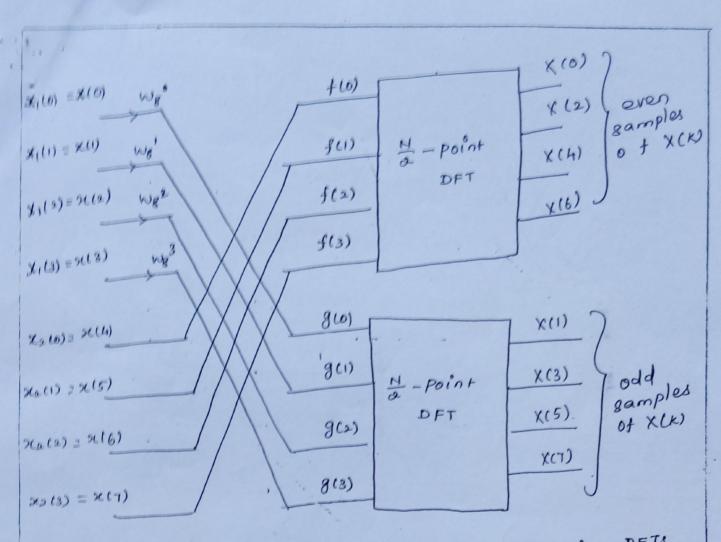
=
$$f(0) - f(1) W_8^2 - f(2) + f(3) W_8^2$$
 — (9)

From en (4) we have

$$X(1) = \underbrace{\underbrace{\underbrace{S}}_{n=0}^{3} \left[x_{1}(n) - x_{2}(n) \right] w_{8}^{n}}_{n=0} = \underbrace{\underbrace{S}_{n=0}^{3} g(n)}_{n=0} = g(0) + g(1) + g(2) + g(3) + g($$

$$\chi(3) = \frac{3}{2} \left[\chi_1(n) - \chi_2(n) \right] w_g^{3n} = \frac{3}{2} g(n) w_g^{2n}$$

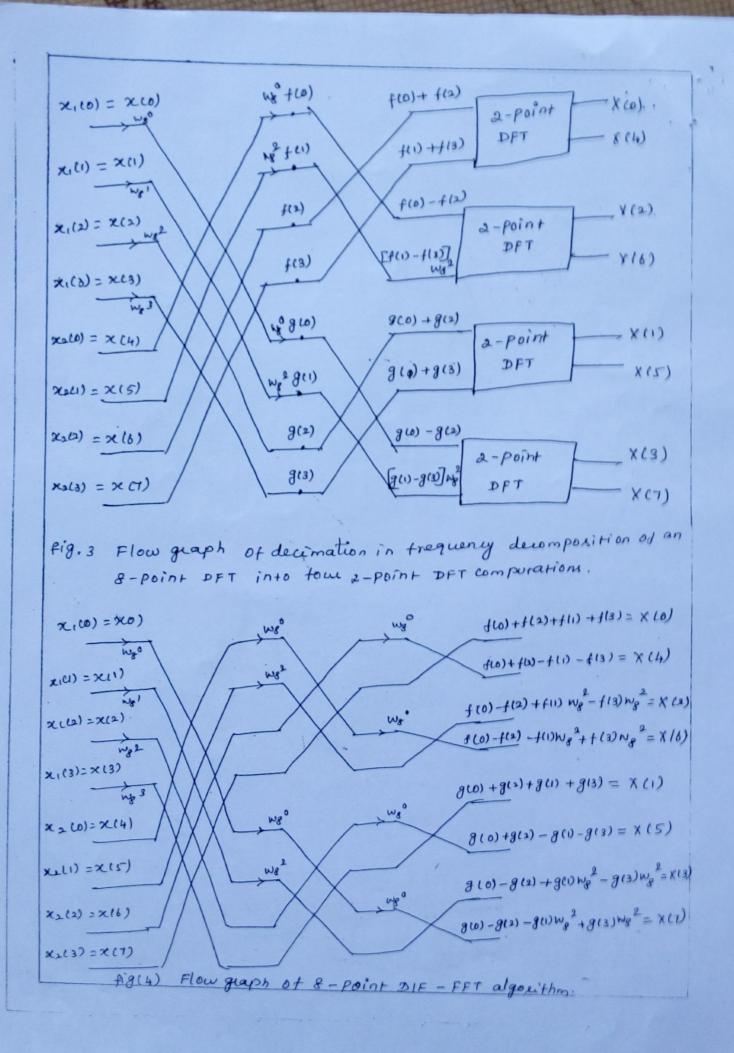
$$= g(0) + g(1) w_g^2 - g(2) - g(3) w_g^2 - g(1)$$


$$X(5) = \frac{3}{5} \left[x_1(n) - x_2(n) \right] W_8^{5n} = \frac{3}{5} g(n) w_8^{4n} = \frac{3}{5} g(n) (-1)^n$$
 $n=0$
 $n=0$

$$=g(0)-g(1)+g(2)-g(3)$$

$$X(T) = \frac{3}{2} \left[x_1(m) - x_2(n) \right] w_8^{7n} = \frac{3}{2} g_{1n} \left[w_8^2 \right]^n$$

$$= 9(0) - g(1) W_8^2 - g(2) + g(3) W_8^2 - (13)$$


we have seen that the even-indexed samples-Of X(k) can be obtained from the 4-point DFT of the sequence f(n) where

figer) Reduction of an 8-point DFT to two 4-point DFTs
by decimation i'n frequency.

Now each N-point DFT can be computed by Combining the first half and the last half of the input Points for each of the N2-point DFT: and then computing N-point DFTs. For the 8-point DFT example the wouldn't thew graph is shown in fig.3.

the a - Point DFT can be found by adding and subtracting the input points. The fig(3) can be twether seduced as in fig(4).

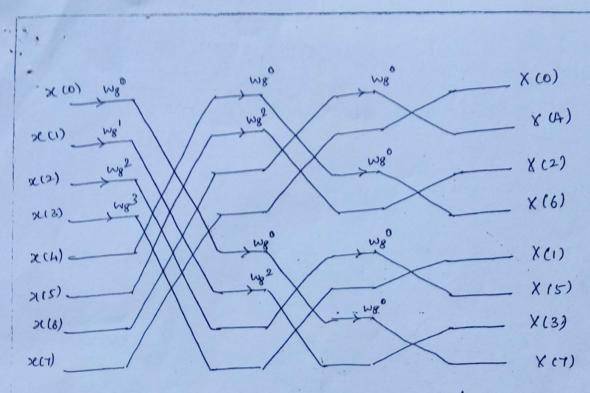


fig. 5. flow graph of complete decimation in frequency decomposition of an 8-point DFT comportation.

Differences and similarities between DIT and DIF Algorithme

- 1. For decimation -in-time (DIT), the input is bitreversed while the output is in natural order whereas,
 for decimation in frequency the input is in natural order
 while the output is bit reversed order.
- 2. The DIF buttertly is slightly different from the DIT wherein DIF the complex multiplication takes place after the add-subtract operation.

Similarities:

Both algorithms require N loga N operations to compute the DFT. Both algorithms can be done in-place and both need to perform bit reversal at some place during the computation.

1. Compute the eight point DFT of the sequence by using DIF algorithm: $x(n) = \begin{cases} 1 & 0 \le n \le 7 \\ 0 & \text{otherwise.} \end{cases}$ Soln The given sequence such) = { 1, 1, 1, 1, 1, 1, 19 2 , W80 4 wg0 xco)=1 8 _ x (o) 2 W82 X (H) xu)=1 O wgo X(2) 2(2)=1 x (6) 2(3)=1 0 wg0 0 w8° X (1) 2(4)=1 0 wg2 215)=1 X(5) O WRB 2(6)=1 X13) 2(7)=1 X(T) $w_8^{\circ} = 1$, $w_8' = 0.707 - j0.707$, $w_8^2 = -j$, $w_8^3 = -0.707 - j0.707$ Olpostage 1 I/p Op 48tage 3 Olp 88tage 2 1+1=2 2+2=4 4+4=8 1+1=2 2+2=4 4-4=0 1+1=2 2-2=0 0 1+1=2 2-2 =0 0 1-1 =0 0 1-1=0 0 0 1-1=0 0 0 0 1-1=0 $X(K) = \{8,0,0,0,0,0,0,0,0\}$

IDFT wing FFT Algorithm:

FFT algorithms can be used to compute an inverse DFT without any change in the algorithm. The inverse DFT of an N-Point sequence X(k), K=0,1,...N-1 is defined as

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k) w^{-nk} - (1)$$

where w = e-sen/N

Take complex conjugate and multiply by N, we obtain

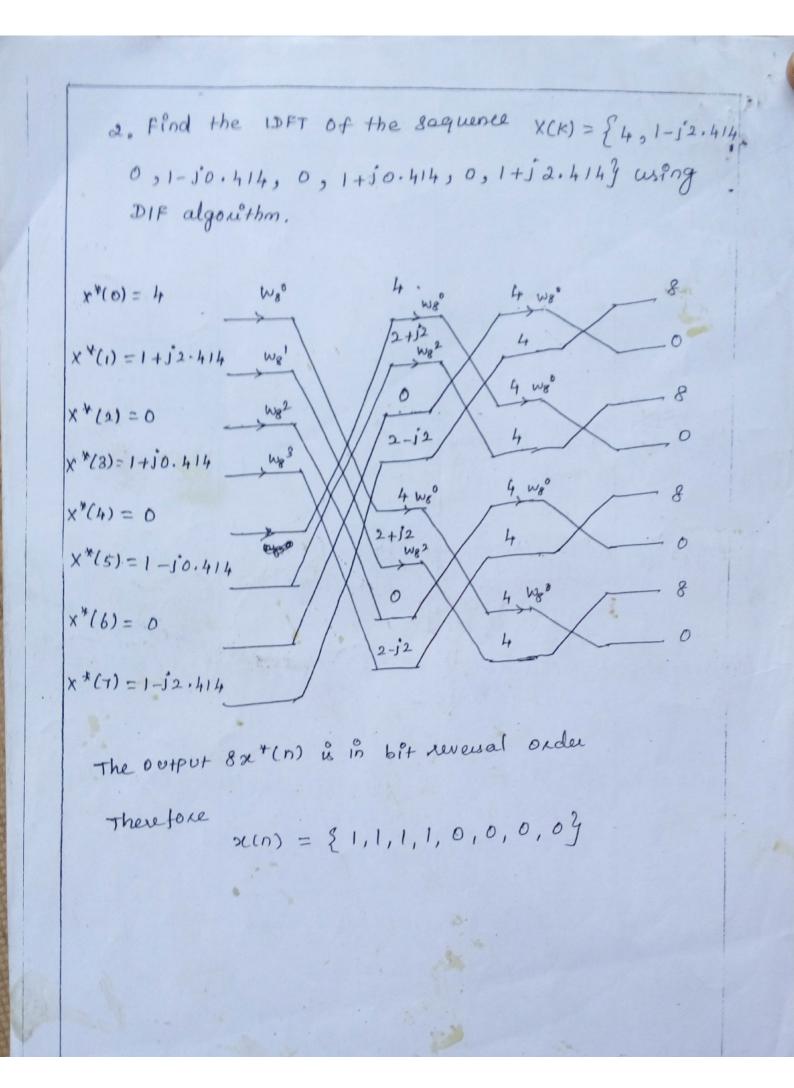
$$N \times *(n) = \sum_{k=0}^{N-1} X^*(k) W^{nk}$$

The right hand side of Egn (2) is DFT of the sequence X*(k) and may be computed using any FFT algorithm. The derived output sequence x(n) can then be found by complex Conjugating the DFT and dividing by N to give

$$x(n) = \frac{1}{N} \left[\sum_{k=0}^{N-1} x^{*}(k) w^{nk} \right]^{*}$$


$$(3)$$

1. Compute IDFT of the sequence


 $X(k) = \{7, -0.707 - j0.707, -j, 0.707 - j0.707, 1, 0.707 + j0.707, j, -0.707 + j0.707\}$ using DIT algorithm.

Soln

Take complex conjugate of X(k) and apply bit several index in puts to flow graph of 8-point DIT

1	*		
Input	stage 061	stage of a	stage 063
7	7+1=8	8+0=8	8+0 = 8
1	7-1=6	6 + (-i)2i = 8	8+0(w')=8
j	ĵ-ĵ=0	8-0 = 8	$8+0(w^2)=8$
-j	î-(-î)=2î	6-6)(2)=4	4 + (-0.707-j0.701) (-2.828+j2-828)
			= 8
-0-707+50-707	(-0.707+50.707) +(0.707-50.707)	0	8-0=8
0.707-30.707	= 0	(-1.414+\$1.414)+(-i) (1.414+j1.414)=0	8-0(w')=8
0.707+50.707	(0.707+j0.707)+ L+0.707-j0-707)=(0	$8-O(W^2)=8$
-0.707-j0.707	0.707 + j0.707 - (-0.707 - j0.707) = 1.414 + j1.414	(-1.414+j1.414)-(-j) $(1.414+j1.414)$ $=-2.828+j2.828$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Output:	$Nx^*(n) = \{8$	18,8,8,8,8,03	
	x*(n) = { 1	, 1, 1, 1, 1, 1, 1, 03	
	$x(n) = \{1,$	1, 1, 1, 1, 1, 0	

UNIT - DU CONTO	4. h(h) : salkin
FIR FIFTER DESIGN	5. Take t Tho
3 design Methods:	Frequency respo
1) Formier Series Method	
2) Window Method.	
3) Frequency Sampling Method.	
Drawback of Frequency Fourier	Sevies Method:
Doubb's oscillation	
(2m) 300 (0A)	
Window Method:	
Munito 0	
FIR	
Linear phase Zero phase FIR FIR	
	phase FIR
) = h(-n)
Frusc & = 18-1	2 Certaing of
delay $0 \le n \le N-1$	$\frac{1}{2}$ $\leq n \leq \frac{(N-1)}{2}$
Procedure: (for and so method)	
1. Select Frequency response Ho	(w)
e. Take inverse fourier transfor	
hote(n) = 1/2# & Halw)e dw	
3. Select Window sequence w(n)	

Filter type	1) Fourier Series Method	
0	Hacus method suchassing co	
LPF bookson salve	$H_d(w) = \begin{cases} e^{j\omega x}, -w_c \leq T \leq w_c \end{cases}$	
НРЕ	$Hd(w) = \begin{cases} e^{jwx}, -\pi \leq w \leq -w_e, \\ w_c \leq w \leq \pi \end{cases}$ 0, otherwise	
BPF	$H_{d}(w) = \begin{cases} e^{jw\alpha}, -w_{c2} \leq w \leq w_{c2}, \\ w_{c1} \leq w \leq w_{c2}, \end{cases}$	
BSF	$Hd(\omega) = \int e^{j\omega\alpha}, -\pi \leq \omega \leq -\omega c_{2},$ $-\omega_{c1} \leq \omega \leq \omega_{c1}$ $\omega_{c2} \leq \omega \leq \pi$	
Phase FIR		
Window Sequencies:		
1. Reetangular	Window	
(w(n) = 51	Mi OENE N-1	
10	otherwin	
	Procedure: (formation (see	
top we got	- (N-1) = n = (N-1) Never proposed to be served to be se	
a de la companya della companya della companya de la companya della companya dell	haten) = = the two two	

2. Truangular (as) partles andow

$$w(n) = 1 - \frac{\kappa(n)}{N-1}, \quad -(N-1) \le n \in (N-1)$$
0, otherwise

(as)

3. Hamming Window:

$$w(n) = 0.54 + 0.46 \cos\left(\frac{R\pi}{N-1}\right), \quad -(\frac{N-1}{R}) \le \frac{n}{2} \le (\frac{N-1}{R})$$
(ch)

$$= 0.54 - 0.46 \cos\left(\frac{R\pi}{N-1}\right), \quad 0 \le n \le N-1$$
3.

