
CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 1 of 20 

UNIT I                                               RELATIONAL DATABASES                             

Purpose of Database System – Views of data – Data Models – Database System Architecture – Introduction to 

relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL 

features – Embedded SQL– Dynamic SQL 

INTRODUCTION 

DATABASE 

Database is collection of data which is related by some aspect. Data is collection of facts and figures which can be 

processed to produce information. Mostly data represents recordable facts. Data aids in producing information which 

is based on facts. A database management system stores data, in such a way which is easier to retrieve, manipulate 

and helps to produce information.  

So a database is a collection of related data that we can use for 

 Defining - specifying types of data 

 Constructing - storing & populating 

 Manipulating - querying, updating, reporting 
 

DISADVANTAGES OF FILE SYSTEM OVER DB 

In the early days, File-Processing system is used to store records. It uses various files for storing the records. 

 Drawbacks of using file systems to store data: 

 Data redundancy and inconsistency 

-Multiple file formats, duplication of information in different files 

 Difficulty in accessing data 

Need to write a new program to carry out each new task 

 Data isolation — multiple files and formats 

 Integrity problems 

- Hard to add new constraints or change existing ones 

 Atomicity problem 

-Failures may leave database in an inconsistent state with partial updates carried 

Out. E.g. transfer of funds from one account to another should either complete or not 

happen at all 

 Concurrent access anomalies 

- Concurrent accessed needed for performance 

 Security problems 

 Database systems offer solutions to all the above problems 

PURPOSE OF DATABASE SYSTEM 
The typical file processing system is supported by a conventional operating system. The system stores permanent 

records in various files, and it needs different application programs to extract records from, and add records to, the 

appropriate files. A file processing system has a number of major disadvantages. 

 

 Data redundancy and inconsistency 

 Difficulty in accessing data 

 Data isolation – multiple files and formats 

 Integrity problems 

 Atomicity of updates 

 Concurrent access by multiple users 

 Security problems 

 

1.Data redundancy and inconsistency: 
In file processing, every user group maintains its own files for handling its data processing applications. 

Example: 

Consider the UNIVERSITY database. Here, two groups of users might be the course registration personnel and the 

accounting office. The accounting office also keeps data on registration and  

related billing information, whereas the registration office keeps track of student courses and grades.Storing the 

same data multiple times is called data redundancy.This redundancy leads to several problems. 

•Need to perform a single logical update multiple times.  

•Storage space is wasted. 

•Files that represent the same data may become inconsistent. 

Data inconsistency is the various copies of the same data may no larger Agree. Example: 

One user group may enter a student's birth date erroneously as JAN-19-1984, whereas the 

other user groups may enter the correct value of JAN-29-1984. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 2 of 20 

2. Difficulty in accessing data 
File processing environments do not allow needed data to be retrieved in a convenient and efficient manner. 

3.Data isolation 
Because data are scattered in various files, and files may be in different formats, writing new application 

programs to retrieve the appropriate data is difficult. 

4.Integrity problems 
The data values stored in the database must satisfy certain types of consistency constraints. Example: 

The balance of certain types of bank accounts may never fall below a prescribed amount . Developers enforce 

these constraints in the system by addition appropriate code in the various application programs 

5.Atomicity problems 
Atomic means the transaction must happen in its entirety or not at all. It is difficult to ensure atomicity in a 

conventional file processing system. 

Example: 

Consider a program to transfer $50 from account A to account B. If a system failure occurs during the execution of 

the program, it is possible that the $50 was removed from account A but was not credited to account B, resulting in 

an inconsistent database state. 

6.Concurrent access anomalies 
For the sake of overall performance of the system and faster response, many systems allow multiple users to update 

the data simultaneously. In such an environment, interaction of concurrent updates is possible and may result in 

inconsistent data. To guard against this possibility, the system must maintain some form of supervision. But 

supervision is difficult to  

provide because data may be accessed by many different application programs that have not been coordinated 

previously. 

Example: When several reservation clerks try to assign a seat on an airline flight, the system should ensure 

that each seat can be accessed by only one clerk at a time for assignment to a passenger. 

 

7. Security problems 
Enforcing security constraints to the file processing system is difficult. 

APPLICATION OF DATABASE 

Database Applications 

 Banking: all transactions 

 Airlines: reservations, schedules 

 Universities: registration, grades 

 Sales: customers, products, purchases 

 Manufacturing: production, inventory, orders, supply chain 

 Human resources: employee records, salaries, tax deductions 

 Telecommunication: Call History, Billing 

 Credit card transactions: Purchase details,Statements 

VIEWS OF DATA 

It refers that how database is actually stored in database, what data and structure of data used by database for data. 

So describe all this database provides user with views and these are 

 Data abstraction 

 Instances and schemas 

Data abstraction 

As a data in database are stored with very complex data structure so when user come and want to access any data, 

he will not be able to access data if he has go through this data structure. So to simplify the interaction of user 

and database, DBMS hides some information which is not of user interest, a this is called data abstraction:- So 

developer hides complexity from user and store abstract view of data. 

Data abstraction has three level of abstractions 

 level / internal level 

 Logical level / conceptual level 

 view level / external level 

Physical level:- this is the lowest level of data abstraction which describe How data is actual stored in database. 

This level basically describe the data structure and access path /indexing use for accessing file. 

Logical level:- The next level of abstraction describe what data are stored in the database and what are the 

relationship existed among those of data. 

View level:- In this level user only interact with database and the complexity remain unview . user see data and 

there may be many views of one data like chart and graph. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 3 of 20 

 
DATA MODELS IN DBMS 

A Data Model is a logical structure of Database. It describes the design of database to reflect entities, attributes, 

relationship among data, constrains etc. 

Types of Data Models: 

Object based logical Models – Describe data at the conceptual and view levels. 

1. E-R Model 

An entity–relationship model (ER model) is a systematic way of describing and defining a business process. An 

ER model is typically implemented as a database. The main components of E-R model are: entity set and 

relationship set. 

 
2. Object oriented Model 

An object data model is a data model based on object-oriented programming, associating methods (procedures) 

with objects that can benefit from class hierarchies. Thus, “objects” are levels of abstraction that include attributes 

and behavior 

Record based logical Models – Like Object based model, they also describe data at the conceptual and view levels. 

These models specify logical structure of database with records, fields and attributes. 

1. Relational Model 

In relational model, the data and relationships are represented by collection of inter-related tables. Each table is a 

group of column and rows, where column represents attribute of an entity and rows represents records. 

Sample relationship Model: Student table with 3 columns and three records. 

Stu_Id Stu_Name Stu_Age 

111 Ashish 23 

123 Saurav 22 

169 Lester 24 

2. Hierarchical Model 

In hierarchical model, data is organized into a tree like structure with each record is having one parent record and 

many children. The main drawback of this model is that, it can have only one to many relationships between nodes. 

Sample Hierarchical Model Diagram: 

https://beginnersbook.com/2015/04/e-r-model-in-dbms/
https://beginnersbook.com/2015/04/relational-model-in-dbms/
https://beginnersbook.com/2015/04/hierarchical-model-in-dbms/


CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 4 of 20 

 
3. Network Model – Network Model is same as hierarchical model except that it has graph-like structure rather 

than a tree-based structure. Unlike hierarchical model, this model allows each record to have more than one 

parent record. 

Physical Data Models – These models describe data at the lowest level of abstraction. 

Three Schema Architecture 

 

The goal of the three schema architecture is to separate the user applications and the physical database. The schemas 

can be defined at the following levels: 

1. The internal level – has an internal schema which describes the physical storage structure of the database. 

Uses a physical data model and describes the complete details of data storage and access paths for the 

database. 

 

2. The conceptual level – has a conceptual schema which describes the structure of the database for users. It 

hides the details of the physical storage structures, and concentrates on describing entities, data types, 

relationships, user operations and constraints. Usually a representational data model is used to describe the 

conceptual schema. 

 

3. The External or View level – includes external schemas or user vies. Each external schema describes the 

part of the database that a particular user group is interested in and hides the rest of the database from that 

user group. Represented using the representational data model. 

 

The three schema architecture is used to visualize the schema levels in a database. The three schemas are only 

descriptions of data, the data only actually exists is at the physical level. 

 
 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 5 of 20 

 
 

COMPONENTS OF DBMS 

Database Users 

Users are differentiated by the way they expect to interact with the system 

• Application programmers 

• Sophisticated users 

• Naïve users 

• Database Administrator 

• Specialized users etc,. 

 

Application programmers:  
                   Professionals who write application programs and using these application programs they interact with 

the database system 

Sophisticated users : 
                    These user interact  with the database system without writing programs, But they submit queries to 

retrieve the information 

Specialized users:  
                         Who write specialized database applications to interact with the database system. 

