Theory of Computation

Course Outline

Computability Theory 1930s – 1950s

- What is computable... or not?
- Examples: program verification, mathematical truth
- Models of Computation:
 Finite automata, Turing machines, ...

Complexity Theory 1960s – present

- What is computable in practice?
- Example: factoring problem
- P versus NP problem
- Measures of complexity: Time and Space
- Models: Probabilistic and Interactive computation

Course Mechanics

Zoom Lectures

- <u>Live</u> and Interactive via Chat
- <u>Live lectures are recorded</u> for later viewing

Zoom Recitations

- Not recorded
- Two convert to in-person
- Review concepts and more examples
- Optional unless you are having difficulty
 <u>Participation</u> can raise low grades
- Attend any recitation

Text

- Introduction to the Theory of Computation Sipser, 3rd Edition US. (Other editions ok but are missing some Exercises and Problems).

Homework bi-weekly – 35%

More information to follow

Midterm (15%) and Final exam (25%)

Open book and notes

Check-in quizzes for credit – 25%

- Distinct Live and Recorded versions
- Complete either one for credit within 48 hours
- Initially ungraded; full credit for participation

Course Expectations

Prerequisites

Prior substantial experience and comfort with mathematical concepts, theorems, and proofs. Creativity will be needed for psets and exams.

Collaboration policy on homework

- Allowed. But try problems yourself first.
- Write up your own solutions.
- No bibles or online materials.

Role of Theory in Computer Science

- 1. Applications
- 2. Basic Research
- 3. Connections to other fields
- 4. What is the nature of computation?

Let's begin: Finite Automata

States: $q_1 q_2 q_3$

Transitions: $-\frac{1}{}$

Start state: →

Accept states:

Input: finite string

Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, Accept if end with accept state, Reject if not.

Examples: $01101 \rightarrow Accept$ $00101 \rightarrow Reject$

 M_1 accepts exactly those strings in A where $A = \{w \mid w \text{ contains substring } 11\}.$

Say that A is the language of M_1 and that M_1 recognizes A and that $A = L(M_1)$.

Finite Automata – Formal Definition

 $\delta(q, a) = r \text{ means } (q)$

Defn: A <u>finite automaton</u> M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- *Q* finite set of states
- Σ finite set of alphabet symbols
- δ transition function $\delta \colon Q \times \Sigma \to Q$
- q_0 start state

set of accept states

Example:

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
 $\delta = \begin{bmatrix} 0 & 1 \\ q_1 & q_1 & q_2 \\ q_2 & q_1 & q_3 \end{bmatrix}$ $\Sigma = \{0, 1\}$ $\Sigma = \{q_3\}$ $\{q_3\}$ $\{q_3\}$ $\{q_3\}$ $\{q_3\}$ $\{q_3\}$ $\{q_3\}$

Finite Automata – Computation

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)
- The <u>empty string</u> ε is the string of length 0
- The empty language \emptyset is the set with no strings

Defn: M accepts string $w=w_1w_2\dots w_n$ each $w_i\in\Sigma$ if there is a sequence of states $r_0,r_1,r_2,\dots,r_n\in Q$ where:

-
$$r_0 = q_0$$

- $r_i = \delta(r_{i-1}, w_i)$ for $1 \le i \le n$
- $r_n \in F$

Recognizing languages

- $L(M) = \{w | M \text{ accepts } w\}$
- L(M) is the language of M
- M recognizes L(M)

Defn: A language is <u>regular</u> if some finite automaton recognizes it.

Regular Languages – Examples

 $L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$

Therefore A is regular

More examples:

Let $B = \{w | w \text{ has an even number of 1s} \}$ B is regular (make automaton for practice).

Let $C = \{w | w \text{ has equal numbers of 0s and 1s} \}$ C is not regular (we will prove).

Goal: Understand the regular languages

Regular Expressions

Regular operations. Let *A*, *B* be languages:

- Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\} = AB$
- Star: $A^* = \{x_1 \dots x_k | \text{ each } x_i \in A \text{ for } k \ge 0\}$ Note: $\epsilon \in A^*$ always

Example. Let $A = \{good, bad\}$ and $B = \{boy, girl\}$.

- $A \cup B = \{good, bad, boy, girl\}$
- $A \circ B = AB = \{goodboy, goodgirl, badboy, badgirl\}$
- $A^* = \{ \epsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ... }$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using U,o,* [Composite]

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- $\Sigma^* 1$ gives all strings that end with 1
- $\Sigma^* 11\Sigma^*$ = all strings that contain $11 = L(M_1)$

Goal: Show finite automata equivalent to regular expressions

Closure Properties for Regular Languages

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\Sigma,\,\delta_1,\,q_1,\,F_1)$ recognize A_1 $M_2=(Q_2,\Sigma,\,\delta_2,\,q_2,\,F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q_0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

Check-in 1.1

In the proof, if M_1 and M_2 are finite automata where M_1 has k_1 states and M_2 has k_2 states Then how many states does M have?

- (a) $k_1 + k_2$
- (b) $(k_1)^2 + (k_2)^2$
- $\overline{(c)}$ $\overline{k_1 \times k_2}$

Components of *M*:

$$Q = Q_1 \times Q_2$$

 $= \{(q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2\}$
 $Q_0 = (q_1, q_2)$
 $Q_0 = (q_1, q_2)$
 $Q_0 = (\delta_1(q, a), \delta_2(r, a))$
 $Q_0 = (\delta_1(q, a), \delta_2(r, a))$
 $Q_0 = (F_1 \times F_2) \cup (Q_1 \times F_2)$

Closure Properties continued

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q_0, F)$ recognizing A_1A_2

M should accept input w if w = xy where M_1 accepts x and M_2 accepts y.

Doesn't work: Where to split w?