4) Having window:

$$w(n) = 0.54 \circ 5 \cos\left(\frac{R\pi}{N-1}\right), \quad 0 \le n \le N-1$$
(ch)

$$= 0.5 - 0.5 \cos\left(\frac{R\pi}{N-1}\right), \quad 0 \le n \le N-1$$
5) Blackman window:

$$w(n) = 0.42 \cdot 0.5 \cos\left(\frac{R\pi}{N-1}\right), \quad 0 \le n \le N-1$$

$$= 0.5 - 0.5 \cos\left(\frac{R\pi}{N-1}\right), \quad 0 \le n \le N-1$$
5) Blackman window:

$$w(n) = 0.42 \cdot 0.5 \cos\left(\frac{R\pi}{N-1}\right), \quad 0 \le n \le N-1$$

$$= 0.42 - 0.5 \cos\left(\frac{R\pi}{N-1}\right), \quad + 0.08 \cos\left(\frac{R\pi}{N-1}\right), \quad 6 \le n \le N-1$$
6) Kalser and according to the part of th

	26.7·12	Design a linear Low pass FIR fitter having
	2	une samples with cut of 1.2 read/sec use
	h	anning window.
	2 1	Design a filter with $H_{a}(w) = \begin{cases} \bar{e}^{jBw}, -\frac{\pi}{4} \leq w \leq \frac{\pi}{4} \end{cases}$ use hamming window.
	1	use hamming window.
	3. R	Design a filter with $Hd(w) = \begin{cases} 1, & \overline{1} \in w \in \overline{1} \\ 0, & \text{otherwise} \end{cases}$
		V=7. Use rectangular window.
		- Window is not mentioned, take rectangular window.
	1. 6	riven data: - Linear phase FIR LPF
	(2)	$N=9$ $w_c = 1.2 \text{ nad/sec.}$ $\alpha = \frac{N-1}{2} = \phi$
		$\omega_c = 1.2 \text{ Mad/sec}$
		hanning window.
	i.	Hd(w) = Se jwa , -we = TI = we
		(to , otherwise walnut grimstoff
	77	Take inverse forvuer transform
	"	
		ha(n) = 1 We Ha(w) e jwn dw.
	(1-N) = n = (1)	we -jwa ejwaham namulale (2
	いっちゃんかっ	$\frac{1}{2\pi}\int_{-\omega_{c}}^{\omega_{c}}\frac{e^{j\omega(n-\alpha)}}{2}d\omega.$
		$= \frac{1}{2\pi} \left[\frac{j\omega(n-\alpha)}{j(n-\alpha)} \right]^{\omega_c}$
The state of		

$$=\frac{1}{2\pi}\left[\frac{jw_{c}(n-\alpha)}{j(n-\alpha)} - \frac{-jw_{c}(n-\alpha)}{j(n-\alpha)}\right]$$

$$=\frac{1}{\pi(n-\alpha)}\left[\frac{-jw_{c}(n-\alpha)}{2j} - \frac{-j(n-\alpha)}{j(n-\alpha)}\right]$$

$$ha(n) : \frac{1}{\pi(n-\alpha)}\sin w_{c}(n-\alpha), n\neq \alpha$$

$$=\frac{1}{n+\alpha}\sin \theta = A,$$

$$0 + 0 = A,$$

$$h(l) = \frac{1}{-3\pi} \sin_{1}(1.2)(2) \left\{ 0.5 - 0.5 \cos_{2} \frac{2\pi}{q_{-1}} \right\}$$

$$= -0.00686$$

$$A(2) : \frac{1}{-2\pi} \sin_{1}(1.2)(-2) \left\{ 0.5 - 0.5 \cos_{2} \frac{2\pi}{8} \right\}$$

$$= -0.0104 \left\{ 0.5 \right\}_{=+0.5315}$$

$$h(3) : \frac{1}{-\pi} \sin_{1}(-1.2) \left\{ 0.5 - 0.5 \cos_{2} \frac{2\pi}{8} \right\}$$

$$= 0.258$$

$$h(4) : \frac{1.2}{\pi} \left(0.5 - 0.5 \cos_{2} \frac{8\pi}{8} \right) = 0.3819$$

$$h(n) = h(n-1-n)$$

$$h(n) = h(g-n) \quad h(0) = h(g)$$

$$h(2) = h(6)$$

$$h(3) = h(5)$$

$$h(3) = h(5)$$

$$h(1) = h(4)$$

$$h(1) = h(6)$$

$$h(2) = h(6)$$

$$h(3) = h(5)$$

$$h(3) = h(6)$$

$$h(3) = h(6)$$

$$h(3) = h(6)$$

$$h(3) = h(5)$$

$$h(3) = h(5)$$

```
= -0.00686(\bar{z}^1 + \bar{z}^T) + 0.5375(\bar{z}^2 + \bar{z}^6) + 0.258(\bar{z}^3 + \bar{z}^5)
              +0.98192 4
H_{a(w)}: \int e^{j3w}; -T/4 \leq w \leq T/4
         N=T Similar to prob. O
Hd(w) = { 0 Otherwise
given: N=7

Aero phase FIR LPF

Assumis 1 = (m)A
 (i) Hallw) = \begin{cases} 1, -\frac{\pi}{4} \leq \omega \leq \frac{\pi}{4} \end{cases}
 (ii) Take inverse fourier transporm

ha (n) = 1 5 Hacus e Jundu.

-we
                   = \frac{1}{2\pi} \int_{-\omega_{L}}^{\omega_{L}} 1 \cdot e^{-\frac{1}{2}\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_{L}}^{\omega_{L}} \frac{1}{2\pi} e^{-\frac{1}{2}\omega n} d\omega
                  = \frac{1}{2\pi} \left[ \sum_{j=1}^{\infty} \frac{e^{j\omega n}}{j^n} \right]_{-\omega_c}^{-\omega_c} = 0
                   z _t ejwen _ ejwen]
                     = In Sinwen 1 (8)d
```

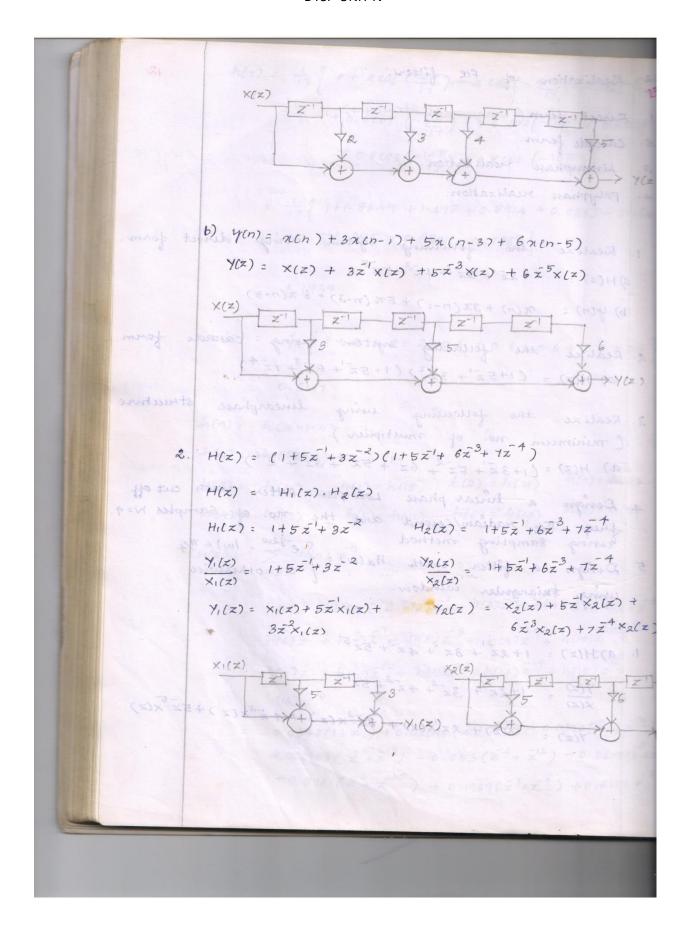
has
$$n = \frac{1}{\pi m} \sin \omega_{0}$$
 $n \neq 0$.

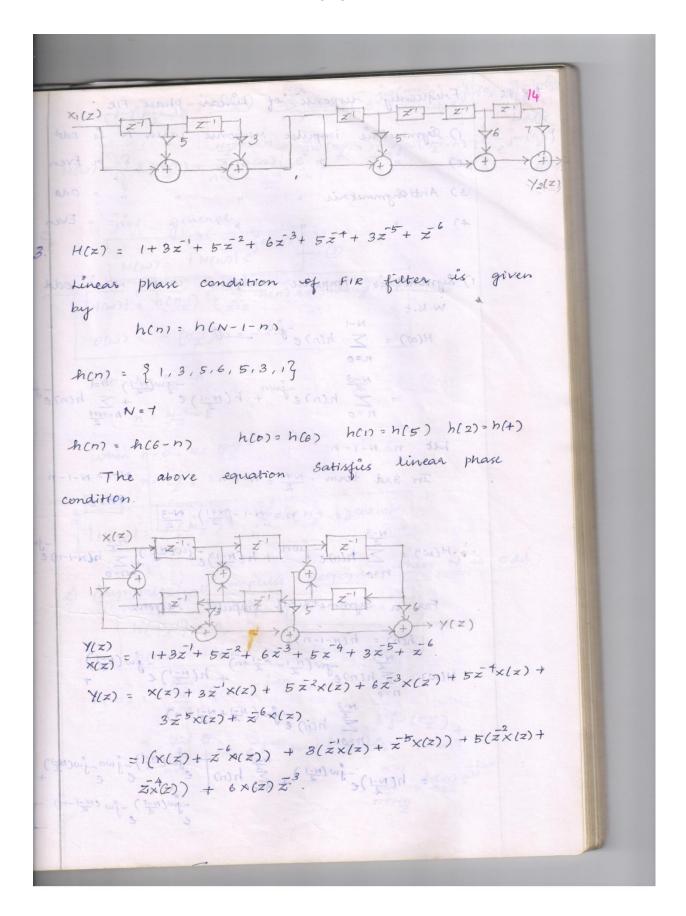
apply the Hospital rule

It $\sin \omega_{0}$
 $9 + 0$
 $8 = 1$

$$= \frac{1}{\pi m} \sin \omega_{0}$$
 $\sin n + 0$

The singular variable $\sin n + 0$
 $\sin n$


```
H(z) = \sum_{n=0}^{\infty} h(n) \overline{z}^n
               = h(-3)z3+h(-2)z+h(-1)z'+h(0)z+h(1)z+h(1)z+
               h Co) = 3 short bodignot & pipulage
      = 0.0750(z^3 + z^3) + 0.1591(x^2 + z^2) + 0.2251(z^1 + z) +
                    0.25
4. Designo a linear phase and xero phase AP FIR
   filter with cut off freq. 1.2 rad/ser and N=9.
    use Hamming window.
    given; Linear phase


N= 9
                 We = 1.2 rad/seconds
    Hamming window
                                           (much) a hat (vi) bls
   in Hd(w) = \begin{cases} = jw\alpha, -\pi \leq w \leq -wc \\ 0 \text{ otherwise } wc \leq w \leq \pi \end{cases}
   ii. Take inverse fourier transform.
     hacn = In Hacw) e Jwn dw.
               =\frac{1}{2\pi}\int_{-\pi}^{-\omega_c} e^{j\omega n} d\omega + \frac{1}{2\pi}\int_{-\pi}^{\pi} e^{j\omega n} d\omega.
 = \frac{1}{2\pi} \left[ \frac{e}{j(n-\alpha)} \right]_{-\pi}^{-\pi} + \frac{i}{2\pi} \left[ \frac{e^{j\omega(n-\alpha)}}{j(n-\alpha)} \right]_{-\omega}^{\pi}
                 =\frac{1}{2\pi}\left[\begin{array}{c} e^{j\omega_{c}(n-\alpha)}-e^{-\pi j(n-\alpha)}+e^{j\pi(n-\alpha)}-e^{j\omega_{c}(n-\alpha)}\\ \frac{1}{2\pi}(n-\alpha)\end{array}\right]
 =\frac{1}{\pi(n-\alpha)}\begin{bmatrix} (e^{-})^{\alpha +1} & -i\pi(n-\alpha) \\ \frac{i}{2\pi(n-\alpha)} & \frac{i}{2\pi(n-\alpha)} \\ \frac{i}{2\pi(n-\alpha)} & \frac{i}{2\pi(n-\alpha)} \end{bmatrix}
```

habit Tonicon 27 Since Com 27
habit = $\frac{1}{\pi(n-\alpha)}$ [$\frac{1}{8}$
Applying L'Hospital Incle
h(8) z + (z + z) + 0 228 (z + z) +
$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$
$\frac{1}{\pi} - \frac{w_c}{\pi} = 1 - \frac{w_c}{\pi}, n = \infty$
halm) = 10 # - we - towe , n = x or
(") stamming window is given try
$w(n) = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right); & n=0 \text{ to } N-1 \end{cases}$
lo, otherwise
the winds window .
(n) $h_{\alpha}(n) = h(n)w(n)$
$h(n) = \frac{1}{\pi(n-\alpha)} \left[\sin(n-\alpha)\pi - \sin(\omega_c(n-\alpha)) \right] \left\{ 0.54 - 0.46 \cos(n-\alpha) \right]$
$h(n) = (1 - \omega_c) \left(0.54 - 0.46 \cos \beta \pi n \right) ; n = \alpha$
$h(n) = \left(1 - \frac{\omega_c}{\pi}\right) \left(0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right)\right) ; n = \alpha$ $0 \le n \le N-1$
- 120
$\alpha = \frac{N-1}{2} = \frac{q-1}{2} = 4$
hlo) = -411 [sin (-411) - sin 1.2(-4)] { 0.54-0.46 coso}
= 0.0792 × 0.08
= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
(x-a)
h(1) = 1 [sin(-311) - sin 1.2(-3)] { 0.54 - 0.46 888(8.
= 0.0469 x 0.2148 = 0.01007

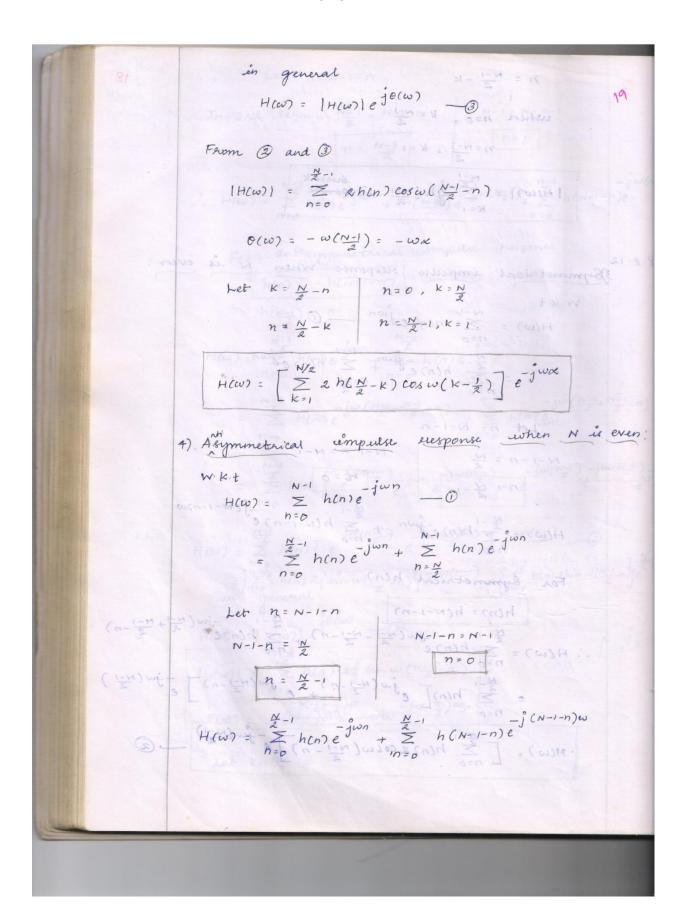
```
h(a) = -2# [ sin (-2#) - sin 1.2(-2)] {0.54 - 0.46 cos(4#)}
 h(3) = \frac{1}{-\pi} \left[ 8in(-\pi) - 8in(-\pi) \right] \left\{ 0.54 - 0.46 \cos \frac{6\pi}{3} \right\}
       - - 0.2566.
   3 Sample Holes at regular interval of N
 h(4): (1-12)(0.54-0.46 cos 87)
       = 0.6181.
  h(n) = h(N-1-n)
  h(n) = h(8-n) the patriages are stugmes (1)
 h(0) = h(8), h(1) = h(7), h(2) = h(6), h(3) = h(5)
  H(z) = \sum_{n=0}^{N-1/2(N)} h(n) z^{n} \leq s + r(n)H 
    = h(0) + h(1)z+ h(2)z2+ h(3)z3+ h(+)z4+
 h(5)\bar{z}^{5} + h(6)\bar{z}^{-6} + h(7)\bar{z}^{-7} + h(8)\bar{z}^{-8}
        = 0.0063 + 0.01007 z' - 0.0581z^{2} - 0.2566z^{3} +
           0.618124-0.256625-0.058126+0.0100727+
 Determine the confidenting 36 E 300. O linear phase
(1+z^8)0.0063 + (z+z^6)
            · - 0.2566(z3+z5)
            Use Gampling method,
```

```
Realization of FIR fitters:
                                                        12
   Direct form (Transversal Structure)
  Cascade form.
3. Linearphase realization
4. Polyphase realization.
 1. Realize the following system using direct form.
  3) H(x) = 1+2x+3x+4x3+5x5
  b) y(n) = n(n) + 3x(n-1) + 5x(n-3) + 6x(n-5)
2. Realize the following system using cascade form
   a) H(z) = (1+5z'+3z^2)(1+5z'+6z^3+7z^4)
3. Realize the following using linearphase structure
  ( minimum no. of multiplier).
   a) H(z) = (1+3z+5z+6z3+5z+3z5+z-6)
4. Designo a linear phase Low pass Filter with cut of
  freq. T/2 radian/second and the no. of Samples N=9.
  Justing Sampling method.
5. Design a filter with Ha(w) = \begin{cases} e^{-j2w}, |w| \in T/4 \\ 0 \end{cases}
using triangular window.
1. a) H(z) = 1+ &z + 3z + 4 z 3 + 5z 5
  \frac{Y(z)}{x(z)} = 1 + 2z^{2} + 3z^{2} + 4z^{3} + 5z^{5}
  \gamma(z) = \chi(z) + 2z \chi(z) + 3z^2 \chi(z) + 4z^3 \chi(z) + 5z^5 \chi(z)
```