Naïve users: 
                       Interacts with the database system by invoking some application programs that have been written 

previously by application programmers 

  Eg : people accessing database over the web  

Database Administrator: 
Coordinates all the activities of the database system; the database administrator has a good understanding of 

the enterprise’s information resources and needs. 

 Schema definition 

 Access method definition 

 Schema and physical organization modification 

 Granting user authority to access the database 

 Monitoring performance 

Storage Manager 

 The Storage Manager include these following components/modules  

 Authorization Manager 

 Transaction Manager 

 File Manager 

 Buffer Manager 

 Storage manager is a program module that provides the interface between the low-level data stored in the 

database and the application programs and queries submitted to the system. 

 The storage manager is responsible to the following tasks:  

 interaction with the file manager  

 efficient storing, retrieving and updating of data 

Authorization Manager 

 Checks whether the user is an authorized person or not 

 Test the satisfaction of integrity constraints   

Transaction Manager 

Responsible for concurrent transaction execution It ensures that the database remains in a consistent state 

despite of the system failure 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 6 of 20 

 
EVOLUTION OF RDBMS 
Before the acceptance of Codd’s Relational Model, database management systems was just an ad hoc collection of 

data designed to solve a particular type of problem, later extended to solve more basic purposes. This led to complex 

systems, which were difficult to understand, install, maintain and use. These database systems were plagued with the 

following problems: 

• They required large budgets and staffs of people with special skills that were in short supply.  

• Database administrators’ staff and application developers required prior preparation to access these database 

systems.  

• End-user access to the data was rarely provided.  

• These database systems did not support the implementation of business logic as a DBMS responsibility.  

 

Hence, the objective of developing a relational model was to address each and every one of the shortcomings that 

plagued those systems that existed at the end of the 1960s decade, and make DBMS products more widely appealing 

to all kinds of users. 

 

The existing relational database management systems offer powerful, yet simple solutions for a wide variety of 

commercial and scientific application problems. Almost every industry uses relational systems to store, update and 

retrieve data for operational, transaction, as well as decision support systems. 

 RELATIONAL DATABASE 
A relational database is a database system in which the database is organized and accessed according to the 

relationships between data items without the need for any consideration of physical orientation and relationship. 

Relationships between data items are expressed by means of tables. 

It is a tool, which can help you store, manage and disseminate information of various kinds. It is a collection of 

objects, tables, queries, forms, reports, and macros, all stored in a computer program all of which are inter-related. 

It is a method of structuring data in the form of records, so that relations between different entities and attributes can 

be used for data access and transformation. 

RELATIONAL DATABASE MANAGEMENT SYSTEM 
A Relational Database Management System (RDBMS) is a system, which allows us to perceive data as tables (and 

nothing but tables), and operators necessary to manipulate that data are at the user’s disposal. 

Features of an RDBMS 
The features of a relational database are as follows: 

 The ability to create multiple relations (tables) and enter data into them  

 An interactive query language  

 Retrieval of information stored in more than one table  

 Provides a Catalog or Dictionary, which itself consists of tables ( called system tables )  

 

Basic Relational Database Terminology 

Catalog: 
A catalog consists of all the information of the various schemas (external, conceptual and internal) and also all of the 

corresponding mappings (external/conceptual, conceptual/internal). 

It contains detailed information regarding the various objects that are of interest to the system itself; e.g., tables, 

views, indexes, users, integrity rules, security rules, etc. 

In a relational database, the entities of the ERD are represented as tables and their attributes as the columns of their 

respective tables in a database schema. 

It includes some important terms, such as: 

• Table: Tables are the basic storage structures of a database where data about something in the real world is 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 7 of 20 

stored. It is also called a relation or an entity.  

• Row: Rows represent collection of data required for a particular entity. In order to identify each row as 

unique there should be a unique identifier called the primary key, which allows no duplicate rows. For 

example in a library every member is unique and hence is given a membership number, which uniquely 

identifies each member. A row is also called a record or a tuple.  

• Column: Columns represent characteristics or attributes of an entity. Each attribute maps onto a column of a 

table. Hence, a column is also known as an attribute.  

• Relationship: Relationships represent a logical link between two tables. A relationship is depicted by a 

foreign key column.  

• Degree: number of attributes  

• Cardinality: number of tuples  

• An attribute of an entity has a particular value. The set of possible values That a given attribute can 

have is called its domain.  

KEYS AND THEIR USE 
Key: An attribute or set of attributes whose values uniquely identify each entity in an entity set is called a key for 

that entity set. 

Super Key: If we add additional attributes to a key, the resulting combination would still uniquely identify an 

instance of the entity set. Such augmented keys are called super keys. 

Primary Key: It is a minimum super key. 

It is a unique identifier for the table (a column or a column combination with the property that at any given time no 

two rows of the table contain the same value in that column or column combination). 

Foreign Key: A foreign key is a field (or collection of fields) in one table that uniquely identifies a row of another 

table. In simpler words, the foreign key is defined in a second table, but it refers to the primary key in the first table. 

Candidate Key: There may be two or more attributes or combinations of attributes that uniquely identify an 

instance of an entity set. These attributes or combinations of attributes are called candidate keys. 

Secondary Key: A secondary key is an attribute or combination of attributes that may not be a candidate key, but 

that classifies the entity set on a particular characteristic. Any key consisting of a single attribute is called a simple 

key, while that consisting of a combination of attributes is called a composite key. 

Referential Integrity 
Referential Integrity can be defined as an integrity constraint that specifies that the value (or existence) of an 

attribute in one relation depend on the value (or existence) of an attribute in the same or another relation. Referential 

integrity in a relational database is consistency between coupled tables. It is usually enforced by the combination of 

a primary key and a foreign key. For referential integrity to hold, any field in a table that is declared a foreign key 

can contain only values from a parent table's primary key field. For instance, deleting a record that contains a value 

referred to by a foreign key in another table would break referential integrity. 

Relational Model 

Relational data model is the primary data model, which is used widely around the world for data storage and 

processing. This model is simple and it has all the properties and capabilities required to process data with storage 

efficiency. 

Concepts 

Tables − In relational data model, relations are saved in the format of Tables. This format stores the relation among 

entities. A table has rows and columns, where rows represents records and columns represent the attributes. 

Tuple − A single row of a table, which contains a single record for that relation is called a tuple. 

Relation instance − A finite set of tuples in the relational database system represents relation instance. Relation 

instances do not have duplicate tuples. 

Relation schema − A relation schema describes the relation name (table name), attributes, and their names. 

Relation key − Each row has one or more attributes, known as relation key, which can identify the row in the 

relation (table) uniquely. 

Attribute domain − Every attribute has some pre-defined value scope, known as attribute domain. 

Constraints 

Every relation has some conditions that must hold for it to be a valid relation. These conditions are 

called Relational Integrity Constraints. There are three main integrity constraints − 

 Key constraints 

 Domain constraints 

 Referential integrity constraints 

Key Constraints 

There must be at least one minimal subset of attributes in the relation, which can identify a tuple uniquely. This 

minimal subset of attributes is called keyfor that relation. If there are more than one such minimal subsets, these are 

called candidate keys. 

Key constraints force that − 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 8 of 20 

 in a relation with a key attribute, no two tuples can have identical values for key attributes. 

 a key attribute can not have NULL values. 

Key constraints are also referred to as Entity Constraints. 

Domain Constraints 

Attributes have specific values in real-world scenario. For example, age can only be a positive integer. The same 

constraints have been tried to employ on the attributes of a relation. Every attribute is bound to have a specific 

range of values. For example, age cannot be less than zero and telephone numbers cannot contain a digit outside 0- 

Referential integrity Constraints 

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a key attribute of a relation 

that can be referred in other relation. 

Referential integrity constraint states that if a relation refers to a key attribute of a different or same relation, then 

that key element must exist. 

Relational database systems are expected to be equipped with a query language that can assist its users to query the 

database instances. There are two kinds of query languages − relational algebra and relational calculus. 

Relational Algebra 
Relational algebra is a procedural query language, which takes instances of relations as input and yields instances 

of relations as output. It uses operators to perform queries. An operator can be either unary or binary. They accept 

relations as their input and yield relations as their output. Relational algebra is performed recursively on a relation 

and intermediate results are also considered relations. 

The fundamental operations of relational algebra are as follows − 

 Select 

 Project 

 Union 

 Set different 

 Cartesian product 

 Rename 

We will discuss all these operations in the following sections. 

Select Operation (σ) 

It selects tuples that satisfy the given predicate from a relation. 