111	7.8.12 Frequency Homoson of 10
	P. 8. 12 Frequency response of Linear phase FIR:
112	1) Dymmetrie impulse response when N is odd
	2) " " Even
	3) Anti Eymmetric " " " " Odd
	4) 3 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	1) Symmeters Impulse response when is odd
	W. k.t
	$H(\omega) = \sum_{n=0}^{N-1} h(n)e^{-j\omega n} - 0$
	$\frac{N-3}{2}$ - $\frac{1}{2}$
	$n=0$ $\frac{N-3}{2}$ $= \sum_{n=0}^{N-3} h(n)e^{j} + h(\frac{N-1}{2})e^{-j} + \sum_{n=0}^{N-1} h(n)e^{j}$
	het n = N - 1 - n $het n = N - 1 - n$
	In 3ad term, $\frac{N+1}{2} = N-1-n$ avoid $N-1=N-1-n$
	2 = Man Total
	$n = N-1 - \left(\frac{N+1}{2}\right) = \frac{N-3}{2}$
	$H(\omega) = \sum_{n=0}^{N-3} h(n)e^{-j\omega n} + h(\frac{N-1}{2})e^{-j\omega(\frac{N-1}{2})} + \sum_{n=0}^{N-3} h(n-1-n)e^{-j\omega}$
	TO THE RESERVE OF THE PARTY OF
100	For a Symmetrical impulse response,
	h(n) = h(n-1-n)
	$H(w) = \sum_{n=0}^{N-3} h(n)e^{\int_{-\infty}^{N-1} e^{-\frac{1}{2}+n}} + h(\frac{N-1}{2})e^{\int_{-\infty}^{N-1} e^{-\frac{1}{2}+n}} + h(\frac{N-1}{2})e^{\int_{-\infty}^{N-1} e^{-\frac{1}{2}+n}}$
	$\stackrel{N-3}{\stackrel{>}{\succeq}} h(n) = \int_{0}^{\infty} \left(\frac{N-1}{2} + \frac{N-1}{2} - n \right).$
	+(z)x=)d+((z)xd= h=0.
	$= h(\frac{N-1}{2})e^{-\frac{1}{2}\omega(\frac{N-1}{2})} + \sum_{n=0}^{N-2}h(n) = e^{-\frac{1}{2}\omega(\frac{N-1}{2})} - \frac{1}{2}\omega(\frac{N-1}{2}) $
	$-j\omega(\frac{N-1}{2})-j\omega(\frac{N-1}{2}-n)$
	e e'

$$= h\left(\frac{n-1}{2}\right)e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}\right)} + \frac{n-3}{n-2}h(n)\left[e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}-n\right)} + e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}-n\right)}\right]e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}-n\right)}$$

$$+ h(\omega) = \left\{\frac{n-1}{2} + \frac{n-3}{2}h(n)\left[e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}-n\right)} + e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}-n\right)}\right]e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}\right)}$$


$$+ h(\omega) = \left[\frac{n-1}{2}\left(\frac{N-1}{2}\right) + \frac{n-3}{2}h(n) + e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}-n\right)}\right]e^{-\frac{1}{2}\omega\left(\frac{N-1}{2}\right)}$$

$$+ h(\omega) = h(\omega) + \frac{n-3}{2}h(\omega) + \frac{n$$

Let n=N-1=n (()) () () () ()
(1-1) wi- 5- (In 3rd term) N+1 = N-1-n N-1= N-n-1
$n = \frac{N-3}{2}$
$N-3$ $\sqrt{N-3}$ $N-$
:. $H(w) = \sum_{n=0}^{N-3} h(n)e^{-jwn} + h(\frac{N-1}{2})e^{-jw(\frac{N-1}{2})} + \sum_{n=0}^{N-3} h(n-1-n)e^{-jwn}$
For antisymmetrical impulse response
hen = - hen-1-n2
H(n)h(n-1) = 0.78 wh = -co(1-xi) - 1-co(10)
$H(\omega) = \sum_{n=0}^{\frac{N-3}{2}} h(n)e^{-j\omega n} - \sum_{n=0}^{\frac{N-3}{2}} h(n)e^{-j\omega(N-1-n)}$
$= \sum_{n=0}^{N-3} h(n)e^{-\frac{1}{2}(\frac{N-1}{2} - \frac{N-1}{2} + n)} \sum_{n=0}^{N-3} h(n)e^{-\frac{1}{2}(\frac{N-1}{2} + \frac{N-1}{2} - n)}$
n=0 N-3 N-3
$= \sum_{n=0}^{N-3} h(n) \left[e^{j\omega(N-1)} - j\omega(N-1) - j\omega(N-1$
$H(\omega) = \sum_{n=0}^{N-3} h(n) \left[e^{-j\omega(N-1-n)} - j\omega(N-1-n) \right] e^{-j\omega(N-1-n)} $
$H(\omega) = \sum_{n=0}^{\infty} h(n) \left[e^{-\frac{1}{2} \sin \omega \left(\frac{N-1}{2} - n \right)} \right] e^{-\frac{1}{2} \omega \left(\frac{N-1}{2} \right)} = \sum_{n=0}^{\infty} h(n) 25 \sin \omega \left(\frac{N-1}{2} - n \right) \left[e^{-\frac{1}{2} \cos \omega \left(\frac{N-1}{2} - n \right)} \right] e^{-\frac{1}{2} \cos \omega \left(\frac{N-1}{2} - n \right)} e^{-1$
10(a) (9-1-m)d - (m)d
$H(\omega) = H(\omega) e^{\omega}$ $\int_{-\infty}^{\infty} e^{\omega} \int_{-\infty}^{\infty} h(n) a^{\omega} \sin \omega (N(n-1)-n) = (\omega)H$
$ H(\omega) = \sum_{n=0}^{N-1} h(n) \text{ af sin } \omega(N_{2}^{-1} - n)$ $= (0.5)H$ $= (0.5)H$ $= (0.5)H$ $= (0.5)H$ $= (0.5)H$
$O(\omega) = -\frac{1}{2}\omega^{\frac{1}{2}} - \frac{1}{2}\omega^{\frac{1}{2}} - \frac{1}{2}\omega^{\frac{1}{2}} = \frac{1}{2}\omega^{\frac{1}{2}} + \frac{1}{2}\omega^{\frac{1}{2}} = \frac{1}{2}\omega^{\frac{1}{2}} =$
het k= k= -n

when
$$n = 0$$
, $k = \frac{N-1}{2}$
 $n = \frac{N-1}{2} - k$

when $n = 0$, $k = \frac{N-1}{2}$
 $n = \frac{N-1}{2}$, $k = 1$
 $n = \frac{N-1}{2}$, $k = 1$
 $n = \frac{N-1}{2}$, $k = 1$
 $n = \frac{N-1}{2}$
 $n = \frac{N-1}{2}$
 $n = \frac{N-1}{2}$
 $n = 0$
 $n = 0$

For authornmetrical htm.,

$$|h(n)| = -h(n-1-n)$$

$$|h(w)| = \sum_{j=0}^{\infty} h(n) = \frac{1}{j} \omega(\frac{n-1}{2} - n) = \frac{1}{j} \omega(\frac{n-1}{2} - n)$$

$$|h(w)| = \sum_{j=0}^{\infty} h(n) = \frac{1}{j} \omega(\frac{n-1}{2} - n) = \frac{1}{j} \omega(\frac{n-1}{2} - n) = \frac{1}{j} \omega(\frac{n-1}{2} - n)$$

$$|h(w)| = \left[\sum_{j=0}^{\infty} h(n) = \frac{1}{j} \omega(\frac{n-1}{2} - n) = \frac{1}{j} \omega(\frac{n-1}{2}$$

9.8.12	LINIVERSITY PROBLEMS: Jasietsmingstone and
1 .	Design an ideal differentiator with frequency
(2-60+1	response Hacejw) = jw , - T & w & T using hammen
	response $Hd(e^{\int w}) = \int w$, $-\pi \leq w \leq \pi$ using hammed window with $N = 87$
Jan (1-11) mg	response is Haledw) = S-j, 0 = w = T with
	Design a Hilbert transformer whose frequent response is $Hd(e^{j\omega}) = \begin{cases} -j, 0 \le \omega \le \pi \end{cases}$ with using Blackman window. $j : -\pi \le \omega \le 0$
	9(10) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
	CONDUTION FOR IDEAL DIFFERENTIATOR:
1	
	(i) In Ideal differentiator if N is ever
	$ha(n) = -8en \pi(n-\alpha)$ $n \neq \alpha$
	T(n-x)
3-	if is gold with the court
	$h_{\lambda}(n) = \cos \pi (n-x)$ $n \neq \infty$
	T (n-x)
	hacm = 0, n=a. (wild = could)
	(ii) Freq. response of ideal differentiator
	is antisymmetric i.e ha(n) = -ha(-n) and h(n) =
	anorsymmetrico de la
2.	CONDITION FOR HILBERT TRANSFORMER.
	CONDITION FOR HILBERT TRANSFORMER:
	Imperlse response is antisymmetrie i
	halm = -hal-n)
	N= X-1 - K= 1
2	Given: $Ha(e^{j\omega}) = \int -j , 0 \leq \omega \leq \pi$ $\int -\pi \leq \omega \leq 0$
	- Coult
	7, -11 = 10 = 0
	N= 11 .
-	

Jaking inverse former triansform of Hately)

$$\frac{1}{8\pi} \int_{0}^{\infty} H_{a}(w)e^{\frac{1}{2}w^{n}}dw$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} f e^{\frac{1}{2}w^{n}}dw + \frac{1}{2\pi} \int_{0}^{\infty} e^{\frac{1}{2}w^{n}}dw$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} e^{\frac{1}{2}w^{n}}dw + \frac{1}{2\pi} \int_{0}^{\infty} e^{\frac{1}{2}w^{n}}dw$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} e^{\frac{1}{2}w^{n}}dw + \frac{1}{2\pi} \int_{0}^{\infty} e^{\frac{1}{2}w^{n}}dw$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{\frac{1}{2}w^{n}} + e^{-\frac{1}{2}w^{n}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} - \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}} \right] \right]$$

$$= \frac{1}{8\pi} \int_{0}^{\infty} \left[e^{-\frac{1}{2}e^{\frac{1}{2}w^{n}}$$

$$h(n) = h_{A}(n) w c n$$

$$h(n) = \frac{1}{777} \left[1 - \cos n\pi \right] \left\{ 0.42 + 0.5 \cos \frac{2777}{N-1} + 0.08 \cot \frac{4777}{N-1} \right\}$$

$$h(n) = 0 , n = 0 , -\frac{(N-1)}{2} \le n \le (N-1)$$

$$h(n) = -h(-n)$$

$$h(n) = -h(-n)$$

$$h(n) = \frac{1}{17} \left[1 - \cos \pi \right] \left\{ 0.42 + 0.5 \cdot 277 + 0.08 \cos \frac{4777}{10} \right\}$$

$$= \frac{1}{17} (2) \left\{ 0.42 + 0.40 + 0.0247 \right\}$$

$$= \frac{1}{277} \left[1 - \cos 277 \right] \left\{ 0.42 + 0.5 \cos \frac{477}{10} + 0.08 \cos \frac{877}{10} \right\}$$

$$= \frac{1}{277} (1 - 1) \left\{ 0.42 + 0.5 \cos \frac{477}{10} + 0.08 \cos \frac{877}{10} \right\}$$

$$= 0$$

$$h(3) = \frac{1}{377} \left[1 - \cos 377 \right] \left\{ 0.42 + 0.5 \cos \frac{477}{10} + 0.08 \cos \frac{1277}{10} \right\}$$

$$= \frac{1}{377} (2) \left\{ 0.42 + (-0.1545) - 0.0647 \right\}$$

$$= 0.0425$$

$$h(4) = \frac{1}{477} \left[1 - \cos 477 \right] \left\{ 0.42 + 0.5 \cos \frac{877}{10} + 0.08 \cos \frac{1277}{10} \right\}$$

$$= \frac{1}{477} (0)$$

$$h(s) = \frac{1}{5\pi} \left[1 - \cos 5\pi \right] \left\{ 0.42 + 0.5 \cos \frac{10\pi}{10} + 0.08 \cos \frac{20\pi}{0} \right\}$$

$$= \frac{1}{5\pi} (A) \left\{ 0.42 + 0.5 + 0.08 \right\}$$

$$= 0$$

$$h(1) = -h(-1) \quad h(2) = h(-2) \quad h(3) = -h(-3) \quad h(4) = -h(-4) \quad h(5) = -h(-6) \quad h(6) = -h(-6) \quad h(6) = -h(-6) \quad h(6) = -h(-6) = -h(-6) \quad h(6) = -h(-6) =$$

Design a fitter with
$$Hdtw$$
 = $\begin{cases} e^{\int aw}, |w| \leq \pi/4 \\ 0, otherwise \end{cases}$

if $Hdtw$ = $\begin{cases} e^{\int 2u}, -\pi \leq w \leq \pi/4 \\ 0, otherwise \end{cases}$

if $Hdtw$ = $\begin{cases} e^{\int 2u}, -\pi \leq w \leq \pi/4 \\ 0, otherwise \end{cases}$

if $Hdtw$ = $\begin{cases} e^{\int 2u}, -\pi \leq w \leq \pi/4 \\ 0, otherwise \end{cases}$

if $Hdtw$ = $\begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int w} dw$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

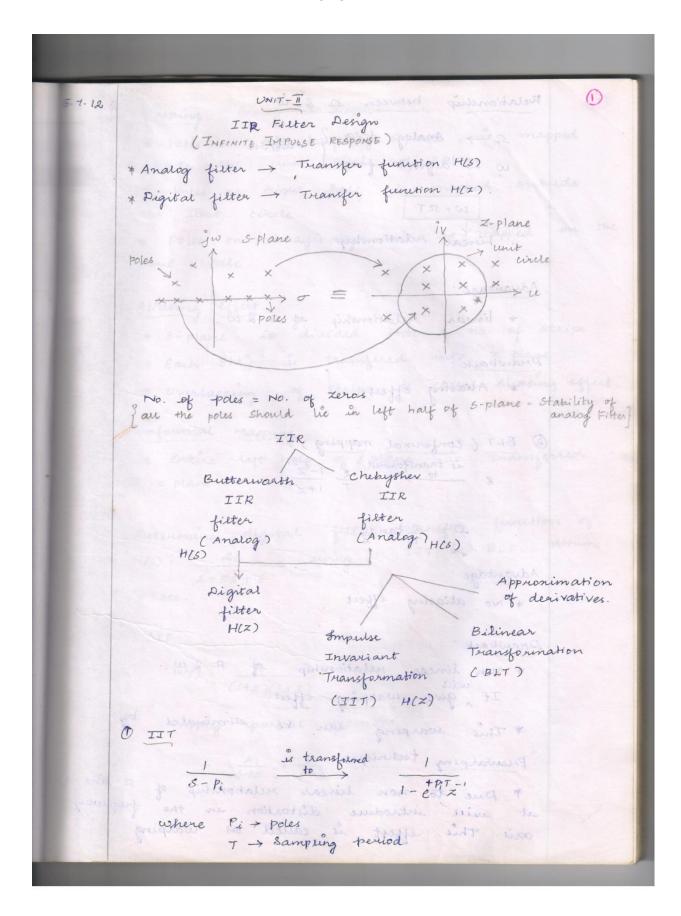
$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$


$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$= \begin{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}, Hdtw \end{cases} e^{\int \pi}$$

$$=$$

$$h(n) = \frac{1}{|\pi(n-2)|} \frac{1}{|\pi(n-2)$$

```
h(n) = -h(-n) hacroway submitted moldoseq
                      h(-i) = -h(i)
                       h(-2) = -h(2) manip & anshawn primmatt
     h(-3) = -h(3)
H(z) = \frac{2}{z} h(n) z^n
                                                                             n=(N-1)
= h(-3)z^{3} + h(-2)z^{2} + h(3)z^{1} + h(0)z^{2} + h(1)z^{1} + h(1)z^{2} + 
                           = 0.0266 \left(z^3 - z^3\right) + 0.155 \left(z^2 - z^2\right) + 0.9383 \left(z^{+1} - z^{2}\right)
                                                                                                                                       = 23)+0.25= 3350-0- =
```


AT I Milling	
all of or	Relationship between 52 8 W. 2
	\$\alpha \rightarrow Analog freq. } read/sec \times \rightarrow digital freq. }
	w > digital freq.
	A Dugit at Julier - Transfer functions HEED
	Linear relationship.
	Advantage:
	* linear relationship of 52 & w.
	Prawback:
The second	* Alianing Effect on a solot factor
	@ BLT (conformal mapping).
	8 $\xrightarrow{\text{is transformed}}$ $\xrightarrow{2}$ $\xrightarrow{1-z}$ $\xrightarrow{1+z}$
	Q = 2 tan w (palana)
THE RESIDENCE SOUTH \$ 1	Advantage:
wastives.	* No alianny effect
How	Drawback:
	* non linear relationship of 2 & w.
	It give warping effect.
	* This warping can be eliminated by
	"prewarping technique".
	it will introduce distortion in the frequency
	* Due to non linear relationship of 52 and it will introduce distortion in the frequency oxis this effect is called as warping.

3 Mapping: Analog into Digital * Poles on left half of 8 plane us mapped inside the unit circle of x plane * Poles on right half is mapped outside the unit circle. * Poles on imaginary axis is mapped on the unit circle. Aliasing Effect: * 5-plane is divided into a no. of staips * Each Strip is transfered into z plane * Overlapping of Strips is called Aliasing effect. Conformal Mapping: A Entiro left harf of splane is transferred to z plane. Determine digital filter transfer function of $H(s) = \frac{2}{c^2 + c^2 + c^2}$ using (a) IIT (b) BLT. Assume 52+58+6 T= 1 sec. (a) IIT: 65018411 280 32 238 1-1 $H(s) = \frac{2}{(s+2)(s+3)}$ Apply partial fraction. $= \frac{A}{S+2} + \frac{B}{S+3}$

$$A = A(3+3) + B(5+2)$$

$$A = 3$$

$$= \frac{2(1-0.0497\bar{z}'-1+0.1353\bar{z}')}{(1-0.1353\bar{z}')(1-0.0477\bar{z}')}$$

$$= \frac{0.1712z''}{1-0.0497\bar{z}'-0.1353\bar{z}'+0.0067\bar{z}'^2}$$

$$H(z) = \frac{0.1712z''}{1-0.185z'+0.0067\bar{z}'^2}$$

$$H(z) = \frac{3}{1-z''} \frac{1-z''}{1+z''}$$

$$H(z) = \frac{3}{1-z''} \frac{1-z''}{1+z''} + \frac{3}{1-z''} + \frac{3}{1-z''} + \frac{3}{1-z''}$$

$$H(z) = \frac{3}{1-z''} \frac{3}{1-z''} + \frac{3}{1-z''} \frac{3}{1-z''} + \frac{3}{1-z''} \frac{3}{1-z''}$$

$$H(z) = \frac{3}{1-z''} \frac{3}{1-z''} + \frac{3}{1-z''} \frac{3}{1-z''} + \frac{3}{1-z''} \frac{3}{1-z''} + \frac{3}{1-z''} \frac{3}{1-z''}$$

	(12822)
2	xcn2 = {1,2,1,2,3,1,4,5}
	hen = { 2, 13
	21, cn7 = {1,2}
	72(n) = {1,2}
	23cn7 = \$3,1300 + 28810 -1
	$\mathcal{A}_{4}(n) = \left\{4,5\right\}$
	* Add Na-1 zeros to au the cequence
	$a_1(n) = \{1, 2, 0\}$ $a_2(n) = \{1, 2, 0\}$ $a_3(n) = \{3, 1, 0\}$
	$24(n) = \{4,5,0\}$ $h(n) = \{2,1,0\}$
	* $\alpha_1(n)$ $\beta_1(n) = \begin{bmatrix} a & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix}$
	22(n) (8) h(n) = [2 0 1][1] = [2]
	$22(n) \otimes h(n) = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}$
	azen) (hen) = [a 0 17[3] - [6]
	$\alpha_3(n) \oplus h(n) = \begin{bmatrix} a & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}$
	$\alpha_{H(n)} \otimes h(n) = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 14 \\ 5 \end{bmatrix}$
	H(Z) = = = (Z) = = = (Z) = = = (Z) = = = (Z) =

```
\alpha_{1}(m) \otimes h(m) = \begin{bmatrix} 2 & 5 & 2 \end{bmatrix}
\alpha_{2}(m) \otimes h(m) = \begin{bmatrix} 2 & 5 & 2 \end{bmatrix}
                                                                               (F)
   23(m) him = [6 5 1]
   24(m @ hen) =
      yen= { 2,5,4,5,8,5,9,14,5}
(b) Overlap save method:
    \alpha(n) = \frac{2}{1}, 2, 1, 2, 3, 1, 4, 5
   henr = {2,1}
 * a,(n) = {0,1,2}
   22(m) = { 2,1,2} all med wat he round
    24(m) = {1,4,5} ( ) ( ) de diapo de in
   As - Equin at S.B. 1 50,0,0 } = 1012x
+ Add N2-1 zeroes to h cm . hcm = { 2,1,0}
  \alpha_{i}(n) \oplus h(n) = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}
   a_{2}(n) \oplus h(n) = \begin{bmatrix} 2 & 0 & 1 & 1 & 2 \\ 1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 5 \end{bmatrix}
   a_3(n) \otimes h(n) = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}
    \alpha_{4}(m)\otimes h(n) = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 5 & 1 \end{bmatrix}
```

all t	
	$25(n) \otimes h(n) = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 0 \end{bmatrix}$
	$\alpha_{i}(m) \oplus h(m) = \begin{bmatrix} 2 & 2 & 5 \end{bmatrix}$
	22(n) @h(n) = [6 4 5]
	$\alpha_3(n) \otimes h(n) = [5 8 5]$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	75(n) & hcm = [10 5 o]
	y(n) = 8 2 = 1 = 2 = 2
	y(n) = { 2,5,4,5,8,5,9,14,5,0}
9.7.12	Design of Low Pass IIR Butterworth Filter:
	Specifications:
	$A_1 \rightarrow \text{ Grain at } P.B$ $A_2 \rightarrow \text{ Grain at } S.B$ $A_3 \rightarrow \text{ Wo unit}$
	$k_s \rightarrow c_7 ain$ at $p.B$ f unit dB $k_z \rightarrow c_7 ain$ at $s.B$
	2, -> Analog freq at PB 7
	\$2 > " at S.B unit
	* w. > Digital freq at p.B read/sec
	$w_2 \rightarrow w_2$ at sign of
	t, PB freq in Hz
	te > 3.8 freq in Hz
	Con a stri
	$S=2$ = $2\pi f_2/F$ (a) $d = 2\pi f_2/F$ $E=Sampling freq$
	F = Sampling frequency

A1 = 10 K1/20 MM 2 M 4 T (9) A2 = 10 + k2/20 11 143 $k_1, k_2 \rightarrow ahvays$ negative value. Priocedure: 1. Choose IIT/BLT prompty point () 2. Calculate $\frac{\Omega_2}{\Omega_1}$ For III, $\frac{S_2}{S_1} = \frac{w_2}{w_1}$ For BLT, 52 tan well tanwell 3. Determine the order of the filter N $\frac{1}{2}\log\left\{\left(\frac{1}{A_{2}^{2}-1}\right)/\left(\frac{1}{A_{1}^{2}-1}\right)\right\}$ $\log\left(\frac{S_{2}}{S_{1}}\right)$ 4. Calculate analog cut off freq. (sc) FOR TIT, $\Omega_c = \frac{\omega_1/\tau}{\left[\frac{1}{A_1^2} - 1\right]^{\gamma_{eN}}} \frac{\Omega_1}{\left[\frac{1}{A_2} - 1\right]^{\gamma_{eN}}}$ For BLT, $\Omega_{c} = \frac{2}{T} \tan \frac{w_{1}/2}{2N}$ (a) $\frac{\Omega_{1}}{\left[\frac{1}{A_{1}^{2}}-1\right]/2N}$ 5. Find H(5) (normalized filter) If N is even, $H(S) = \prod_{k=1}^{n} \frac{1}{S^2 + b_k S + 1}$ Seondition for normalized fitter: Di= 1 rad/sec }

If N is odd, $H(S) = \frac{1}{S+1} \frac{N-1}{K} = 1$ $K = 1 S^{2} + b_{k}S + 1$
H(5) = 1 17
k = 1 k = 1
where $bk = 2 sin \left(\frac{(ak-1)h}{2N}\right)$
6) Analog frequency transformation
$LPF \qquad S \rightarrow \frac{S}{S2c} \qquad Stalvalo3 \qquad S$
$HPF \qquad S \rightarrow \frac{Q_L}{S}$
1) Convert H(s) -> H(Z) using BLT/IIT.
1. Design a butterworth , LPF IIR filter using
BLT to satisfy following specifications
0.6 = 1 H(ejm) 1 = 1.0 ; for 0 & W = 0.35 TT
[H(ejω)] ≤ 0.1.; 0. 1 ≤ ω ≤ ≥ σ.
In general: A. \(H(e \(\)) \(\) = 1.0; \(0 \) \(\) \(\) \(\)
$ H(e^{j\omega}) \leq A_2$; $w_2 \leq w \leq \pi$
Guven data:
$A_1 = 0.6$ $\omega_1 = 0.35\pi$ rad/Sec
A - 0.1 Wo = 0. HT wad/se,
IIR Butterworth LPF using BLT.
(i) cuiven transformation le BLT.
Semidition you normalised fiften: see = 1 read / see }

($\frac{\Omega_{\ell}}{\Omega_{1}} = \frac{\tan w_{\ell}/2}{\tan w_{1}/2}$
	= tan 0.11 $tan 0.3511$ $= 1.9626$
	0.6128
aii	$\frac{\Omega_{2}}{52_{1}} = 3.2026$ $N_{1} = \frac{1}{2} \log \left(\frac{1}{A_{2}^{2}} - 1 \right) / \left(\frac{1}{A_{1}^{2}} - 1 \right)^{2}$
	log (522/527)
	$= \frac{1}{2} \log \left\{ \left(\frac{1}{(0.1)^2 - 1} \right) / \left(\frac{1}{(0.6)^2 - 1} \right) \right\}$ $\log \left(3.2026 \right)$
	2 Log { 99/1.7178} 4 A D D D D D D D D D D D D D D D D D D
Po	log 3.2026
	$N_1 = 1.7267$ $N = 2 $
civo	$\Omega_{c} = \frac{92 + \frac{2}{7} \tan w v_{2}}{\left[\frac{v_{A_{1}}^{2} - 1}{A_{1}^{2} - 1}\right]^{1/2} N}$
	assume T = 1 Sec

All	
	S2c = 2 tan 0.35 T
	TI'd not
	= 2x0.6128 1280 met
	S2c = 1.0614 rad/sec.
	(V) N is even $\frac{N}{R}$ $H(5) = \frac{1}{1}$
The state of the s	$H(s) = \frac{1}{\sqrt{s^2 + b_K s + 1}}$
	$H(S) = \frac{1}{S^2 + b, S + 1}$
	$b_1 = 2 n \left(\frac{2 k - 1}{2 N} \right)$
	bi = 0.4948+++ 1 (PP 3 pal 1)
	$H(S) = \frac{1}{s^2 + 0.4948 s + 1}$
	Vi) for LPF, sees gol
	$H(S) = \frac{1}{\left(\frac{8}{1.06}\right)^2 + 0.4948\left(\frac{8}{1.06}\right) + 1}$
	$H(5) = \frac{1.1236}{8^2 + 0.52458 + 1.1236}$
	assume T = 1 Sec

(N) converting H(5) to
$$H(z)$$
 $S \rightarrow \frac{L}{T} \frac{1-Z}{1+Z-1}$
 $H(Z) = \frac{1 \cdot 1256}{(8 \cdot 1-Z^{-1})^2 + 0.5245(2 \cdot \frac{1-Z^{-1}}{1+Z^{-1}}) + 1.1236}$
 $= \frac{1 \cdot 1236(1+Z^{-1})^2}{4(1+Z^2 + 8Z^{-1}) + 1.049(1-Z^2) + 1.1236(1+Z^{-1})^2}$
 $H(Z) = \frac{1 \cdot 1286(1+Z^{-1})^2}{8 \cdot 951Z^2 - 8Z^{-1} + 6.1726}$

Given: $0.107 \le |H(e^{\frac{1}{10}})| \le 1.0^{\circ}: 0 \le \omega \le 0.45\pi$
 $|H(e^{\frac{1}{10}})| \le 0.2^{\circ}: 0.65\pi \le \omega \le \pi$
 $A_1 = 0.107$
 $\omega_1 = 0.45\pi$
 $\omega_2 = 0.65\pi$ read/sec.

(i) Oriven transportation is BLT.

(ii) $\frac{D_2}{A_1} = \frac{\tan \omega_2/2}{\tan \omega_1/2}$
 $\frac{1 \cdot 6318}{0.46660.8541}$
 $\frac{G_1}{G_1} = \frac{1 \cdot 6318}{0.46660.8541}$

All	
	(iii) $N_1 = \frac{1}{2} \log \left\{ \left(\frac{1}{A_2^2} - 1 \right) / \left(\frac{1}{A_1^2} - 1 \right) \right\}$
	$log(\Omega_2/\Omega_1)$
	$\frac{1}{2} \log \left\{ \left(\frac{1}{(0.2)^2} - 1 \right) / \left(\frac{1}{(0.707)^2} - 1 \right) \right\}$
	log(1.9105)
	Alexander 1 c RE14 tradition
	$= \frac{1}{2} \log(24/1.0006)$ $= \log(1.9105)$
	log (1.9105)
	A LARD PANNELL COM
	0.6899 + 1988 = (X)H
	17 340 NI = 2.45 3 1 (With 1911 & 1040
	THE WEST AND AND AND STANDED OF THE
	(iv) $\Omega_{C} = \frac{2}{T} \tan w_{1/2}$
	T 1/2 N 1/2 N
	14 14 14 14 14 15 1 1 1 1 1 1 1 1 1 1 1
	2 tan 0.45T most
	[(0. 101)2-1] 1/6 al gas most
	= 2×0.8541
	(1.0006) 1/6
	12c = 1.708 rad/see
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	6-1064 C-8541
wi	3018 1 +808 3 252

(A)	N is odd FARPA	(b)
	N is odd $\frac{N^{-1}}{2}$ $K = 1$	
	$= \left(s^{\frac{1}{2}}b + s + 1\right)\left(\frac{1}{s+1}\right)$	
	$b_1 = 2 \sin \left(\frac{2k-1}{2N}\right)$	
	= 2 Sin(1/6) 22 Low 200 = 7	
	b1 = 0.3318 solber sod 2 2 3 8608	
k	$H(S) = \left(\frac{1}{s^2 + 0.33185 + 1}\right)\left(\frac{1}{5+1}\right)$	
(v1)	for LPF, was the mountained to w	
	$s \rightarrow 5/a_c$	
Di,	H(3) = (8/1.408)2+0.3318 5 +1 (5/1.408	+1)
r dB	H mpris 2:9173 002 = 221.408 how dool	
to	$(8^2 + 0.19498+1)$ $(8+1.708)$	
	$H(5) = \frac{4.9827}{(5+1.708)(5^2+0.19435+2.1)}$	
(Vii)	converting H(s) into H(z)	
	$S \rightarrow \frac{2}{7} \left(\frac{ z^{-1} }{1+ z^{-1} } \right) \xrightarrow{7} \leftarrow S$	

- All Charles	
	H(z) = 4.9827 bbo 12 1 (v)
	$\left(\frac{2}{T}, \frac{1-\bar{z}'}{1+z'}, +1.708\right) \left(\left(\frac{2}{T}, \frac{1-z''}{1+z''}\right)^2 + \frac{0.5667}{0.1943} \left(\frac{2}{T}, \frac{1-\bar{z}'}{1+z''}\right)^2$
	H(Z) = 4.9827 (1+z')3
	[2(1-z')+1.708(Hz')][4(1-z')2+0-3886(1-z')+(1+z
	11.7.12 tog(24)1.(1549) viz 2 = 10
	8. Determins the order of Butterwarth filter
	4. Determine the order of Butterworth filter
	that has 3 de attenuation at 500 hz and
	5. Design a butterworth LPF Satisfying the following
	specification.
	$t_p = 0.1Hz$ $constant = 0.5 dB$ $F = 1Hz$
	$f_s = 0.15HZ$ $\alpha_s = 15 dB$ 6. For the given specification $\alpha_p = 3 dB$ $\alpha_s = 15 dB$
	2p = 1000 mad/ser 2s = 500 rad/ser. Design Apr
	butterworth filter (Manimally Flat filter) or . (Filter with monotonically decreasing for of
	magnitude susponse) reg. ficter is analog !
	3. Ω1 = 52 p = 200 rad/set of in (2)H prinsones (iv)
	Ω2 = Ω5 = 600 rad/ser (x-1) = 2
	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个

3	sellki = - 1 dB ord x m = ex x = 1 me = 12
tal	122 = 20dB = 0001XTX = 2 = 2 = 20d/sec
	$A_1 = 10^{\kappa_1/20}$ $A_2 = 10^{\kappa_2/20}$
	$A_1 = \frac{10}{120} \frac{1}{20} $ $A_2 = \frac{10}{20} \frac{30}{20}$
为	A ₁ = 0.8913
19	THOU A
	$N_{1} = \frac{1}{2} \log \left\{ \left(\frac{1}{A_{2}^{2}} - 1 \right) / \left(\frac{1}{A_{1}^{2}} - 1 \right) \right\}$
	log { 52/52, } 1) pal
	$= \frac{1}{2} \log \left\{ \left(\frac{1}{(0.0316)^2} - 1 \right) / \left(\frac{1}{(0.8913)^2} - 1 \right) \right\}$
	log { 600/200 }
	= \frac{1}{2} log \{ 1000.44/0.2587 \}
	Pro 2
	log 3 leg (0.51/2.21)
	$N_1 = \frac{1}{2} \log 3867.18 = 15.0376 = 3.76$ $\log 3$
	lug 3 4
	N = 15 4 . 6 ME
4.	Briven:
	$\kappa_1 = -3dB$
	$k_2 = -40 \mathrm{dB}$
	fi = 500 Hz 8b = 0 - = 18 = 20
	ta = 1000 Hz