Notation − σp(r) 

Where σ stands for selection predicate and r stands for relation. p is prepositional logic formula which may use 

connectors like and, or, and not. These terms may use relational operators like − =, ≠, ≥, < ,  >,  ≤. 

For example − 

σsubject = "database"(Books) 

Output − Selects tuples from books where subject is 'database'. 

σsubject = "database" and price = "450"(Books) 

Output − Selects tuples from books where subject is 'database' and 'price' is 450. 

σsubject = "database" and price = "450" or year > "2010"(Books) 

Output − Selects tuples from books where subject is 'database' and 'price' is 450 or those books published after 

2010. 

Project Operation (∏) 

It projects column(s) that satisfy a given predicate. 

Notation − ∏A1, A2, An (r) 

Where A1, A2 , An are attribute names of relation r. 

Duplicate rows are automatically eliminated, as relation is a set. 

For example − 

∏subject, author (Books) 

Selects and projects columns named as subject and author from the relation Books. 

Union Operation (∪) 

It performs binary union between two given relations and is defined as − 

r ∪ s = { t | t ∈ r or t ∈ s} 

Notation − r U s 

Where r and s are either database relations or relation result set (temporary relation). 

For a union operation to be valid, the following conditions must hold − 

 r, and s must have the same number of attributes. 

 Attribute domains must be compatible. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 9 of 20 

 Duplicate tuples are automatically eliminated. 

∏ author (Books) ∪ ∏ author (Articles) 

Output − Projects the names of the authors who have either written a book or an article or both. 

Set Difference (−) 

The result of set difference operation is tuples, which are present in one relation but are not in the second relation. 

Notation − r − s 

Finds all the tuples that are present in r but not in s. 

∏ author (Books) − ∏ author (Articles) 

Output − Provides the name of authors who have written books but not articles. 

Cartesian Product (Χ) 

Combines information of two different relations into one. 

Notation − r Χ s 

Where r and s are relations and their output will be defined as − 

r Χ s = { q t | q ∈ r and t ∈ s} 

σauthor = 'tutorialspoint'(Books Χ Articles) 

Output − Yields a relation, which shows all the books and articles written by tutorialspoint. 

Rename Operation (ρ) 

The results of relational algebra are also relations but without any name. The rename operation allows us to rename 

the output relation. 'rename' operation is denoted with small Greek letter rho ρ. 

Notation − ρ x (E) 

Where the result of expression E is saved with name of x. 

Additional operations are − 

 Set intersection 

 Assignment 

 Natural join 

SQL FUNDAMENTALS: 

SQL is a standard computer language for accessing and manipulating databases. 

 
What is SQL? 

 SQL stands for Structured Query Language 

 SQL allows you to access a database 

 SQL is an ANSI standard computer language 

 SQL can execute queries against a database 

 SQL can retrieve data from a database 

 SQL can insert new records in a database 

 SQL can delete records from a database 

 SQL can update records in a database 

 SQL is easy to learn 

 
SQL is a Standard - BUT.... 

SQL is an ANSI (American National Standards Institute) standard computer language for accessing and 

manipulating database systems. SQL statements are used to retrieve and update data in a database. SQL works with 

database programs like MS Access, DB2, Informix, MS SQL Server, Oracle, Sybase, etc.Unfortunately, there are 

many different versions of the SQL language, but to be in compliance with the ANSI standard, they must support the 

same major keywords in a similar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and others). 

Note: Most of the SQL database programs also have their own proprietary extensions in addition to the SQL 

standard! 

SQL Database Tables 

A database most often contains one or more tables. Each table is identified by a name (e.g. "Customers" or 

"Orders"). Tables contain records (rows) with data.Below is an example of a table called "Persons": 

LastName FirstName Address City 

Hansen Ola Timoteivn 10 Sandnes 

Svendson Tove Borgvn 23 Sandnes 

Pettersen Kari Storgt 20 Stavanger 

The table above contains three records (one for each person) and four columns (LastName, FirstName, Address, and 

City). 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 10 of 20 

SQL Queries  

With SQL, we can query a database and have a result set returned.  

A query like this:  

SELECT LastName FROM Persons 

Gives a result set like this:  

LastName 

Hansen 

Svendson 

Pettersen 

Note: Some database systems require a semicolon at the end of the SQL statement. We don't use the semicolon in 

our tutorials. 

 
SQL Data Manipulation Language (DML) 

SQL (Structured Query Language) is a syntax for executing queries. But the SQL language also includes a syntax to 

update, insert, and delete records. 

These query and update commands together form the Data Manipulation Language (DML) part of SQL: 

 SELECT - extracts data from a database table 

 UPDATE - updates data in a database table 

 DELETE - deletes data from a database table 

 INSERT INTO - inserts new data into a database table 

 
SQL Data Definition Language (DDL) 

The Data Definition Language (DDL) part of SQL permits database tables to be created or deleted. We can also 

define indexes (keys), specify links between tables, and impose constraints between database tables. 

The most important DDL statements in SQL are:  

 CREATE TABLE - creates a new database table 

 ALTER TABLE - alters (changes) a database table 

 DROP TABLE - deletes a database table 

 CREATE INDEX - creates an index (search key) 

 DROP INDEX - deletes an index  

The SQL SELECT Statement 

The SELECT statement is used to select data from a table. The tabular result is stored in a result table (called the 

result-set). 

Syntax 

SELECT column_name(s) 

FROM table_name 

Note: SQL statements are not case sensitive. SELECT is the same as select.

 
SQL SELECT Example 

To select the content of columns named "LastName" and "FirstName", from the database table called "Persons", use 

a SELECT statement like this: 

SELECT LastName,FirstName FROM Persons 

The database table "Persons": 

LastName FirstName Address City 

Hansen Ola Timoteivn 10 Sandnes 

Svendson Tove Borgvn 23 Sandnes 

Pettersen Kari Storgt 20 Stavanger 

The result 

LastName FirstName 

Hansen Ola 

Svendson Tove 

Pettersen Kari 

 
Select All Columns 

To select all columns from the "Persons" table, use a * symbol instead of column names, like this:  



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 11 of 20 

SELECT * FROM Persons 

Result 

LastName FirstName Address City 

Hansen Ola Timoteivn 10 Sandnes 

Svendson Tove Borgvn 23 Sandnes 

Pettersen Kari Storgt 20 Stavanger 

 
The Result Set 

The result from a SQL query is stored in a result-set. Most database software systems allow navigation of the result 

set with programming functions, like: Move-To-First-Record, Get-Record-Content, Move-To-Next-Record, etc. 

Programming functions like these are not a part of this tutorial. To learn about accessing data with function calls,  

 
Semicolon after SQL Statements? 

Semicolon is the standard way to separate each SQL statement in database systems that allow more than one SQL 

statement to be executed in the same call to the server. 

Some SQL tutorials end each SQL statement with a semicolon. Is this necessary? We are using MS Access and SQL 

Server 2000 and we do not have to put a semicolon after each SQL statement, but some database programs force you 

to use it.

 
The SELECT DISTINCT Statement 

The DISTINCT keyword is used to return only distinct (different) values. 

The SELECT statement returns information from table columns. But what if we only want to select distinct 

elements? 

With SQL, all we need to do is to add a DISTINCT keyword to the SELECT statement: 

Syntax 

SELECT DISTINCT column_name(s) 

FROM table_name 

 
Using the DISTINCT keyword 

To select ALL values from the column named "Company" we use a SELECT statement like this: 

SELECT Company FROM Orders 

 

"Orders" table 

Company OrderNumber 

Sega 3412 

W3Schools 2312 

Trio 4678 

W3Schools 6798 

Result 

Company 

Sega 

W3Schools 

Trio 

W3Schools 

Note that "W3Schools" is listed twice in the result-set. 

To select only DIFFERENT values from the column named "Company" we use a SELECT DISTINCT statement 

like this: 

SELECT DISTINCT Company FROM Orders 

Result: 

Company 

Sega 

W3Schools 

Trio 

Now "W3Schools" is listed only once in the result-set. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 12 of 20 

The WHERE clause is used to specify a selection criterion. 

 
The WHERE Clause  

To conditionally select data from a table, a WHERE clause can be added to the SELECT statement. 