DTSP-UNIT IV

$\Omega_1 = 2\pi_{\frac{1}{4}} = 2 \times 3 \pm 4\pi \times 500 = 1000\pi \text{ Mad/sec}$ $\Omega_2 = 2\pi_{\frac{1}{4}} = 2 \times \pi \times 1000 = 2000\pi \text{ Mad/sec}$ $A_1 = 10^{K_1/20} \qquad A_2 = 10^{K_2/20}$ $= 10^{-3/20} \qquad = 10^{-40/20}$ $A_1 = 0.7079 \qquad A_2 = 0.01.$ $N_1 = \frac{1}{2} \log \frac{2}{2} \left(\frac{1}{A_2^{1-1}} \right) / \frac{1}{A_2^{2-1}} \right)^{\frac{1}{2}}$ $\log_2(\Omega_2/\Omega_1)$ $= \frac{1}{2} \log_2\left(\frac{1}{(0-0)^2} \right) / \frac{1}{(0-1010^2} \right)^{\frac{1}{2}}$ $\log_2(2000\pi/1000\pi)$ $= \frac{1}{2} \log_2\left(\frac{1}{2} \right) \log_2(200\pi/1000\pi)$ $N_1 = 6.6476$ $N = 7.$
$ \Omega_{2} = 2\pi \frac{1}{8} 2 = 2 \times \pi \times 1000 = 2000 \pi \text{ Mad/set} $ $ A_{1} = 10^{\frac{1}{2}/20} \qquad A_{2} = 10^{\frac{\frac{1}{2}/20}} $ $ = 10^{-\frac{3}{20}} \qquad = 10^{-\frac{40}{20}} $ $ A_{1} = 0.1019 \qquad A_{2} = 0.01 $ $ N_{1} = \frac{1}{2} \log \frac{1}{2} \left(\frac{1}{A_{2}} \right) / \frac{1}{(A_{1}^{2} - 1)^{\frac{3}{2}}} \right) $ $ = \frac{1}{2} \log \frac{1}{2} \left(\frac{1}{(0 - 0)^{2}} \right) / \frac{1}{(0 - 101)^{2}} \right) $ $ = \frac{1}{2} \log \frac{1}{2} \left(\frac{1}{(0 - 0)^{2}} \right) / \frac{1}{(0 - 101)^{2}} \right) $ $ = \frac{1}{2} \log \frac{1}{2} \log 2 $ $ = \frac{1}{2} \cdot \frac{40019}{0.3010} $ $ N_{1} = 6.6476 $ $ N = 7. $
$A_{1} = 10^{K_{1}/20} \qquad A_{2} = 10^{K_{2}/20}$ $= 10^{-3/20} \qquad = 10^{-40/20}$ $A_{1} = 0.7079 \qquad A_{2} = 0.01.$ $N_{1} = \frac{1}{2} \log \left\{ \left(\frac{1}{A_{2}^{1}} - 1 \right) / \left(\frac{1}{A_{2}^{2}} - 1 \right) \right\}$ $\log \left(\frac{1}{A_{2}^{2}} - 1 \right) / \left(\frac{1}{(0.7019)^{2}} - 1 \right) \right\}$ $= \frac{1}{2} \log \left\{ \left(\frac{1}{(0.01)^{2}} - 1 \right) / \left(\frac{1}{(0.7019)^{2}} - 1 \right) \right\}$ $= \frac{1}{2} \log \left\{ \frac{9999}{0.3010} / 0.9954 \right\}$ $\log 2$ $= \frac{1}{2} \cdot \frac{40019}{0.3010}$ $N_{1} = 6.6476$ $N = 7.$
$A_{1} = 0.7079$ $A_{2} = 0.01.$ $N_{1} = \frac{1}{2} \log \left\{ \left(\frac{1}{A_{2}^{2}} \cdot \right) / \left(\frac{1}{A_{1}^{2}} - 1 \right) \right\}$ $\log \left(\frac{P_{2}}{P_{2}} \right)$ $= \frac{1}{2} \log \left\{ \left(\frac{1}{(0.01)^{2}} \cdot 1 \right) / \left(\frac{1}{(0.7010)^{2}} - 1 \right) \right\}$ $\log \left(\frac{P_{2}}{P_{2}} \right)$ $= \frac{1}{2} \log \left\{ \frac{1}{(0.01)^{2}} \cdot 1 \right] / \left(\frac{1}{(0.7010)^{2}} - 1 \right) \right\}$ $\log \left(\frac{P_{2}}{P_{2}} \right)$ $= \frac{1}{2} \log \left\{ \frac{1}{(0.01)^{2}} \cdot 1 \right] / \left(\frac{1}{(0.7010)^{2}} - 1 \right) \right\}$ $\log 2$ $= \frac{1}{2} \cdot \frac{40019}{0.3010}$ $N_{1} = 6.6476$ $N = 7.$
$A_{1} = 0.7079 \qquad A_{2} = 0.01.$ $N_{1} = \frac{1}{2} \log \left\{ \left(\frac{1}{A_{2}^{2}-1} \right) / \left(\frac{1}{A_{2}^{2}-1} \right) \right\}$ $\log \left(\Omega_{2} / \Omega_{2} \right)$ $= \frac{1}{2} \log \left\{ \left(\frac{1}{(0.01)^{2}-1} \right) / \left(\frac{1}{(0.7079)^{2}-1} \right) \right\}$ $\log \left(2000\pi / 1000\pi \right)$ $= \frac{1}{2} \log \left\{ 9999 / 0.9954 \right\}$ $\log 2$ $= \frac{1}{2} \frac{40019}{0.3010}$ $N_{1} = 6.6476$ $N = 7.$
$N_{1} = \frac{1}{2} \log \left\{ \left(\frac{1}{A_{2}^{1}-1} \right) / \left(\frac{1}{A_{1}^{2}-1} \right) \right\}$ $= \frac{1}{2} \log \left\{ \left(\frac{1}{(0\cdot0)^{2}} - 1 \right) / \left(\frac{1}{(0\cdot701)^{2}} - 1 \right) \right\}$ $= \frac{1}{2} \log \left\{ \frac{9999}{0.9954} \right\}$ $= \frac{1}{2} \frac{40019}{0.3010}$ $N_{1} = 6.6476$ $N = 7$
$log(\Omega_{2}/S_{2},)$ $= \frac{1}{2} log \left\{ (\frac{1}{(0.01)^{2}} - 1) / (\frac{1}{(0.7010)^{2}} - 1)^{2} \right\}$ $= \frac{1}{2} log \left\{ qqqq / 0.9954 \right\}$ $= \frac{1}{2} \frac{40019}{0.3010}$ $N_{1} = 6.6476$ $N = 7$
$= \frac{1}{2} \log \left\{ \left(\frac{1}{(0.01)^2} - 1 \right) / \left(\frac{1}{(0.7019)^2} - 1 \right) \right\}$ $= \frac{1}{2} \log \left\{ \frac{9999}{0.9954} \right\}$ $= \frac{1}{2} \frac{40019}{0.3010}$ $N_1 = 6.6476$ $N = 7.$
$log(2000\pi/1000\pi)$ $= \frac{1}{2} log \left\{ \frac{9999}{0.9954} \right\}$ $= \frac{1}{2} \cdot \frac{40019}{0.3010}$ $N_1 = 6.6476$ $N = 7$
$log(2000\pi/1000\pi)$ $= \frac{1}{2} log \left\{ \frac{9999}{0.9954} \right\}$ $= \frac{1}{2} \cdot \frac{40019}{0.3010}$ $N_1 = 6.6476$ $N = 7$
$= \frac{1}{2} \log \left\{ \frac{9999}{0.9954} \right\}$ $= \frac{1}{2} \cdot \frac{40019}{0.3010}$ $N_1 = 6.6476$ $N = 7.$
$\frac{1}{2} \cdot \frac{1}{2^{0.3010}} \cdot \frac{1}{0.3010} = 81.1382 \text{ pol}$ $N_{1} = 6.6476$ $N = 7$
$N_1 = 6.6476$ $N = 7$
$N_1 = 6.6476$ $N = 7$
NED TIMES THE STEWNSON THE SENTEN
Nego + radion has come and the first happy
adjusted on the Managing State of the State
The world with the transportation of the tra
5. Given:
If transformation is not given, the
analog filter has to be designed.
$\alpha_p = k_1 = -0.5 dB$
$\alpha_3 = k_2 = -15 dB$
fz = 1000 Hz

$$\frac{C}{(0) \times 197} = \frac{O \cdot 27}{(0 \cdot 1819)^{7/9}}$$

$$\Omega_{C} = 0 \cdot 1803 \text{ Mad/sec}$$
(ii) N is odd.

$$H(S) = \frac{1}{S+1} \frac{1}{11} \frac{1}{S^{\frac{1}{2}} + b_{K}S + 1}$$

$$= \frac{1}{(S+1)} \frac{1}{(S^{\frac{1}{2}} + b_{J}S + 1)} \cdot \frac{1}{(S^{\frac{1}{2}} + b_{J}S + 1)} \cdot \frac{1}{(S^{\frac{1}{2}} + b_{J}S + 1)}$$

$$b_{K} = R \sin \left(\frac{2k-1}{4}\right)$$

$$b_{I} = R \sin \left(\frac{1}{4}\right)$$

$$c_{I} = 0 \cdot 4R \times 3$$

$$c_{I} = 0 \cdot 4R \times$$

(a) a 10 -21 a 10 20 ha F 222) (5 + b. 31065 + b. 5,333 / OT	H(s) =	108
$\Omega_{p} = 500 \text{ rad/sec}$ $\Omega_{S} = 1000 \text{ rad/sec}$ $\Omega_{p} = K_{1} = -3dB$ $\Omega_{S} = k_{2} = -15dB$ $A_{1} = 10^{K_{1}/20} \qquad A_{2} = 10^{K_{2}/20}$ $= 10^{15/20}$ $= 10^{15/20}$ $A_{1} = 0.1079$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = \frac{1}{2} \log_{3} \left(\frac{1}{A_{2}^{2} - 1} \right) / \left(\frac{1}{A_{1}^{2} - 1} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{(0.1778)^{2} - 1} \right) / \left(\frac{1}{(0.7079)^{2} - 1} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{50.6316}{0.9954} \right)^{2}$ $\log_{3} \left(\frac{1}{10000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{100000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{10000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{100000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{1000000} \right)^{2}$	(S+0.7303)(S+0.10)	425+0.5333)(5+0.31065+0.5333)(5+0.5 +0.
$\Omega_{p} = 500 \text{ rad/sec}$ $\Omega_{S} = 1000 \text{ rad/sec}$ $\Omega_{p} = K_{1} = -3dB$ $\Omega_{S} = k_{2} = -15dB$ $A_{1} = 10^{K_{1}/20} \qquad A_{2} = 10^{K_{2}/20}$ $= 10^{15/20}$ $= 10^{15/20}$ $A_{1} = 0.1079$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = \frac{1}{2} \log_{3} \left(\frac{1}{A_{2}^{2} - 1} \right) / \left(\frac{1}{A_{1}^{2} - 1} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{(0.1778)^{2} - 1} \right) / \left(\frac{1}{(0.7079)^{2} - 1} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{50.6316}{0.9954} \right)^{2}$ $\log_{3} \left(\frac{1}{10000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{100000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{10000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{100000} \right)^{2}$ $= \frac{1}{2} \log_{3} \left(\frac{1}{1000000} \right)^{2}$	of digital two	
$\Omega_{p} = 500 \text{ rad/sec}$ $\Omega_{S} = 1000 \text{ rad/sec}$ $\Omega_{p} = K_{1} = -3dB$ $\Omega_{S} = k_{2} = -15dB$ $A_{1} = 10^{K_{1}/20}$ $A_{2} = 10^{K_{2}/20}$ $A_{3} = 10^{15/20}$ $A_{4} = 10^{15/20}$ $A_{1} = 0.1079$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = 0.1778$ $A_{7} = 1000 \text{ rad/sec}$ $A_{7} = 1000 \text{ rad/sec}$ $A_{8} = 10^{15/20}$ $A_{1} = 0.1778$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = 0.1778$ $A_{7} = 1000 \text{ rad/sec}$ $A_{8} = 1000 \text{ rad/sec}$ $A_{9} = 1000 \text{ rad/sec}$ $A_{1} = 1000 \text{ rad/sec}$ $A_{2} = 1000 \text{ rad/sec}$ $A_{1} = 1000 \text{ rad/sec}$ $A_{2} = 1000 \text{ rad/sec}$ $A_{1} = 1000 \text{ rad/sec}$ $A_{2} = 1000 \text{ rad/sec}$ $A_{1} = 1000 $		Le Pilkon
$ \Omega_{S} = 1000 \text{ rad/sec} $ $ \Omega_{p} = K_{1} = -3dB $ $ N_{S} = k_{2} = -15dB $ $ A_{1} = 10^{K_{1}/20} $ $ A_{2} = 10^{K_{2}/20} $ $ A_{3} = 10^{15/20} $ $ A_{4} = 0.7079 $ $ A_{5} = 0.1778 $ $ A_{7} = 0.7079 $ $ A_{8} = 0.1778 $ $ A_{1} = 0.7079 $ $ A_{2} = 0.1778 $ $ A_{3} = 0.1778 $ $ A_{4} = 0.1778 $ $ A_{5} = 0.1778 $ $ A_{7} = 0.7079 $ $ A_{1} = 0.7079 $ $ A_{2} = 0.1778 $ $ A_{3} = 0.1778 $ $ A_{1} = 0.7079 $ $ A_{2} = 0.1778 $ $ A_{3} = 0.1778 $ $ A_{1} = 0.7079 $ $ A_{2} = 0.1778 $ $ A_{3} = 0.1778 $ $ A_{1} = 0.7079 $ $ A_{2} = 0.1778 $ $ A_{3} = 0.1778 $ $ A_{1} = 0.7079 $ $ A_{2} = 0.1778 $ $ A_{3} = 0.1778 $ $ A_{1} = 0.7079 $ $ A_{2} = 0.1778 $ $ A_{3} = 0.1778 $ $ A_{4} = 0.1778 $ $ A_{5} = 0.1778 $ $ A_{7} =$		in furet.
	the protection	
$A_{1} = 10^{K_{1}/20}$ $A_{2} = 10^{K_{2}/20}$ $= 10^{15/20}$ $A_{1} = 0.7079$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = 0.1778$ $A_{7} = 1/2 \log \left\{ \left(\frac{1}{A_{2}^{2}-1} \right) / \left(\frac{1}{A_{1}^{2}} - 1 \right)^{2} \right\}$ $= 1/2 \log \left\{ \left(\frac{1}{0.1718} \right)^{2} - 1 \right) / \left(\frac{1}{0.7019} \right)^{2} - 1 \right\}$ $\log \left(1000/500 \right)$ $= \frac{1}{2} \log \left\{ 50.6316 / 0.9954 \right\}$ $\log 2$	$\alpha_p = \kappa_1 = -3dB$	0.70/45=17)
$A_{1} = 0.7079$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = 0.1778$ $A_{6} = 0.1778$ $A_{7} = 0.1778$ A_{7	$\alpha_s = k_a = -15 dB$.	
$A_{1} = 0.7079$ $A_{2} = 0.1778$ $A_{1} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = 0.1778$ $A_{6} = 0.1778$ $A_{7} = 0.1778$ $A_{1} = 0.1778$ $A_{1} = 0.1778$ $A_{2} = 0.1778$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{6} = 0.1778$ $A_{7} = 0.1778$ $A_{1} = 0.1778$ $A_{1} = 0.1778$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{2} = 0.1778$ $A_{3} = 0.1778$ $A_{4} = 0.1778$ $A_{5} = 0.1778$ $A_{5} = 0.1778$ $A_{5} = 0.1778$ $A_{7} = 0.1778$ A_{7	A = 10 K1/20	
$A_{1} = 0.7079$ $A_{2} = 0.1778$ $A_{1} = \frac{1}{2} \log \left(\left(\frac{1}{A_{2}^{2}-1} \right) / \left(\frac{1}{A_{1}^{2}-1} \right)^{2} \right)$ $= \frac{1}{2} \log \left(\left(\frac{1}{0.1778} \right)^{2} - 1 \right) / \left(\left(\frac{1}{0.7079} \right)^{2} - 1 \right)^{2}$ $= \frac{1}{2} \log \left(\frac{1}{2} \cos \left(\frac{1}{2} \cos$		= 10 15/20
(i) $N_1 = \frac{1}{2} \log \left(\frac{1}{A_2^2 - 1} \right) / \left(\frac{1}{A_1^2 - 1} \right)^2$ $= \frac{1}{2} \log \left(\frac{1}{(0.1778)^2 - 1} \right) / \left(\frac{1}{(0.7079)^2 - 1} \right)^2$ $= \frac{1}{2} \log \left(\frac{1}{10000000000000000000000000000000000$	5 and 1+4, d+3	
$log (522/21)$ = $\frac{1}{2} log \{ (\frac{1}{(0.1778)^2} - 1) / ((\frac{1}{0.7079})^2 - 1) \}$ $log (1000/500)$ = $\frac{1}{2} log \{ 50.6316 / 0.9954 \}$ $log 2$	A1 = 0.70 19	
$log (522/21)$ = $\frac{1}{2} log \{ (\frac{1}{(0.1778)^2} - 1) / ((\frac{1}{0.7079})^2 - 1) \}$ $log (1000/500)$ = $\frac{1}{2} log \{ 50.6316 / 0.9954 \}$ $log 2$ $N_1 = 2.47$	(i) N1 = 1/2 log { (1/2 -	17/(1/2-17)
$= \frac{1}{2} \log \left(\frac{1}{(0.1718)^2 - 1} \right) / \left(\frac{1}{(0.7079)^2 - 1} \right)^{\frac{1}{2}}$ $= \frac{1}{2} \log \left(\frac{1}{30.6316} / 0.9954 \right)^{\frac{1}{2}}$ $\log 2$ $N_1 = 2.47$		/0.2
$log(1000/500)$ = $\frac{1}{2}log \{ 50.6316/0.9954 \}$ $log 2$ $N_1 = 2.47$		(12) my 2 2 18
$log(1000/500)$ = $\frac{1}{2}log \{ 50.6316/0.9954 \}$ $log 2$ $N_1 = 2.47$	= 1/2 log { (0.1778	972-1)/(10.7079)2-1)}
$= \frac{1}{2} \log \frac{30.6316}{0.9954}$ $\log 2$ $N_1 = 2.47$		
$= \frac{2}{2} \log 2$ $N_1 = 2.47$		2.00
$N_1 = 2.47$	$=\frac{1}{2}\log \{ 50.63$	16/0.9954 }
NI = 2.47	log 2	
C Ya T T T		(iv) for HPE
M+ 3.548888 0 + (6.005)] (1+ 4.005) = (5)H	N, = 2.47	
W+ # 3 15 x8 (800)] . (1+ \$ 025)	Contract to	
	N+ # 3 15 x868 0 + (4 005)	(1+4,000)