Syntax 

SELECT column FROM table 

WHERE column operator value 

With the WHERE clause, the following operators can be used: 

Operator Description 

= Equal 

<> Not equal 

> Greater than 

< Less than 

>= Greater than or equal 

<= Less than or equal 

BETWEEN Between an inclusive range 

LIKE Search for a pattern 

Note: In some versions of SQL the <> operator may be written as != 

 
Using the WHERE Clause 

To select only the persons living in the city "Sandnes", we add a WHERE clause to the SELECT statement:  

SELECT * FROM Persons 

WHERE City='Sandnes' 

"Persons" table 

LastName FirstName Address City Year 

Hansen Ola Timoteivn 10 Sandnes 1951 

Svendson Tove Borgvn 23 Sandnes 1978 

Svendson Stale Kaivn 18 Sandnes 1980 

Pettersen Kari Storgt 20 Stavanger 1960 

Result 

LastName FirstName Address City Year 

Hansen Ola Timoteivn 10 Sandnes 1951 

Svendson Tove Borgvn 23 Sandnes 1978 

Svendson Stale Kaivn 18 Sandnes 1980 

 
Using Quotes 

Note that we have used single quotes around the conditional values in the examples. 

SQL uses single quotes around text values (most database systems will also accept double quotes). Numeric values 

should not be enclosed in quotes. 

For text values: 

This is correct: 

SELECT * FROM Persons WHERE FirstName='Tove' 

This is wrong: 

SELECT * FROM Persons WHERE FirstName=Tove 

For numeric values: 

This is correct: 

SELECT * FROM Persons WHERE Year>1965 

This is wrong: 

SELECT * FROM Persons WHERE Year>'1965' 

 
The LIKE Condition  

The LIKE condition is used to specify a search for a pattern in a column.  

Syntax 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 13 of 20 

SELECT column FROM table 

WHERE column LIKE pattern 

A "%" sign can be used to define wildcards (missing letters in the pattern) both before and after the pattern. 

 
Using LIKE 

The following SQL statement will return persons with first names that start with an 'O': 

SELECT * FROM Persons 

WHERE FirstName LIKE 'O%' 

The following SQL statement will return persons with first names that end with an 'a': 

SELECT * FROM Persons 

WHERE FirstName LIKE '%a' 

The following SQL statement will return persons with first names that contain the pattern 'la': 

SELECT * FROM Persons 

WHERE FirstName LIKE '%la%' 

The INSERT INTO Statement  
The INSERT INTO statement is used to insert new rows into a table. 

Syntax 

INSERT INTO table_name 

VALUES (value1, value2,....)  

You can also specify the columns for which you want to insert data: 

INSERT INTO table_name (column1, column2,...) 

VALUES (value1, value2,....) 

 
Insert a New Row 

This "Persons" table: 

LastName FirstName Address City 

Pettersen Kari Storgt 20 Stavanger 

And this SQL statement: 

INSERT INTO Persons  

VALUES ('Hetland', 'Camilla', 'Hagabakka 24', 'Sandnes') 

Will give this result: 

LastName FirstName Address City 

Pettersen Kari Storgt 20 Stavanger 

Hetland Camilla Hagabakka 24 Sandnes 

 
Insert Data in Specified Columns 

This "Persons" table: 

LastName FirstName Address City 

Pettersen Kari Storgt 20 Stavanger 

Hetland Camilla Hagabakka 24 Sandnes 

And This SQL statement: 

INSERT INTO Persons (LastName, Address)  

VALUES ('Rasmussen', 'Storgt 67') 

Will give this result: 

LastName FirstName Address City 

Pettersen Kari Storgt 20 Stavanger 

Hetland Camilla Hagabakka 24 Sandnes 

Rasmussen   Storgt 67  

 Null (no value …not space not empty) 

The UPDATE statement is used to modify the data in a table. 

Syntax 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 14 of 20 

UPDATE table_name 

SET column_name = new_value 

WHERE column_name = some_value 

Person: 

LastName FirstName Address City 

Nilsen Fred Kirkegt 56 Stavanger 

Rasmussen   Storgt 67   

 
Update one Column in a Row 

We want to add a first name to the person with a last name of “Rasmussen”: 

UPDATE Person SET FirstName = ‘Nina’ 

WHERE LastName = ‘Rasmussen’ 

Result: 

LastName FirstName Address City 

Nilsen Fred Kirkegt 56 Stavanger 

Rasmussen Nina Storgt 67   

 
Update several Columns in a Row 

We want to change the address and add the name of the city: 

UPDATE Person 

SET Address = 'Stien 12', City = 'Stavanger' 

WHERE LastName = 'Rasmussen' 

Result: 

LastName FirstName Address City 

Nilsen Fred Kirkegt 56 Stavanger 

Rasmussen Nina Stien 12 Stavanger 

The DELETE Statement 

The DELETE statement is used to delete rows in a table. 

Syntax 

DELETE FROM table_name 

WHERE column_name = some_value 

 
Person: 

LastName FirstName Address City 

Nilsen Fred Kirkegt 56 Stavanger 

Rasmussen Nina Stien 12 Stavanger 

Delete  

Drop  

 
Delete a Row 

"Nina Rasmussen" is going to be deleted: 

DELETE FROM Person WHERE LastName = 'Rasmussen'  

Result 

LastName FirstName Address City 

Nilsen Fred Kirkegt 56 Stavanger 

 
Delete All Rows 

It is possible to delete all rows in a table without deleting the table. This means that the table structure, attributes, 

and indexes will be intact: 

DELETE FROM table_name 

or 

DELETE * FROM table_name 

The ORDER BY keyword is used to sort the result. 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 15 of 20 

Sort the Rows 

 

The ORDER BY clause is used to sort the rows. 

Orders: 

Company OrderNumber 

Sega 3412 

ABC Shop 5678 

W3Schools 2312 

W3Schools 6798 

Example 

To display the company names in alphabetical order: 

SELECT Company, OrderNumber FROM Orders 

ORDER BY Company  ASC (asending)  

Result: 

Company OrderNumber 

ABC Shop  5678 

Sega 3412 

W3Schools 6798 

W3Schools 2312 

Example 

To display the company names in alphabetical order AND the OrderNumber in numerical order: 

SELECT Company, OrderNumber FROM Orders 

ORDER BY Company, OrderNumber 

Result: 

Company OrderNumber 

ABC Shop 5678 

Sega 3412 

W3Schools 2312 

W3Schools 6798 

Aggregate functions 

Aggregate functions operate against a collection of values, but return a single value. 

Note: If used among many other expressions in the item list of a SELECT statement, the SELECT must have a 

GROUP BY clause!! 

"Persons" table (used in most examples) 

Name Age 

Hansen, Ola 34 

Svendson, Tove 45 

Pettersen, Kari 19 

Aggregate functions in MS Access 

Function Description 

AVG(column) Returns the average value of a column 

COUNT(column) Returns the number of rows (without a NULL value) of a column 

COUNT(*) Returns the number of selected rows 

FIRST(column) Returns the value of the first record in a specified field 

LAST(column) Returns the value of the last record in a specified field 

MAX(column) Returns the highest value of a column 

MIN(column) Returns the lowest value of a column 

STDEV(column)   

STDEVP(column)   

SUM(column) Returns the total sum of a column 

VAR(column)   

http://www.w3schools.com/sql/func_avg.asp
http://www.w3schools.com/sql/func_count.asp
http://www.w3schools.com/sql/func_count_ast.asp
http://www.w3schools.com/sql/func_max.asp
http://www.w3schools.com/sql/func_min.asp
http://www.w3schools.com/sql/func_sum.asp


CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 16 of 20 

VARP(column)   

Aggregate functions in SQL Server 

Function Description 

AVG(column) Returns the average value of a column 

BINARY_CHECKSUM   

CHECKSUM   

CHECKSUM_AGG   

COUNT(column) Returns the number of rows (without a NULL value) of a column 

COUNT(*) Returns the number of selected rows 

COUNT(DISTINCT column) Returns the number of distinct results 

FIRST(column) Returns the value of the first record in a specified field (not supported in 

SQLServer2K) 

LAST(column) Returns the value of the last record in a specified field (not supported in 

SQLServer2K) 

MAX(column) Returns the highest value of a column 

MIN(column) Returns the lowest value of a column 

STDEV(column)   

STDEVP(column)   

SUM(column) Returns the total sum of a column 

VAR(column)   

VARP(column)   

 
Scalar functions 

Scalar functions operate against a single value, and return a single value based on the input value. 

Useful Scalar Functions in MS Access 

Function Description 

UCASE(c) Converts a field to upper case 

LCASE(c) Converts a field to lower case 

MID(c,start[,end]) Extract characters from a text field 

LEN(c) Returns the length of a text field 

INSTR(c,char) Returns the numeric position of a named character within a text field 

LEFT(c,number_of_char) Return the left part of a text field requested 

RIGHT(c,number_of_char) Return the right part of a text field requested 

ROUND(c,decimals) Rounds a numeric field to the number of decimals specified 

MOD(x,y) Returns the remainder of a division operation 

Aggregate functions (like SUM) often need an added GROUP BY functionality. 