	$H(8) = \frac{8^2}{5+500\cdot 4} \cdot \frac{8^2}{8^2 + 166.035 + 25040016}$
	S+500.4 8+ 166.035+ 250400.16
7·12 J	Design of digital Low pass Chebysher filter:
2	Steps: Lid brif in to muley move not
	1. Similar to butteenvoath
	2. " " " " " " " " " " " " " " " " " " "
	3. Find the order Ny sold Moder Moder
	N, = cosh' ((1/A2-1)/(1/A2-1))
	cosh'(22/21)
	N7N, Commany Change - 2/C Small 2+ 83
	4. Same
2 28	5. Determine Analog T.F. HIS) for nonmalized filter
367	when N is even
	$H(3) = \prod_{k=1}^{N/2} \frac{B_k}{S^2 + b_k S + C_k}$ and so
	When N is odd modernation builded
	By B
	$H(s) = \frac{B_0}{s+c_0} \prod_{\kappa=1}^{\frac{N-1}{2}} \frac{B_{\kappa}}{s^2+b_{\kappa}s+c_{\kappa}}$
	where
	$bk = 2 Y_N sin((2k-1) \pi)$
	$c_{\kappa} = \gamma_{N}^{2} + \cos^{2}(c_{2\kappa-1})^{\pi}$
	Co = YN. Maddew That I was

24-	$\forall N = \frac{1}{2} \left[\left(\sqrt{\frac{1}{\xi^2} + 1} + \frac{1}{\xi} \right)^{1/N} - \left(\sqrt{\frac{1}{\xi^2} + 1} + \frac{1}{\xi} \right)^{1/N} \right] 25$
	\mathcal{E} = attenuation constant = $\sqrt{\frac{1}{A_i^2}}$
	For even values of N, find Bk. squits
	$H(\mathbf{S}) = \sqrt{1+g^2}$
	For odd Values of N, find Bk
	M. S COSTO C. (145-40) (C/AS-E), = (0)H.
	fn general, $B_0 = B_1 = B_2 = \dots B_K$.
	6 & 7. Same
d filter	Design chebysher digital how pass IIR filter.
	using impulse invariant transformation to sure fig
	the following spee.
	passband supple < 0.9151dB
	Stopband attenuation > 12.3958 dB
	passband edge freq = 0.825 Trad/ser
	Stopband edge freq. = 0.5 Trad/ser
	Guiven:
	K1 = -0.9151 dB (1-43) fort of 3 = 4d
	K2 = -12.3958 dB
	wi = 0.25 Thad/sec) 300 + 1 = 10
	$\omega_2 = 0.5\pi$. Had/see,
	Transport of the state of the s

A1 =
$$10^{4a/20}$$

A2 = $10^{4a/20}$

A2 = $10^{4a/20}$

A2 = $10^{4a/20}$

A3 = 0.4399

A1 = 0.9

A2 = 0.2399

A2 = 0.2399

A3 = 0.2399

A3 = 0.2399

A4 = 0.2399

A5 = 0.2399

A6 = 0.2399

A7 = 0.257

Cosh $\sqrt{(N_2^2 - 1)/(N_2^2 - 1)}$

Cosh $\sqrt{(N_2 - 1)/(N_2^2 - 1)}$

Cosh

$$(V) \quad N = \frac{B_0}{s} \quad \frac{B_1}{Z}$$

$$H(s) = \frac{B_0}{s + c_0} \quad \frac{B_1}{K_{-1}} \quad \frac{B_K}{s^2 + b_K s + c_K}$$

$$b_K = \frac{B_0}{s + c_0} \quad \frac{B_1}{s^2 + b_K s + c_0}$$

$$b_1 = \frac{24}{s^2 + b_K} \frac{(2K - 1)\pi}{KN}$$

$$b_1 = \frac{1}{2} \left[\left(\sqrt{\frac{1}{C^2 + 1}} + \frac{1}{E} \right)^{1/2} - \left(\sqrt{\frac{1}{C^2 + 1}} + \frac{1}{E} \right)^{1/2} \right]$$

$$= \frac{1}{2} \left[\left(\sqrt{\frac{1}{C^2 + 1}} + \frac{1}{E} \right)^{1/2} - \left(\sqrt{\frac{1}{C^2 + 1}} + \frac{1}{E} \right)^{1/2} \right]$$

$$= \frac{1}{2} \left[\left(\frac{1}{(G \cdot A^2 A_1 A_2 + A \cdot CC A_1 A_2^2)^{1/2}} - \left(A \cdot 234A + A \cdot CC A_1 A_2^2 \right)^{1/2} \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$= \frac{1}{2} \left[\left(A \cdot 35 \cdot 9^{1/2} - (A \cdot 35 \cdot 9^{1/2}) \right]$$

$$C_{R} = Y_{N}^{2} + \cos^{2}\left(\frac{(2k-1)^{2}}{2N}\right)$$

$$C_{1} = (0.5106)^{2} + \cos^{2}\frac{T}{4}$$

$$C_{1} = 0.8607 + 0.749.9$$

$$C_{1} = 1.0106$$

$$C_{0} = Y_{N} = 0.5106$$

$$H(S) = \frac{B_{0}}{S+0.5106} = \frac{B_{1}}{S^{2}+0.5106S+1.01}$$

$$\text{four } N \text{ is } \cos A,$$

$$H(O) = 1$$

$$\text{put } S = 0 \text{ in } H(S)$$

$$H(O) = \frac{B_{0}B_{1}}{0.5106} = \frac{B_{1}}{1.01}$$

$$B_{0}B_{1} = 0.5107$$

$$B_{0} = 0.5157$$

$$B_{0} = 0.718 = B_{1}$$

$$H(S) = \frac{0.5157}{(S+0.5106S+1.01)}$$

$$Vi. \quad S \rightarrow \frac{s}{52c} \rightarrow s \qquad (i..., 52c) + nad/sec = \frac{1}{1 \cdot 0.001}$$

$$Vii. \quad \frac{1}{s-p.} \rightarrow \frac{1}{1-e^{p.}z}.$$

$$H(s) : \frac{0.515}{(s+0.51)(s^2+0.515+1.01)}$$

$$= \frac{A}{s+0.51} + \frac{Bs+c}{s^2+0.515+1.01}$$

$$0.515 = A(s^2+0.515+1.01) + bs(s+0.51) + c(s+0.51)$$

$$put \quad s = 0.51$$

$$0.515 = A(1.01)$$

$$A = 0.5099$$

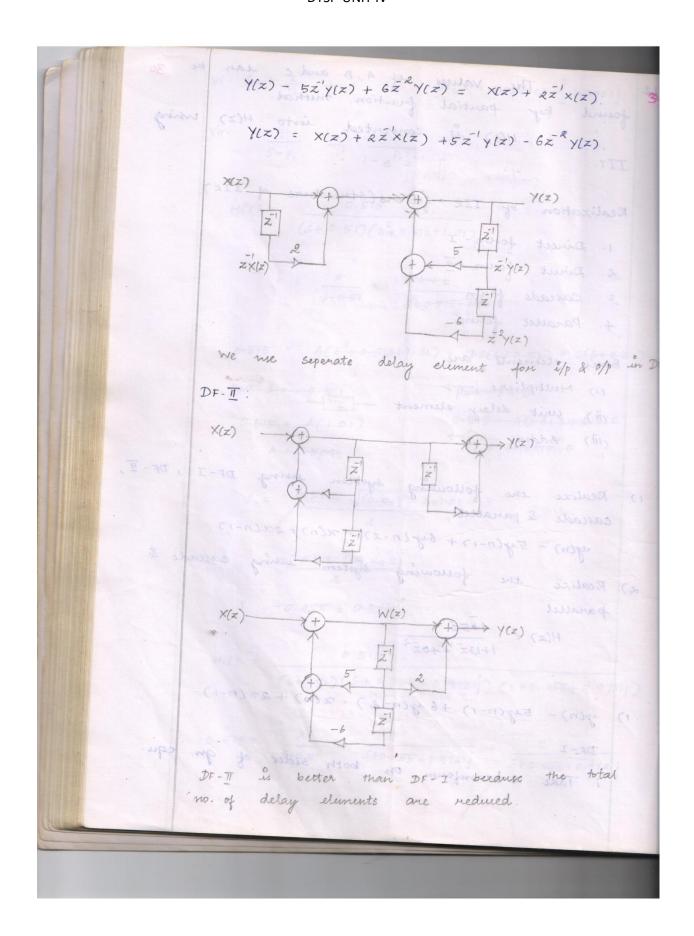
$$s = -0.51 = \sqrt{(0.51)^2 - 4 \times 1.01}$$