GROUP BY 

GROUP BY... was added to SQL because aggregate functions (like SUM) return the aggregate of all column values 

every time they are called, and without the GROUP BY function it was impossible to find the sum for each 

individual group of column values.  

The syntax for the GROUP BY function is: 

SELECT column,SUM(column) FROM table GROUP BY column 

 
GROUP BY Example  

This "Sales" Table: 

Company Amount 

W3Schools 5500 

IBM 4500 

W3Schools 7100 

And This SQL: 

http://www.w3schools.com/sql/func_avg.asp
http://www.w3schools.com/sql/func_count.asp
http://www.w3schools.com/sql/func_count_ast.asp
http://www.w3schools.com/sql/func_count_distinct.asp
http://www.w3schools.com/sql/func_first.asp
http://www.w3schools.com/sql/func_last.asp
http://www.w3schools.com/sql/func_max.asp
http://www.w3schools.com/sql/func_min.asp
http://www.w3schools.com/sql/func_sum.asp


CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 17 of 20 

SELECT Company, SUM(Amount) FROM Sales 

Returns this result: 

Company SUM(Amount) 

W3Schools 17100 

IBM 17100 

W3Schools 17100 

The above code is invalid because the column returned is not part of an aggregate. A GROUP BY clause will solve 

this problem:  

SELECT Company,SUM(Amount) FROM Sales 

GROUP BY Company 

 

Returns this result: 

Company SUM(Amount) 

W3Schools 12600 

IBM 4500 

 
HAVING…  

HAVING... was added to SQL because the WHERE keyword could not be used against aggregate functions (like 

SUM), and without HAVING... it would be impossible to test for result conditions.  

The syntax for the HAVING function is: 

SELECT column,SUM(column) FROM table 

GROUP BY column 

HAVING SUM(column) condition value 

This "Sales" Table: 

Company Amount 

W3Schools 5500 

IBM 4500 

W3Schools 7100 

This SQL: 

SELECT Company,SUM(Amount) FROM Sales 

GROUP BY Company 

HAVING SUM(Amount)>10000 

Returns this result 

Company SUM(Amount) 

W3Schools 12600 

 

EMBEDDED SQL 

Embedded SQL is a method of inserting inline SQL statements or queries into the code of a programming language, 

which is known as a host language. Because the host language cannot parse SQL, the inserted SQL is parsed by an 

embedded SQL preprocessor. 

Embedded SQL is a robust and convenient method of combining the computing power of a programming language 

with SQL's specialized data management and manipulation capabilities. 

Structure of embedded SQL 

Structure of embedded SQL defines step by step process of establishing a connection with DB and executing the 

code in the DB within the high level language. 

Connection to DB 

This is the first step while writing a query in high level languages. First connection to the DB that we are accessing 

needs to be established. This can be done using the keyword CONNECT. But it has to precede with ‘EXEC SQL’ to 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 18 of 20 

indicate that it is a SQL statement. 

EXEC SQL CONNECT db_name; 

EXEC SQL CONNECT HR_USER; //connects to DB HR_USER 

Once connection is established with DB, we can perform DB transactions. Since these DB transactions are 

dependent on the values and variables of the host language. Depending on their values, query will be written and 

executed. Similarly, results of DB query will be returned to the host language which will be captured by the 

variables of host language. Hence we need to declare the variables to pass the value to the query and get the values 

from query. There are two types of variables used in the host language. 

 Host variable : These are the variables of host language used to pass the value to the query as well as to 

capture the values returned by the query. Since SQL is dependent on host language we have to use 

variables of host language and such variables are known as host variable. But these host variables should 

be declared within the SQL area or within SQL code. That means compiler should be able to differentiate 

it from normal C variables. Hence we have to declare host variables within BEGIN DECLARE and END 

DECLARE section. Again, these declare block should be enclosed within EXEC SQL and ‘;’. 

EXEC SQL BEGIN DECLARE SECTION; 

 int STD_ID; 

 char STD_NAME [15]; 

 char ADDRESS[20]; 

EXEC SQL END DECLARE SECTION; 

We can note here that variables are written inside begin and end block of the SQL, but they are declared using C 

code. It does not use SQL code to declare the variables. Why? This is because they are host variables – variables of 

C language. Hence we cannot use SQL syntax to declare them. Host language supports almost all the datatypes from 

int, char, long, float, double, pointer, array, string, structures etc. 

When host variables are used in a SQL query, it should be preceded by colon – ‘:’ to indicate that it is a host 

variable. Hence when pre-compiler compiles SQL code, it substitutes the value of host variable and compiles. 

EXEC SQL SELECT * FROM STUDENT WHERE STUDENT_ID =:STD_ID; 

The following code is a simple embedded SQL program, written in C. The program illustrates many, but 

not all, of the embedded SQL techniques. The program prompts the user for an order number, retrieves the 

customer number, salesperson, and status of the order, and displays the retrieved information on the screen. 

int main() {   

   EXEC SQL INCLUDE SQLCA;   

   EXEC SQL BEGIN DECLARE SECTION;   

      int OrderID;         /* Employee ID (from user)         */   

      int CustID;            /* Retrieved customer ID         */   

      char SalesPerson[10]   /* Retrieved salesperson name      */   

      char Status[6]         /* Retrieved order status        */   

   EXEC SQL END DECLARE SECTION;   

 

   /* Set up error processing */   

   EXEC SQL WHENEVER SQLERROR GOTO query_error;   

   EXEC SQL WHENEVER NOT FOUND GOTO bad_number;   

 

   /* Prompt the user for order number */   

   printf ("Enter order number: ");   

   scanf_s("%d", &OrderID);   

 

   /* Execute the SQL query */   

   EXEC SQL SELECT CustID, SalesPerson, Status   

      FROM Orders   

      WHERE OrderID = :OrderID   

      INTO :CustID, :SalesPerson, :Status;   



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 19 of 20 

 

   /* Display the results */   

   printf ("Customer number:  %d\n", CustID);   

   printf ("Salesperson: %s\n", SalesPerson);   

   printf ("Status: %s\n", Status);   

   exit();   

 

query_error:   

   printf ("SQL error: %ld\n", sqlca->sqlcode);   

   exit();   

 

bad_number:   

   printf ("Invalid order number.\n");   

   exit();   

} 

DYNAMIC SQL 

       The main disadvantage of embedded SQL is that it supports only static SQLs. If we need to build up queries at 

run time, then we can use dynamic sql. That means if query changes according to user input,  then it always better to 

use dynamic SQL. Like we said above, the query when user enters student name alone and when user enters both 

student name and address, is different. If we use embedded SQL, one cannot implement this requirement in the code. 

In such case dynamic SQL helps the user to develop query depending on the values entered by him, without making 

him know which query is being executed. It can also be used when we do not know which SQL statements like 

Insert, Delete update or select needs to be used, when number of host variables is unknown, or when datatypes of 

host variables are unknown or when there is direct reference to DB objects like tables, views, indexes are required. 

However this will make user requirement simple and easy but it may make query lengthier and complex.  That 

means depending upon user inputs, the query may grow or shrink making the code flexible enough to handle all the 

possibilities. In embedded SQL, compiler knows the query in advance and pre-compiler compiles the SQL code 

much before C compiles the code for execution. Hence embedded SQLs will be faster in execution. But in the case 

of dynamic SQL, queries are created, compiled and executed only at the run time. This makes the dynamic SQL 

little complex, and time consuming. 

Since query needs to be prepared at run time, in addition to the structures discussed in embedded SQL, we have 

three more clauses in dynamic SQL. These are mainly used to build the query and execute them at run time. 

PREPARE 

Since dynamic SQL builds a query at run time, as a first step we need to capture all the inputs from the user. It will 

be stored in a string variable. Depending on the inputs received from the user, string variable is appended with inputs 

and SQL keywords. These SQL like string statements are then converted into SQL query. This is done by using 

PREPARE statement. 

For example, below is the small snippet from dynamic SQL. Here sql_stmt is a character variable, which holds 

inputs from the users along with SQL commands. But is cannot be considered as SQL query as it is still a sting 

value. It needs to be converted into a proper SQL query which is done at the last line using PREPARE statement. 

Here sql_query is also a string variable, but it holds the string as a SQL query. 

EXECUTE 

This statement is used to compile and execute the SQL statements prepared in DB. 

EXEC SQL EXECUTE sql_query; 

EXECUTE IMMEDIATE 

This statement is used to prepare SQL statement as well as execute the SQL statements in DB. It performs the task 

of PREPARE and EXECUTE in a single line. 