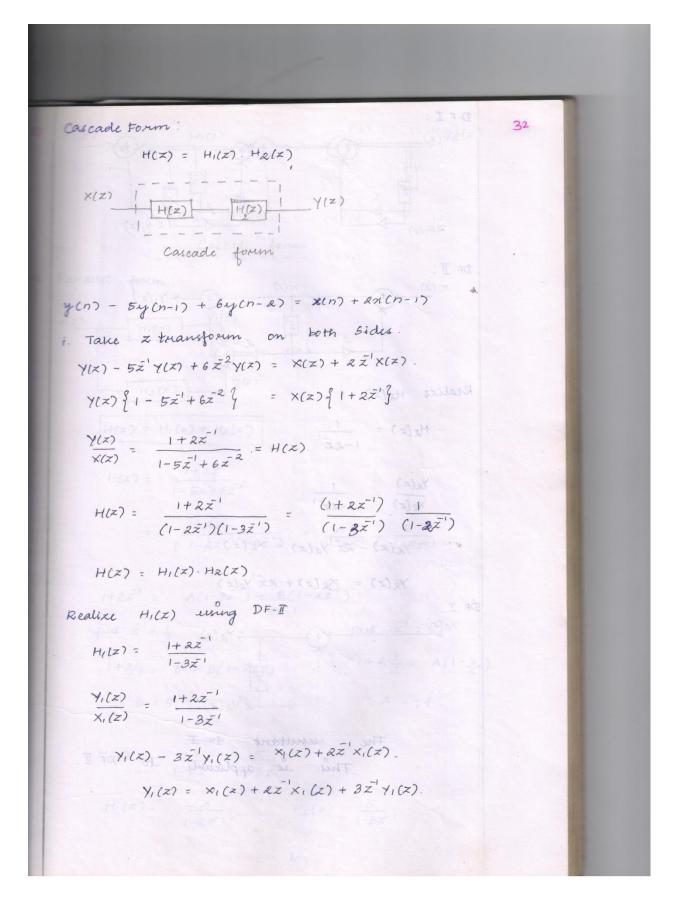
$$R$$

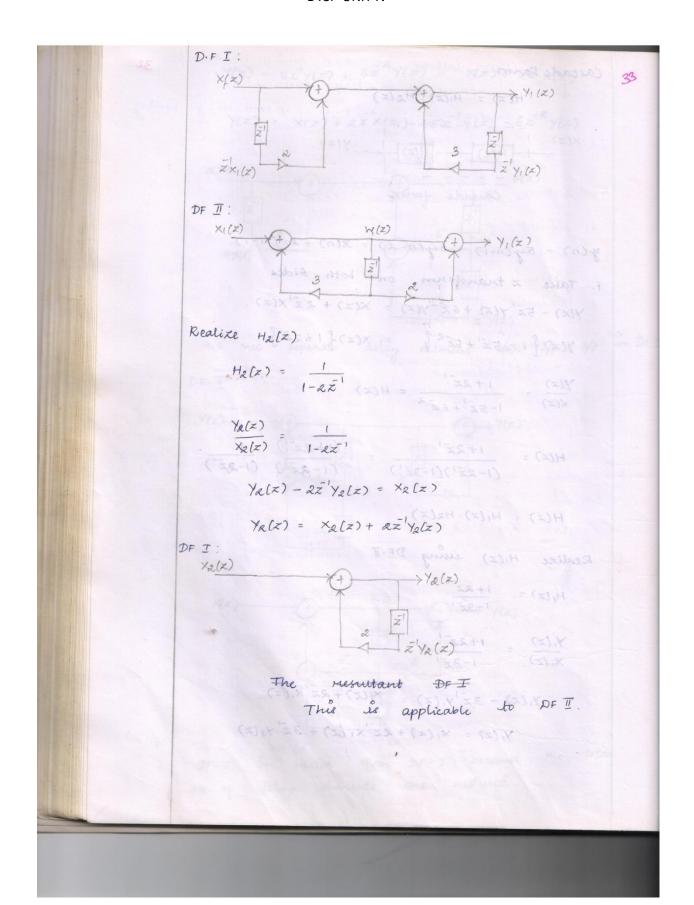
$$= -0.51 \pm 1.9.942$$

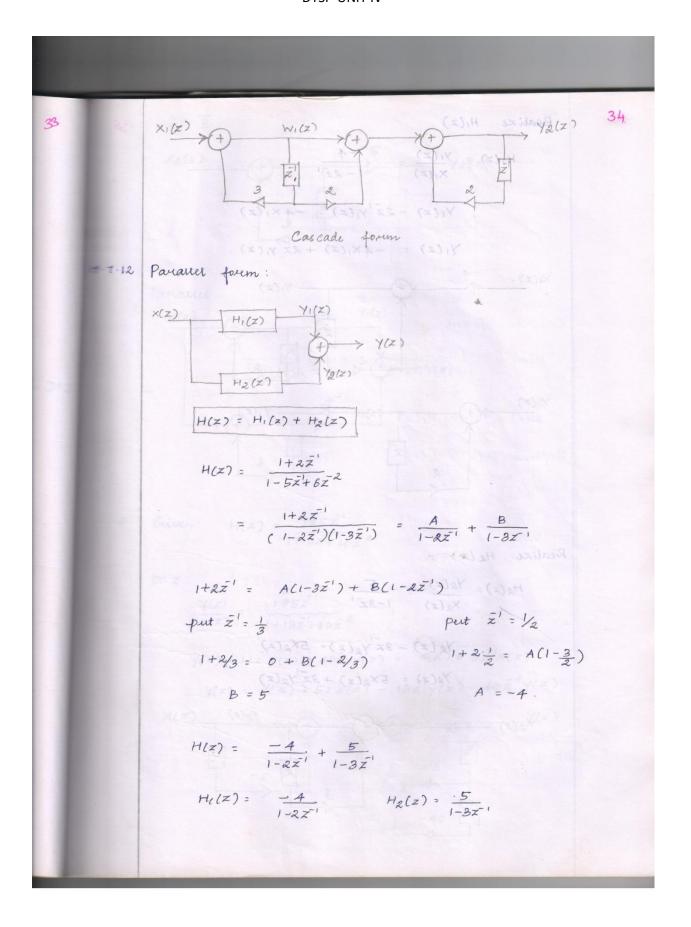
$$R$$

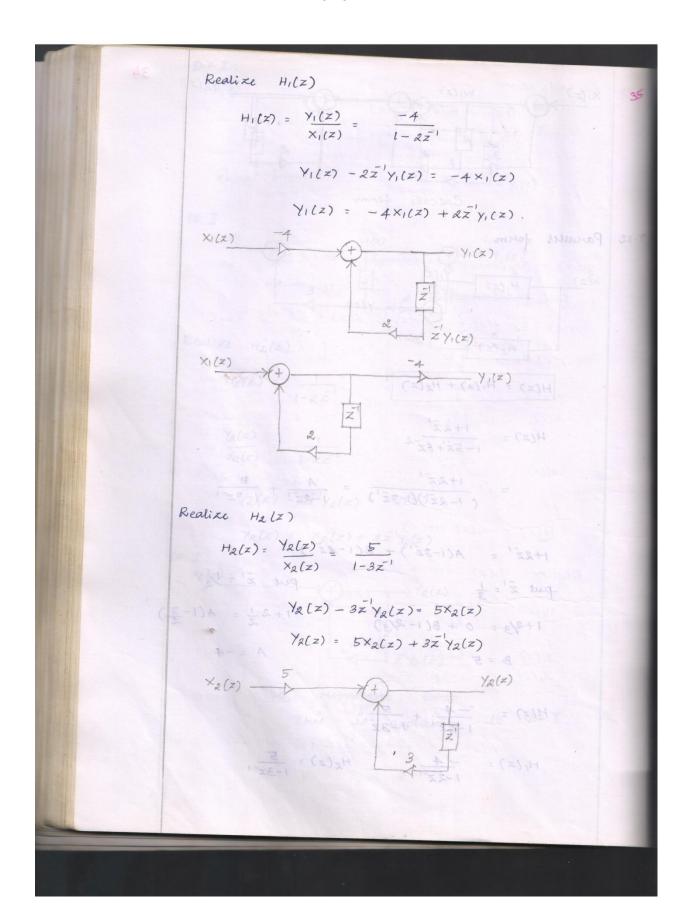
$$= -0.855 \pm 0.9121$$

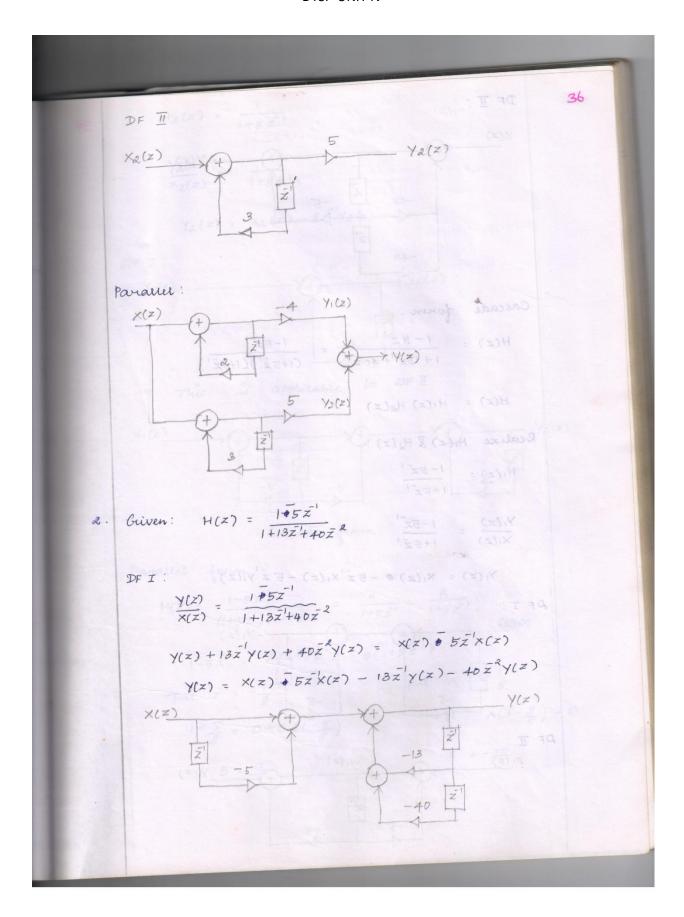

$$R$$

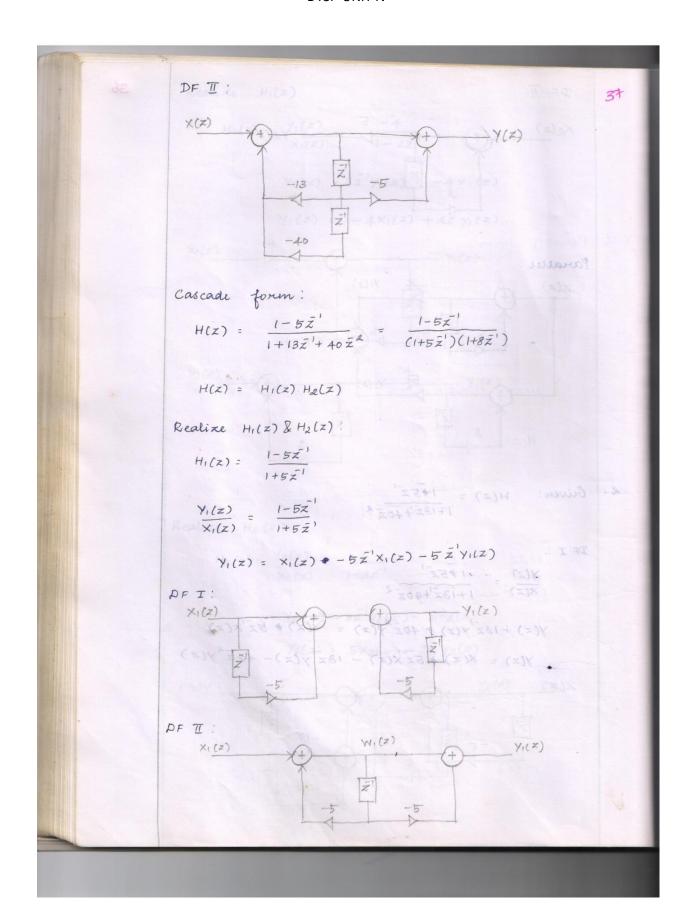

$$= 0.515$$

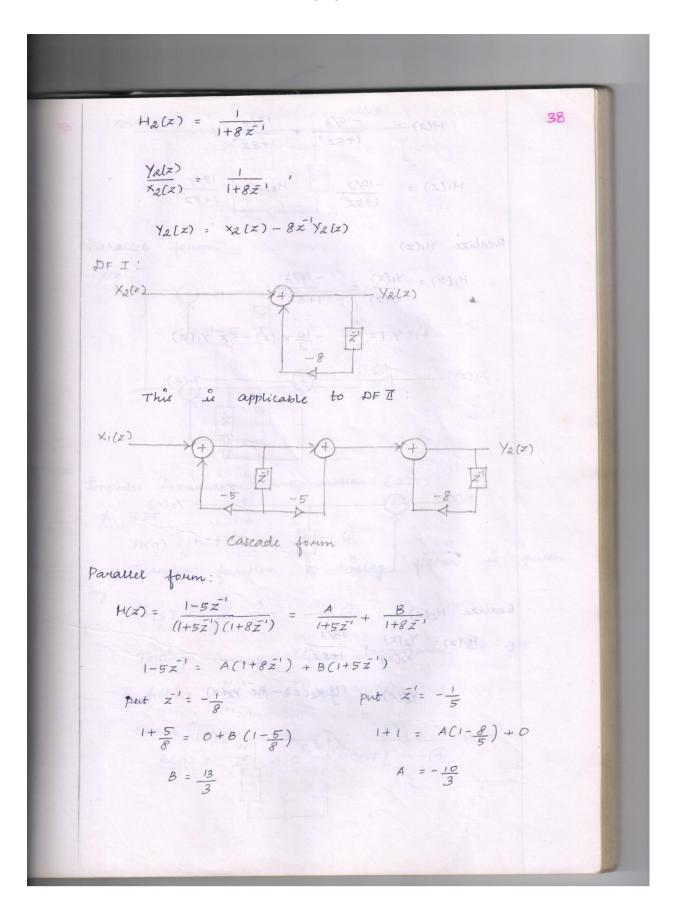

$$(s+0.51)(s+0.255-0.9121)(s+0.855+0.9721)$$

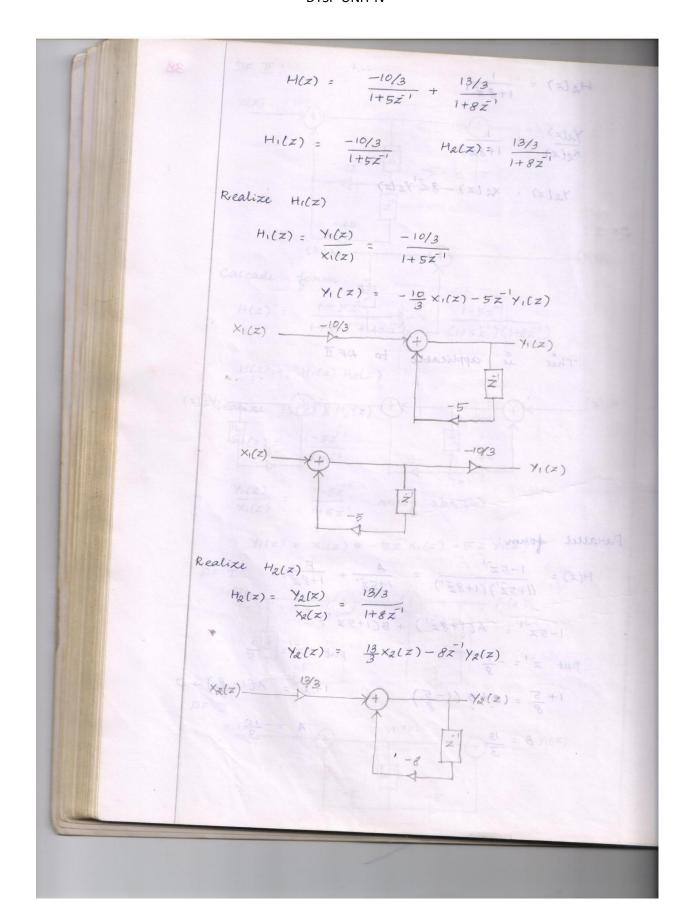

$$0.515 = \frac{A}{s+0.51} + \frac{B}{s+0.255-0.9121} + \frac{C}{s+0.255+0.9121}$$

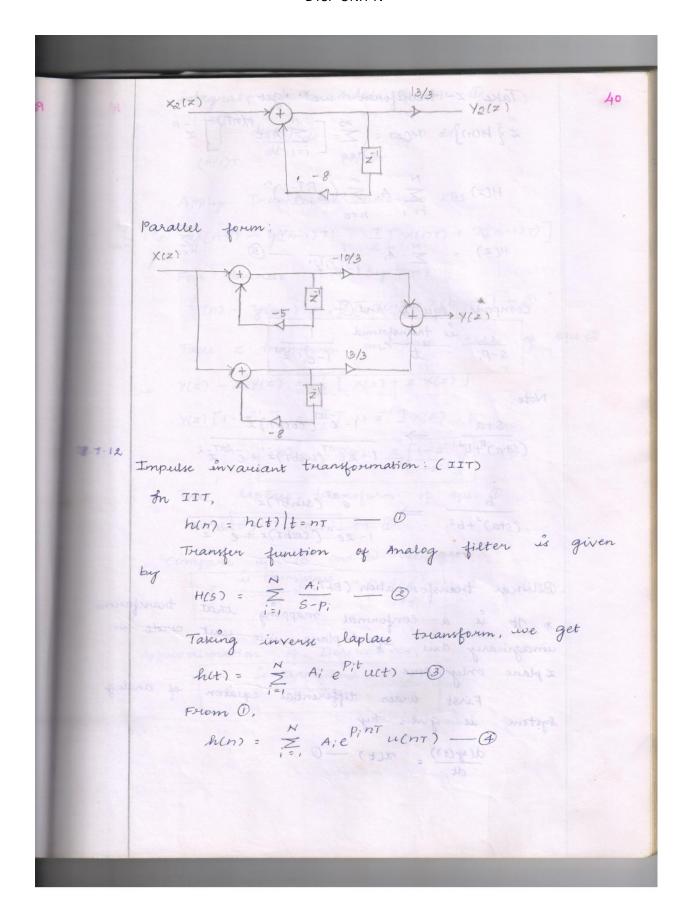

	he he
The values of A, B and c earlier by partial fraction method.	
H(8) is converted into H(2	z) using
IT.	
alization of IIR filters (Stouture of I.	IR)
- Direct form-I	
Direct form - II	
Cascade form	*
Farallel form	
asic elements are	*
in Mestipliers - 1	
ii) unit delay element - [z]	40
iii) Adder -> P	N. Carlotte
Realize the following system evering DI	F-I , DF- 11,
ascade & parallel	
ar(n) - 54(n-17 + 64(n-2) = 2(n) + 22(n-17	
cealize the forlowing system using c	ascade &
arallel	
H(z) = 1+5z'	
$1+13z^{-1}+40z^{-2}$	
Call and the	
y(n) - 5y(n-1) +6 y(n-2) = x(n) +2x(n-1	
DF-I V. OF MICK	an. equ.
Take z transform on both sides of	TO THE REAL PROPERTY.
	900

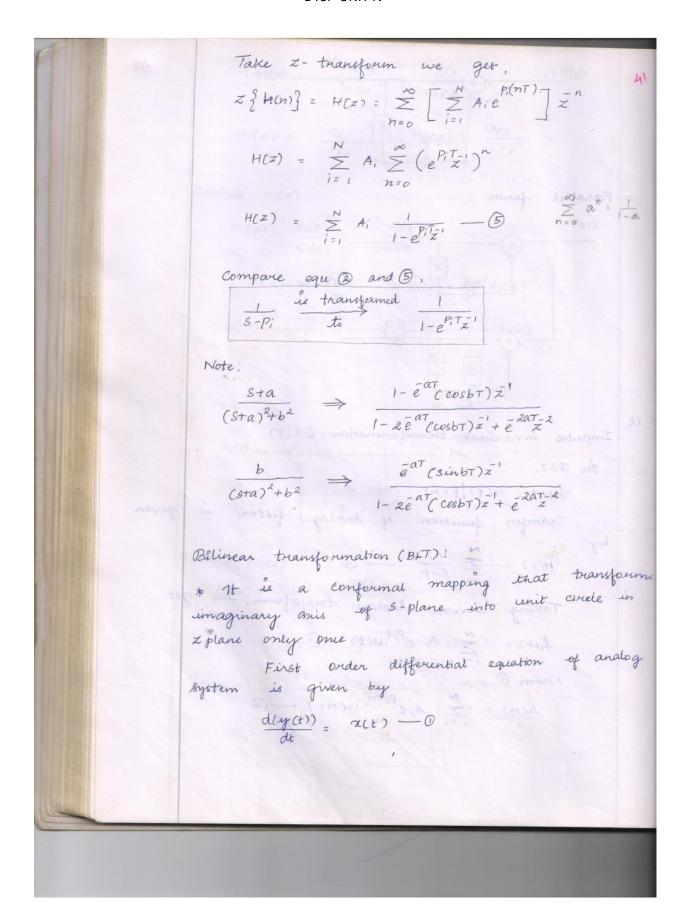












16.	integrate both sides of equ. 0
	integral to $n\tau$ $\int \frac{dy(t)}{dt} dt = \int \alpha(t) dt$ $(n-1)\tau$ $(n-1)\tau$
	Apply Trapexoidal rule on RHS
CIV.	$y(n\tau) - y((n-1)\tau) = \frac{1}{2} \left[\chi(n\tau) + \chi((n-1)\tau) \right]$
	For discrete time system,
20	$y(n) - y(n-1) = \frac{1}{2} \left[\alpha(n) + \alpha(n-1) \right] - \emptyset$ hoth sides of equ. (2)
60	Take z transform on both sides of equ. @
0	$Y(z) - \overline{z}'Y(z) = \frac{1}{2} \left[\times (z) + \overline{z}' \times (z) \right]$ $Y(z) \left[1 - \overline{z}' \right] = \frac{1}{2} \left[1 + \overline{z}' \right] \times (z)$
LO	$Y(z) = Y(z) = \frac{2 \left[1 - z^{-1}\right]}{T \left[1 + z^{-1}\right]} = 3$
200	Take laplace transform of equ. O
	SY(S) = X(S) more & man on Joseph
100	Compare equ. 3 and D we get to strangouned & 1-z'
	For realist & FETT competition
Ap	pronimation of Derivatives:
12	s is transformed 1-z
	nourpos do ou construer and contract do of company
PALCO NO.	" of saving in muchiplication = 100 - No of multi-

UNIT V - DIGITAL SIGNAL PROCESSORS

Features of DSP processors

- 1. DSP processors should have multiple registers so that data exchange from register to register to fast.
- 2. It requires multiple operands simultaneously. Hence DSP processors should have multiple operand fetch capacity.
- 3. DSP processors should have circular buffers to support circular shift operations.
- 4. It should be able to perform multiply and accumulate operations very fast.
- 5. It should have multiple pointers to support multiple operands, jumps and shifts.
- 6. To support the DSP operations fast, the DSP processors should have on chip memory.
- 7. For real time applications, interrupts and timers are required. Hence DSP processors should have powerful interrupt structure and timers.

Types of Architectures

There are three types of standard architecture for microprocessors.

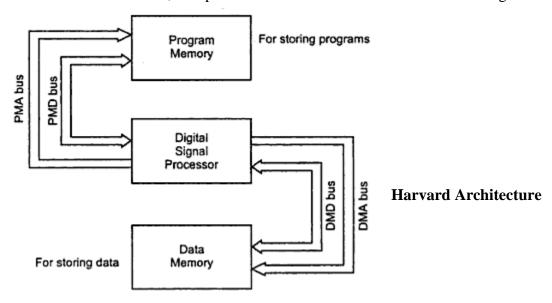
i) Modified Harvard Architecture

In this architecture data memory can be shared by data as well as programs.

Normally the program memory and data memory addresses are generated by separate address generators. The data address generator for programs can address program memory as well as data memory. This provides flexibility in use of these memories.

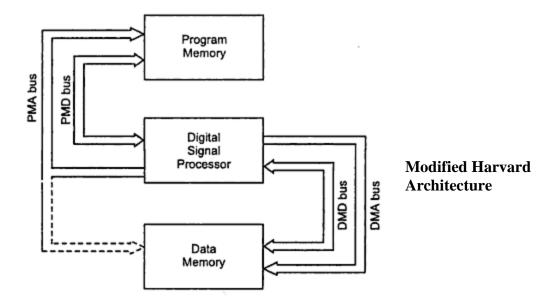
ii) The speed of the operation is also increased. The architecture shown in figure is normally on chip. Today's commonly used **Von-Neumann Architecture**

General purpose processors normally have this type of architecture. The architecture shares same memory for program and data.


The architecture shares same memory for memory for program and data. The processors perform instruction fetch, decode and execute operations sequentially.

In such architecture the speed can be increased by pipelining. This type architecture contains common interval address and data bus, ALU, accumulator, I/O devices and common memory for program and data.

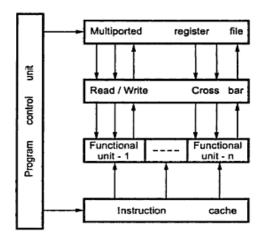
This type of architecture is not suitable for DSP processors.


iii) Harvard Architecture

The Harvard architecture has separate memories for program and data. There are also separate address and data buses for program and data. Because of these separate on chip memories and internal buses, the speed of execution in harvard architecture is high.

In the above figure observe that there is Program Memory Address (PMA) bus and Program Memory Data (PMD) bus separate for program memory. Similarly there is separate Data Memory Data (DMD) bus and Data Memory Address (DMA) bus of data memory. This is all on chip.

DSP processors normally have this type of architecture.


Dedicated MAC unit

Most of the operations in DSP involve array multiplication. The operation such as convolution, correlation requires multiply and accumulates operations. In real time applications the array multiplications and accumulation must be completed before next sample of input comes. This requires fast implementation of multiplication and accumulation.

The dedicated hardware unit called Multiplier Accumulator (MAC). It is one of the computational units in processor. The complete MAC operation is executed in one clock cycle.

The DSP processors have a special instruction called MACD. This means multiply accumulate with data shift.

Multiple ALUs

Some of the DSP processors use Very Long Instruction Word (VLIW) architecture. Such architecture consists of multiply number of ALUs, MAC units, shifters etc.

The above architecture consists of multiported register file. It is used to fetching the operands and storing the results.

The Read/write cross bar provides random access by functional units to the multiported register file. The functional units work concurrently with the load/store operation of data between a RAM and the register file.

The program control unit provides the algorithm that executes independent parallel operations. The performance of VLIW architecture depends upon degree of parallelism.

Normally 8 functional units are preferred. The number is limited by hardware cost of the multiported register file and crossbar switch

Pipelining

Any instruction cycle can split in following micro instructions:

Fetch: In this phase, any instruction is fetched from the memory.

Decode: In this phase, an instruction is decoded.

Read: An operand required for the instruction is fetched from the data memory.

Execute: The operation is executed and results are stored at appropriate place.

Each of the above operations can be separately executed in different functional units. The figure shows how the instruction is executed without pipeline.

Value of T	Fetch	Decode	Read	Execute
1	I 1			
. 2		I 1		
3			I 1	
4				I 1
5	I 2			
6		12		
7			12	
8				12

In the above figure observe that when I1 is in fetch phase, other units such as decode, read and execute are in idle. Similarly when I1 is in decode phase, other phase are idle. This means each functional unit is busy only for 25% of the total time.

Figure shows the instruction execution with pipe line. Here observe that when I1 is in decode phase, next instruction I2 is fetched. Similarly when I2 goes to decode phase, next instruction I3 is fetched. Thus observe that the functional units are executing four successive instructions at any time. We observe that five instructions are executed in the same time if pipe line is used.

Value of T	Fetch	Decode	Read	Execute
1	I 1			
2	I 2	· I1		
3	Ι3	12	I 1	
4	Ι 4	13	I 2	I 1
5	I 5	I 4	13	I 2
6		15	I 4	· I3
7			15	I 4
8				15

Addressing modes of DSP

Conventional microprocessor has addressing modes such as direct, indirect, immediate etc. The DSP processors have additional modes because of which execution is fast.

1. Short Immediate Addressing

The operand is specified using a short constant. This short constant becomes the part of a single word instruction. In TMS320C5X series of DSP processors 8-bit operand can be specified as one if the operand in single word instructions such as add, subtract, AND, OR,XOR etc.

2. Short Direct Addressing

The lower order address of the operand is specified in the single word instruction. In TMS320CXX DSP processors lower 7 bits of the address are specified as the part of the instruction. Higher 9 bits of the address are stored in the data page pointer. Each such data page consists of 128 words.

3. Memory mapped Addressing

The CPU and I/O registers are accessed as memory location. These registers are mapped in the starting page or final page of the memory space. In TMS320C5X page0 corresponds to CPU and I/O registers.

4. Indirect Addressing

The addresses of operands are stored in the indirect address registers. In TMS320CXX processors such registers are called auxiliary registers. Any of these auxiliary registers can be updated when operands fetched by these registers are being executed. The auxiliary registers are incremented or decremented automatically by the value specified in offset register. In TMS320CXX processors the offset register is called INDEX register.

5. Bit Reversed Addressing Mode

For the computation of FFT, the input data is required in bit reversed format. There is no need to actually reshuffle the data in bit reversed sequence. The serially arranged data in the memory or buffer can be given to the processor in bit reversed mode with the help of bit reversed addressing mode. With this addressing mode an address is incremented / decremented by number represented in bit reversed form.

6. Circular Addressing

With this mode, the data stored in the memory can be read / written in circular fashion. This increases the utility of the memory. The memory organized as a circular buffer. The beginning and ending addresses are continuously monitored. If the address exceeds ending address of the memory, then it is set at the beginning address of the memory.

TMS 302C54X Processors

- This processors series contain all the features of the basic architecture. It has number of additional features for improved speed and performance.
- This series of processors have advanced modified Harvard architecture.
- The TMS 302C54X is upward compatible to earlier fixed point processors such as 'C2X', 'C2XX and 'C5X processors.
- It is 16 bit fixed-point DSP processor family.

Advantages of C54X Devices

- 1. Enhanced Harvard architecture, which include one program bus, three data buses and four address buses.
- 2. CPU has high degree of parallelism and application specific hardware logic.
- 3. It has highly specialized instruction set for faster algorithms.
- 4. Modular architecture design for fast development of spinoff devices.
- 5. It has increased performance and low power consumption.

Features of C54X

A. CPU

- 1. One program bus, three data buses and four address buses.
- 2. 40 bit ALU, including 40 bit barrel shifter and two independent 40 bit accumulators.
- 3. 17 bit x 17 bit parallel multiplier coupled to 40 bit dedicated adder for non pipelined single cycle multiply / accumulate (MAC) operation.
- 4. Compare, select, store unit (CSSU) for the add /compare selection of viterbi operator.
- 5. Exponent encoder to compute the exponent of 40 bit accumulator value in single cycle.
- 6. Two address generators, including eight auxiliary registers and two auxiliary register arithmetic units.
- 7. Multiple-CPU/ core architecture on some devices.

B. Memory

- 1. 192 K words x 16 bit bit addressable memory space.
- 2. Extended program memory in some devices.

C. Instruction Set

- 1. Single instruction repeat and block repeat operations.
- 2. Block memory move operations.
- 3. 32 bit long operand instructions.
- 4. Instructions with 2 or 3 operand simultaneous reads.
- 5. Parallel load and parallel store instructions.
- 6. Conditional store instructions.
- 7. Fast return from interrupt.

D. On- Chip peripherals

- 1. Software programmable wait state generator.
- 2. Programmable bank switching logic.
- 3. On-chip PLL generator with internal generator with internal oscillator.
- 4. External bus-off control to disable the external data bus, address bus and control signals.
- 5. Programmable timer.
- 6. Bus hold feature for data bus.

ARCHITECTURE OF TMS 320C54X DSP PROCESSOR

Bus Architecture

- There are eight major 16 bit buses (four program/data bus and four address buses).
- Program bus (PB) carries instruction code and immediate operands from program memory.
- Three address buses (CB, DB and EB) interconnect CPU, data address generation logic, program address generation logic, on chip peripherals and data memory.
- Four address buses (PAB, CAB, DAB and EAB) carry the addresses needed for instruction execution.

Internal Memory Organization

- There are three individually selectable spaces: program, data and I/O space.
- There are 26 CPU registers plus peripheral registers that are mapped in data memory space.
- The 'C54X devices can contain RAM as well as ROM.
- On-chip Rom is part of program memory space, and in some cases part of data memory space.
- There can be DARAM, SARAM, Two way shared RAM on the chip.
- On-chip memory can be protected from being manipulated externally.

CPU

The CPU of the '54x devices contain:

- A 40-bit arithmetic logic unit (ALU)
- Two 40-bit accumulators
- A barrel shifter
- A 17 × 17-bit multiplier/adder
- A compare, select, and store unit (CSSU)

Arithmetic Logic Unit:

The '54x devices perform 2s-complement arithmetic using a 40-bit ALU and two 40-bit accumulators (ACCA and ACCB). The ALU also can perform Boolean operations.

The ALU can function as two 16-bit ALUs and perform two 16-bit operations simultaneously when the C16 bit in status register 1 (ST1) is set.

Accumulators:

There are two accumulators A and B. They store the output from the ALU or the multiplier / adder block.

The bits in each accumulator is grouped as follows:

- Guard bits (bits 32–39)
- A high-order word (bits 16–31)
- A low-order word (bits 0–15)

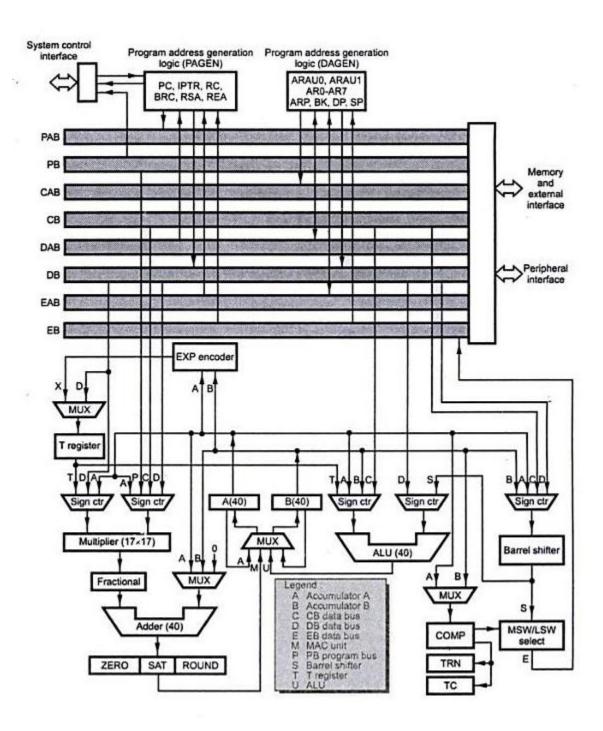
Instructions are provided for storing the guard bits, the high-order and the low-order accumulator words in data memory, and for manipulating 32-bit accumulator words in or out of data memory. Also, any of the accumulators can be used as temporary storage for the other.

Barrel shifter:

- It is a 40 bit input came from a accumulator or data memory(CB,DB)
- Its 40 bit output is connected to ALU or data memory
- It can produces left shift of 0 to 31 bits and right shift of 0 to 16 bits

Multiplier / Adder Unit:

- It performs 17x17 bit 2s compliment multiplication and 40 bit addition in a single instruction cycle.
- The unit also contains fractional control, zero detector, a rounder and overflow/saturation logic.
- The fractional mode selected when FRCT bit =1.
- The fast on-chip multiplier allows the '54x to perform operations such as convolution, correlation, and filtering efficiently


Compare, Select and Store Unit (CSSU):

- The compare, select, and store unit (CSSU) performs maximum comparisons between the accumulator's high and low words, allows the test/control (TC) flag bit of status register 0 (ST0) and the transition (TRN) register to keep their transition histories, and selects the larger word in the accumulator to be stored in data memory.
- The CSSU also accelerates Viterbi-type butterfly computation with optimized onchip hardware.

Data Addressing

The C54X processors have seven basic data addressing modes

- 1. Immediate addressing
- 2. Absolute addressing
- 3. Direct addressing
- 4. Indirect addressing
- 5. Memory mapped register addressing
- 6. Stack addressing

Functional block diagram of TMS 320C54X DSP processor

Status Register (ST0, ST1)

- The status registers, ST0 and ST1, contain the status of the various conditions and modes for the '54x devices.
- ST0 contains the flags (OV, C, and TC) produced by arithmetic operations and bit manipulations ST1 contains the various modes and instructions that the processor operates on and executes.

Auxiliary Registers (AR0-AR7)

- The eight 16-bit auxiliary registers (AR0–AR7) can be accessed by the central airthmetic logic unit (CALU) and modified by the auxiliary register arithmetic units (ARAUs).
- The primary function of the auxiliary registers is generating 16-bit addresses for data space. However, these registers also can act as general-purpose registers or counters.

Temporary Registers (T REG)

- One of the multiplicands for multiply and multiply/accumulate instruction
- It can hold a shift count for instructions with shift operation such as ADD, LD and SUB
- It also holds a dynamic bit address for BITT instruction

Transition Register (TRN)

- This 16 bit register holds the transition decision for the path to new metrics to perform Viterbi algorithm.
- CMPS (Compare select max store) instruction updates the contents of TRN register on the basis of comparison of accumulator high word and acc low word.

Stack Point Register (SP)

- The SP is a 16-bit register that contains the address at the top of the system stack. The SP always points to the last element pushed onto the stack.
- The stack is manipulated by interrupts, traps, calls, returns, and the PUSHD, PSHM, POPD, and POPM instructions.

Program Memory Addressing

- The program memory is addressed with program counter (PC) the PC is used to fetch individual instructions.
- Program Counter is loaded by program address generator (PAGEN). PAGEN increments Program counter.

Pipeline Operation

- The C54X DSP has six levels: prefetch, fetch, decode, access, read and execute.
- One to six instructions can be active in a single cycle.

On-chip Peripherals

All the '54x devices have the same CPU structure; however, they have different on-chip peripherals connected to their CPUs. The on-chip peripheral options provided are:

- ➤ General purpose I/O pins
- ➤ Software programmable Wait state Generator
- > Programmable Bank-Switching Logic
- ➤ Hardware timer
- Clock generator
- DMA controller
- ➤ Host Port Interface
- > Serial ports

General purpose I/O pins:

These pins can be read or written through software control. These pins are BIO and XF.

Software programmable Wait state Generator:

It extends external bus cycles up to seven machine cycles to interface with slower off-chip memory and I/O devices.

The software wait-state generator is incorporated without any external hardware. For off-chip memory access, a number of wait states can be specified for every 32K-word block of program and data memory space, and for one 64K-word block of I/O space within the software wait-state register (SWWSR)

Programmable Bank-Switching Logic:

It can automatically insert one cycle when an access crosses memory bank boundaries inside program memory or data memory space.

One cycle can also be inserted when crossing from program-memory space to datamemory space ('54x) or from one program memory page to another program memory page on selected devices.

Hardware timer:

It provides 16-bit timing circuit with 4-bit prescaler. The timer can be stopped, restarted, reset or disabled by specific status bits.

Clock generator:

The clock can be generated by two options (a) internal oscillator or (b) PLL circuit.

DMA controller:

It transfers data between by two points in the memory map without intervention by the CPU. The data can be moved to and from program data memory, on-chip peripherals or external memory devices.

Some of the features of DMA controller are as follows

- The DMA operates independently of the CPU.
- The DMA has six channels. The DMA can keep track of the contexts of six independent block transfers.
- The DMA has higher priority than the CPU for both internal and external accesses.
- Each channel has independently programmable priorities.

Host Port Interface (HPI):

It is parallel port. It provides an interface to a host processor. The information is exchanged between C54X and host processor through on-chip memory.

Serial ports:

There are four types of serial ports i) Synchnous ii) Buffered iii) Multichannel buffered and iv) Time division multiplexed

Comparison between DSP processor and General purpose processor

S.No	Parameter	DSP Processors	General purpose processors
1.	Instruction cycle	Instructions are executed in single cycle of the clock i.e True instruction cycle.	Multiple clock cycles are required for execution of one instructions.
2.	Instruction execution	Parallel execution is possible	Execution of instruction is always sequential.
3.	Operand fetch from memory	Multiple operand are fetched simultaneously	Operands are fetched sequentially
4.	Memories	Separate program and data memories	Normally no such separate memories
5.	On-Chip/off-chip memories	Program and data memories are present onchip and extendable offchip.	Normally onchip cache memory is present. Main memory is offchip.
6.	Program flow control	Program sequencer and instruction register takes care of program flow.	Program counter maintains the flow of execution.
7.	Queuing/pipelining	Queuing is implicite through instruction register and instruction cache.	Queue is performed explicitely by queue registers for pipelining
8.	Address generation	Addresses are generated combinely by DAGs and program sequencer	Program counter is incremental sequentially to generate addresses.
9.	On-chip address and data buses.	Separate address and data buses for program memory and data memories and result bus. i.e. PMA, DMA, PMD, DMD and R-bus.	Address and data buses are the two buses on the chip.
10.	Addressing modes	Direct and indirect addressing is supported.	Direct, indirect, register, register indirect, immediate, etc addressing modes are supported.
11.	Suitable for	Array processing operations	General purpose processing.