EXEC SQL EXECUTE IMMEDIATE :sql_stmt; 

Dynamic SQL will not have any SELECT queries and host variables. But it can be any other SQL statements like 

insert, delete, update, grant  etc. But when we use insert/ delete/ updates in this type, we cannot use host variables. 

All the input values will be hardcoded. Hence the SQL statements can be directly executed using EXECUTE 

IMMEDIATE rather than using PREPARE and then EXECUTE. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering / St. Joseph’s Institute of Technology Page 20 of 20 

EXEC SQL EXECUTE IMMEDIATE  ‘GRANT SELECT ON STUDENT TO Faculty’; 

EXEC SQL EXECUTE IMMEDIATE  ‘DELETE FROM STUDENT WHERE STD_ID = 100’; 

EXEC SQL EXECUTE IMMEDIATE  ‘UPDATE STUDENT SET ADDRESS = ‘Troy’ WHERE STD_ID =100’; 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 1 
 

UNIT II                                                     DATABASE DESIGN  
Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping – 

Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms, Dependency 

Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth Normal Form – 

Join Dependencies and Fifth Normal Form 

DATABASE DESIGN  

A well-designed database shall: 

 Eliminate Data Redundancy: the same piece of data shall not be stored in more than one place. This is because 

duplicate data not only waste storage spaces but also easily lead to inconsistencies. 

 Ensure Data Integrity and Accuracy 

Entity-Relationship Data Model  
 Classical, popular conceptual data model  

 First introduced (mid 70’s) as a (relatively minor) improvement to the relational model: pictorial diagrams are 

easier to read than relational database schemas 

 Then evolved as a popular model for the first conceptual representation of data structures in the process of 

database design 

 ER Model: Entity and Entity Set 
Considering the above example, Student is an entity, Teacher is an entity, similarly, Class, Subjectetc are also 
entities. 

An Entity is generally a real-world object which has characteristics and holds relationships in a DBMS. 

If a Student is an Entity, then the complete dataset of all the students will be the Entity Set 

ER Model: Attributes 
If a Student is an Entity, then student's roll no., student's name, student's age, student's gender etc will be its 
attributes. 

An attribute can be of many types, here are different types of attributes defined in ER database model: 

1. Simple attribute: The attributes with values that are atomic and cannot be broken down further are simple 

attributes. For example, student's age. 

2. Composite attribute: A composite attribute is made up of more than one simple attribute. For example, 

student's address will contain, house no., street name, pincode etc. 

3. Derived attribute: These are the attributes which are not present in the whole database management system, 

but are derived using other attributes. For example, average age of students in a class. 

4. Single-valued attribute: As the name suggests, they have a single value. 

5. Multi-valued attribute: And, they can have multiple values. 

 

ER Model: Relationships 

 
When an Entity is related to another Entity, they are said to have a relationship. For example, A ClassEntity is 
related to Student entity, because students study in classes, hence this is a relationship. 

Depending upon the number of entities involved, a degree is assigned to relationships. 

For example, if 2 entities are involved, it is said to be Binary relationship, if 3 entities are involved, it is said to 
be Ternary relationship, and so on. 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 2 
 

Working with ER Diagrams 
ER Diagram is a visual representation of data that describes how data is related to each other. In ER Model, we 

disintegrate data into entities, attributes and setup relationships between entities, all this can be represented visually 

using the ER diagram. 

Components of ER Diagram 
Entitiy, Attributes, Relationships etc form the components of ER Diagram and there are defined symbols and 

shapes to represent each one of them. 

Let's see how we can represent these in our ER Diagram. 

Entity 
Simple rectangular box represents an Entity. 

 

Relationships between Entities - Weak and Strong 
Rhombus is used to setup relationships between two or more entities. 

 

Attributes for any Entity 
Ellipse is used to represent attributes of any entity. It is connected to the entity. 

 

Weak Entity 
A weak Entity is represented using double rectangular boxes. It is generally connected to another entity. 

 

 

Key Attribute for any Entity 
To represent a Key attribute, the attribute name inside the Ellipse is underlined. 

 

 
 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 3 
 

Derived Attribute for any Entity 
Derived attributes are those which are derived based on other attributes, for example, age can be derived from date 
of birth. 

To represent a derived attribute, another dotted ellipse is created inside the main ellipse. 

 

Multivalued Attribute for any Entity 
Double Ellipse, one inside another, represents the attribute which can have multiple values. 

 

Composite Attribute for any Entity 
A composite attribute is the attribute, which also has attributes. 

 

ER Diagram: Entity 
An Entity can be any object, place, person or class. In ER Diagram, an entity is represented using rectangles. 

Consider an example of an Organisation- Employee, Manager, Department, Product and many more can be taken 

as entities in an Organisation. 

 

The yellow rhombus in between represents a relationship. 

ER Diagram: Key Attribute 
Key attribute represents the main characteristic of an Entity. It is used to represent a Primary key. Ellipse with the 

text underlined, represents Key Attribute. 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 4 
 

ER Diagram: Binary Relationship 
Binary Relationship means relation between two Entities. This is further divided into three types. 

One to One Relationship 
This type of relationship is rarely seen in real world. 

 

The above example describes that one student can enroll only for one course and a course will also have only one 

Student. This is not what you will usually see in real-world relationships. 

One to Many Relationship 
The below example showcases this relationship, which means that 1 student can opt for many courses, but a course 
can only have 1 student. Sounds weird! This is how it is. 

 

Many to One Relationship 
It reflects business rule that many entities can be associated with just one entity. For example, Student enrolls for 
only one Course but a Course can have many Students. 

 

 

Many to Many Relationship 

 

The above diagram represents that one student can enroll for more than one courses. And a course can have more 
than 1 student enrolled in it. 

 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 5 
 

ER Diagram: Recursive Relationship 
When an Entity is related with itself it is known as Recursive Relationship. 

 

ER Diagram: Ternary Relationship 
Relationship of degree three is called Ternary relationship. 

A Ternary relationship involves three entities. In such relationships we always consider two entites together and 
then look upon the third. 

 

For example, in the diagram above, we have three related entities, Company, Product and Sector. To understand the 

relationship better or to define rules around the model, we should relate two entities and then derive the third one. 

A Company produces many Products/ each product is produced by exactly one company. 

A Company operates in only one Sector / each sector has many companies operating in it. 

Considering the above two rules or relationships, we see that although the complete relationship involves three 

entities, but we are looking at two entities at a time. 

The Enhanced ER Model 
As the complexity of data increased in the late 1980s, it became more and more difficult to use the traditional ER 

Model for database modelling. Hence some improvements or enhancements were made to the existing ER Model to 

make it able to handle the complex applications better. 

Hence, as part of the Enhanced ER Model, along with other improvements, three new concepts were added to the 

existing ER Model, they were: 

1. Generalization 

2. Specialization 

3. Aggregration 

Generalization 

Generalization is a bottom-up approach in which two lower level entities combine to form a higher level entity. In 

generalization, the higher level entity can also combine with other lower level entities to make further higher level 
entity. 

It's more like Superclass and Subclass system, but the only difference is the approach, which is bottom-up. Hence, 

entities are combined to form a more generalised entity, in other words, sub-classes are combined to form a super-



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 6 
 

class. 

 

For example, Saving and Current account types entities can be generalised and an entity with name Account can be 
created, which covers both. 

Specialization 

Specialization is opposite to Generalization. It is a top-down approach in which one higher level entity can be 

broken down into two lower level entity. In specialization, a higher level entity may not have any lower-level entity 

sets, it's possible. 

 

Aggregation 

Aggregation is a process when relation between two entities is treated as a single entity. 

 

In the diagram above, the relationship between Center and Course together, is acting as an Entity, which is in 

relationship with another entity Visitor. Now in real world, if a Visitor or a Student visits a Coaching Center, he/she 
will never enquire about the center only or just about the course, rather he/she will ask enquire about both. 

ER Model to Relational Model 

ER Model can be represented using ER Diagrams which is a great way of designing and representing the database 

design in more of a flow chart form. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 7 
 

It is very convenient to design the database using the ER Model by creating an ER diagram and later on converting 

it into relational model to design your tables. 

Not all the ER Model constraints and components can be directly transformed into relational model, but an 

approximate schema can be derived. 

Few examples of ER diagrams and convert it into relational model schema, hence creating tables in RDBMS. 

Entity becomes Table 

Entity in ER Model is changed into tables, or we can say for every Entity in ER model, a table is created in 

Relational Model. 

And the attributes of the Entity gets converted to columns of the table. 

And the primary key specified for the entity in the ER model, will become the primary key for the table in 

relational model. 

For example, for the below ER Diagram in ER Model, 

 

A table with name Student will be created in relational model, which will have 4 

columns, id, name, age, address and id will be the primary key for this table. 

Table:Student 

 

id name age address 

 

Relationship becomes a Relationship Table 

In ER diagram, we use diamond/rhombus to represent a relationship between two entities. In Relational model we 
create a relationship table for ER Model relationships too. 

In the ER diagram below, we have two entities Teacher and Student with a relationship between them. 

 

As discussd above, entity gets mapped to table, hence we will create table for Teacher and a table for Student with 
all the attributes converted into columns. 

Now, an additional table will be created for the relationship, for example StudentTeacher or give it any name you 

like. This table will hold the primary key for both Student and Teacher, in a tuple to describe the relationship, 

which teacher teaches which student. 

If there are additional attributes related to this relationship, then they become the columns for this table, like subject 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 8 
 

name. 

Also proper foreign key constraints must be set for all the tables. 

Functional Dependency 

The functional dependency is a relationship that exists between two attributes. It typically exists between the 

primary key and non-key attribute within a table. 

X   →   Y   

The left side of FD is known as a determinant, the right side of the production is known as a dependent. 

For example: 
Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address. 

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know the 

Emp_Id, we can tell that employee name associated with it. 

Functional dependency can be written as: 

Emp_Id → Emp_Name 

Types of Functional dependency 

 

  

 

Trivial functional dependency 

o A → B has trivial functional dependency if B is a subset of A. 

o The following dependencies are also trivial like: A → A, B → B 

Example: 
1. Consider a table with two columns Employee_Id and Employee_Name.   

{Employee_id, Employee_Name}   →    Employee_Id is a trivial functional dependency as 

2. Employee_Id is a subset of {Employee_Id, Employee_Name}.   

3. Also, Employee_Id → Employee_Id and Employee_Name   →    Employee_Name are trivial dependencies too. 

Non-trivial functional dependency 
4. A → B has a non-trivial functional dependency if B is not a subset of A. 

5. When A intersection B is NULL, then A → B is called as complete non-trivial. 

Example: 

ID   →    Name, 

Name   →    DOB 

Normalization of Database 

Database Normalization is a technique of organizing the data in the database. Normalization is a systematic 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 9 
 

approach of decomposing tables to eliminate data redundancy(repetition) and undesirable characteristics like 

Insertion, Update and Deletion anomalies. It is a multi-step process that puts data into tabular form, removing 

duplicated data from the relation tables. 

Normalization is used for mainly two purposes, 

 Eliminating reduntant(useless) data. 

 Ensuring data dependencies make sense i.e data is logically stored. 
 

Problems Without Normalization 

If a table is not properly normalized and have data redundancy then it will not only eat up extra memory space but 

will also make it difficult to handle and update the database, without facing data loss. Insertion, Updation and 

Deletion Anomalies are very frequent if database is not normalized. To understand these anomalies let us take an 

example of a Student table. 

rollno name branch hod office_tel 

401 Akon CSE Mr. X 53337 

402 Bkon CSE Mr. X 53337 

403 Ckon CSE Mr. X 53337 

404 Dkon CSE Mr. X 53337 

In the table above, we have data of 4 Computer Sci. students. As we can see, data for the fields branch, hod(Head 

of Department) and office_tel is repeated for the students who are in the same branch in the college, this is Data 

Redundancy. 

Insertion Anomaly 
Suppose for a new admission, until and unless a student opts for a branch, data of the student cannot be inserted, or 

else we will have to set the branch information as NULL. 

Also, if we have to insert data of 100 students of same branch, then the branch information will be repeated for all 

those 100 students. 

These scenarios are nothing but Insertion anomalies. 

Updation Anomaly 
What if Mr. X leaves the college? or is no longer the HOD of computer science department? In that case all the 

student records will have to be updated, and if by mistake we miss any record, it will lead to data inconsistency. 

This is Updation anomaly. 

Deletion Anomaly 
In our Student table, two different informations are kept together, Student information and Branch information. 

Hence, at the end of the academic year, if student records are deleted, we will also lose the branch information. 

This is Deletion anomaly. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 10 
 

Normalization Rule 
Normalization rules are divided into the following normal forms: 

1. First Normal Form 

2. Second Normal Form 

3. Third Normal Form 

4. BCNF 

5. Fourth Normal Form 

6. Fifth Normal Form 

First Normal Form (1NF) 
For a table to be in the First Normal Form, it should follow the following 4 rules: 

1. It should only have single(atomic) valued attributes/columns. 

2. Values stored in a column should be of the same domain 

3. All the columns in a table should have unique names. 

4. And the order in which data is stored, does not matter. 

Rules for First Normal Form 
The first normal form expects you to follow a few simple rules while designing your database, and they are: 

Rule 1: Single Valued Attributes 
Each column of your table should be single valued which means they should not contain multiple values. We 

will explain this with help of an example later, let's see the other rules for now. 

Rule 2: Attribute Domain should not change 
This is more of a "Common Sense" rule. In each column the values stored must be of the same kind or type. 

For example: If you have a column dob to save date of births of a set of people, then you cannot or you must 

not save 'names' of some of them in that column along with 'date of birth' of others in that column. It should 

hold only 'date of birth' for all the records/rows. 

Rule 3: Unique name for Attributes/Columns 
This rule expects that each column in a table should have a unique name. This is to avoid confusion at the time 

of retrieving data or performing any other operation on the stored data. 

If one or more columns have same name, then the DBMS system will be left confused. 

Rule 4: Order doesn't matters 
This rule says that the order in which you store the data in your table doesn't matter. 

 

EXAMPLE 
Create a table to store student data which will have student's roll no., their name and the name of subjects they 

have opted for. 
Here is the table, with some sample data added to it. 

 

 

roll_no name subject 

101 Akon OS, CN 

103 Ckon Java 

102 Bkon C, C++ 

 

The table already satisfies 3 rules out of the 4 rules, as all our column names are unique, we have stored data 

in the order we wanted to and we have not inter-mixed different type of data in columns. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 11 
 

But out of the 3 different students in our table, 2 have opted for more than 1 subject. And we have stored the 

subject names in a single column. But as per the 1st Normal form each column must contain atomic value. 

It's very simple, because all we have to do is break the values into atomic values. 

Here is our updated table and it now satisfies the First Normal Form. 

roll_no name subject 

101 Akon OS 

101 Akon CN 

103 Ckon Java 

102 Bkon C 

102 Bkon C++ 

 

By doing so, although a few values are getting repeated but values for the subject column are now atomic for 

each record/row. Using the First Normal Form, data redundancy increases, as there will be many columns with 

same data in multiple rows but each row as a whole will be unique. 

Second Normal Form (2NF) 
For a table to be in the Second Normal Form, 

1. It should be in the First Normal form. 

2. And, it should not have Partial Dependency. 

Dependency 
Let's take an example of a Student table with columns student_id, name, reg_no(registration 

number), branch and address(student's home address). 

student_
id 

name 
reg_n
o 

branc
h 

addre
ss 

          

 

In this table, student_id is the primary key and will be unique for every row, hence we can use student_id to 

fetch any row of data from this table 

Even for a case, where student names are same, if we know the student_id we can easily fetch the correct 

record. 

student_id name reg_no branch address 

10 Akon 07-WY CSE Kerala 

11 Akon 08-WY IT Gujarat 

 

Hence we can say a Primary Key for a table is the column or a group of columns(composite key) which can 

uniquely identify each record in the table. 

I can ask from branch name of student with student_id 10, and I can get it. Similarly, if I ask for name of 

student with student_id 10 or 11, I will get it. So all I need is student_id and every other column depends on it, 

or can be fetched using it.This is Dependency and we also call it Functional Dependency. 

Partial Dependency 

Now that we know what dependency is, we are in a better state to understand what partial dependency is. 

For a simple table like Student, a single column like student_id can uniquely identfy all the records in a table. 

But this is not true all the time. So now let's extend our example to see if more than 1 column together can act 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 12 
 

as a primary key. 

Let's create another table for Subject, which will have subject_id and subject_name fields and subject_id will 

be the primary key. 

subject_i
d 

subject_nam
e 

1 Java 

2 C++ 

3 Php 

Now we have a Student table with student information and another table Subject for storing subject 

information. 

Let's create another table Score, to store the marks obtained by students in the respective subjects. We will also 

be saving name of the teacher who teaches that subject along with marks. 

score_id student_id 
subject_i
d 

marks teacher 

1 10 1 70 Java Teacher 

2 10 2 75 C++ Teacher 

3 11 1 80 Java Teacher 

 

In the score table we are saving the student_id to know which student's marks are these and subject_id to 

know for which subject the marks are for. 

Together, student_id + subject_id forms a Candidate Key which can be the Primary key. 

To get me marks of student with student_id 10, can you get it from this table? No, because you don't know for 

which subject. And if I give you subject_id, you would not know for which student. Hence we need student_id 

+ subject_id to uniquely identify any row. 

But where is Partial Dependency? 

Now if you look at the Score table, we have a column names teacher which is only dependent on the subject, 

for Java it's Java Teacher and for C++ it's C++ Teacher & so on. 

Now as we just discussed that the primary key for this table is a composition of two columns which 

is student_id & subject_id but the teacher's name only depends on subject, hence the subject_id, and has 

nothing to do with student_id. 

This is Partial Dependency, where an attribute in a table depends on only a part of the primary key and not on 

the whole key. 

How to remove Partial Dependency? 

There can be many different solutions for this, but out objective is to remove teacher's name from Score table. 

The simplest solution is to remove columns teacher from Score table and add it to the Subject table. Hence, the 

Subject table will become: 

subject_id subject_name teacher 

1 Java Java Teacher 

2 C++ C++ Teacher 

3 Php Php Teacher 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 13 
 

 
And our Score table is now in the second normal form, with no partial dependency. 

score_
id 

student_
id 

subject_
id 

mar
ks 

1 10 1 70 

2 10 2 75 

3 11     

 

Third Normal Form (3NF) 
A table is said to be in the Third Normal Form when, 

1. It is in the Second Normal form. 

2. And, it doesn't have Transitive Dependency. 

So let's use the same example, where we have 3 tables, Student, Subject and Score. 

Student Table 
student_i

d 
name reg_no branch address 

10 Akon 07-WY CSE Kerala 

11 Akon 08-WY IT Gujarat 

12 Bkon 09-WY IT Rajasthan 

Subject Table 
subject_id subject_name teacher 

1 Java Java Teacher 

2 C++ C++ Teacher 

3 Php Php Teacher 

Score Table 
In the Score table, we need to store some more information, which is the exam name and total marks, so let's 

add 2 more columns to the Score table. 

score_id 
student_i

d 
subject_i

d 
marks 

1 10 1 70 

2 10 2 75 

3 11 1 80 

 

Transitive Dependency 
With exam_name and total_marks added to our Score table, it saves more data now. Primary key for the Score 

table is a composite key, which means it's made up of two attributes or columns → student_id + subject_id. 

The new column exam_name depends on both student and subject. For example, a mechanical engineering 

student will have Workshop exam but a computer science student won't. And for some subjects you have 

Practical exams and for some you don't. So we can say that exam_name is dependent on 

both student_id and subject_id. 

And what about our second new column total_marks? Does it depend on our Score table's primary key? 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 14 
 

Well, the column total_marks depends on exam_name as with exam type the total score changes. For example, 

practicals are of less marks while theory exams are of more marks. 

But, exam_name is just another column in the score table. It is not a primary key or even a part of the primary 

key, and total_marks depends on it. 

This is Transitive Dependency. When a non-prime attribute depends on other non-prime attributes rather than 

depending upon the prime attributes or primary key. 

How to remove Transitive Dependency 
Again the solution is very simple. Take out the columns exam_name and total_marks from Score table and put 

them in an Exam table and use the exam_id wherever required. 

Score Table: In 3rd Normal Form 

score_id 
student_i

d 
subject_

id 
marks exam_id 

          

The new Exam table 

exam_id exam_name 
total_mark

s 

1 Workshop 200 

2 Mains 70 

3 Practicals 30 

Advantage of removing Transitive Dependency 
The advantage of removing transitive dependency is, 

 Amount of data duplication is reduced. 

 Data integrity achieved. 

Boyce and Codd Normal Form (BCNF) 
Boyce and Codd Normal Form is a higher version of the Third Normal form. This form deals with certain type 

of anomaly that is not handled by 3NF. A 3NF table which does not have multiple overlapping candidate keys 

is said to be in BCNF. For a table to be in BCNF, following conditions must be satisfied: 

 R must be in 3rd Normal Form 

 and, for each functional dependency ( X → Y ), X should be a super Key.In simple words, it means, that 

for a dependency A → B, A cannot be a non-prime attribute, if B is a prime attribute. 

Example 
College enrolment table with columns student_id, subject and professor. 

student_id subject professor 

101 Java P.Java 

101 C++ P.Cpp 

102 Java P.Java2 

103 C# P.Chash 

104 Java P.Java 

In the table above: 

One student can enroll for multiple subjects. For example, student with student_id 101, has opted for subjects - 

Java & C++ 

 For each subject, a professor is assigned to the student. 

 And, there can be multiple professors teaching one subject like  Java. 

What do you think should be the Primary Key? 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 15 
 

Well, in the table above student_id, subject together form the primary key, because 

using student_id and subject, we can find all the columns of the table. 

One more important point to note here is, one professor teaches only one subject, but one subject may have 

two different professors. 

Hence, there is a dependency between subject and professor here, where subject depends on the professor 

name. 

This table satisfies the 1st Normal form because all the values are atomic, column names are unique and all the 

values stored in a particular column are of same domain. 

This table also satisfies the 2nd Normal Form as there is no Partial Dependency. 

And, there is no Transitive Dependency, hence the table also satisfies the 3rd Normal Form. 

But this table is not in Boyce-Codd Normal Form. 

Why this table is not in BCNF? 

In the table above, student_id, subject form primary key, which means subject column is a prime attribute. 

But, there is one more dependency, professor → subject. 

And while subject is a prime attribute, professor is a non-prime attribute, which is not allowed by BCNF. 

How to satisfy BCNF? 

To make this relation(table) satisfy BCNF, we will decompose this table into two tables, student table 

and professor table. 

Below we have the structure for both the tables. 

Student Table 

student_id p_id 

101 1 

101 2 

 Professor Table 

p_id professor subject 

1 P.Java Java 

2 P.Cpp C++ 

And now, this relation satisfy Boyce-Codd Normal Form.  

Fourth Normal Form (4NF) 

A table is said to be in the Fourth Normal Form when, 

1. It is in the Boyce-Codd Normal Form. 

2. And, it doesn't have Multi-Valued Dependency. 

Multi-valued Dependency 

A table is said to have multi-valued dependency, if the following conditions are true, 

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then the table may have 

multi-valued dependency. 

2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency. 

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B, then B and C 

should be independent of each other. 

If all these conditions are true for any relation(table), it is said to have multi-valued dependency. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 16 
 

Example 

Below we have a college enrolment table with columns s_id, course and hobby. 

s_id 
cours

e 
hobby 

1 
Scienc

e 
Cricket 

1 Maths Hockey 

2 C# Cricket 

2 Php Hockey 

From the table above, student with s_id 1 has opted for two courses, Science and Maths, and has two 

hobbies, Cricket and Hockey. 

You must be thinking what problem this can lead to, right? 

Well the two records for student with s_id 1, will give rise to two more records, as shown below, because for 

one student, two hobbies exists, hence along with both the courses, these hobbies should be specified. 

s_id course hobby 

1 Science Cricket 

1 Maths Hockey 

1 Science Hockey 

1 Maths Cricket 

And, in the table above, there is no relationship between the columns course and hobby. They are independent 

of each other. 

So there is multi-value dependency, which leads to un-necessary repetition of data and other anomalies as 

well. 

How to satisfy 4th Normal Form? 

To make the above relation satify the 4th normal form, we can decompose the table into 2 tables. 

CourseOpted Table 
s_id course 

1 Science 

1 Maths 

2 C# 

2 Php 

Hobbies Table, 
s_id hobby 

1 Cricket 

1 Hockey 

2 Cricket 

2 Hockey 

Now this relation satisfies the fourth normal form. 

A table can also have functional dependency along with multi-valued dependency. In that case, the 

functionally dependent columns are moved in a separate table and the multi-valued dependent columns are 

moved to separate tables. 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 17 
 

Fifth Normal Form (5NF) 
A database is said to be in 5NF, if and only if, 

1. It's in 4NF 

2. If we can decompose table further to eliminate redundancy and anomaly, and when we re-join the 

decomposed tables by means of candidate keys, we should not be losing the original data or any new 

record set should not arise. In simple words, joining two or more decomposed table should not lose 

records nor create new records. 

What is Join Dependency 
If a table can be recreated by joining multiple tables and each of this table have a subset of the attributes of the 

table, then the table is in Join Dependency. It is a generalization of Multivalued DependencyJoin Dependency 

can be related to 5NF, wherein a relation is in 5NF, only if it is already in 4NF and it cannot be decomposed 

further. 

Example 

<Employee> 

EmpName EmpSkills EmpJob (Assigned Work) 

Tom Networking EJ001 

Harry Web Development EJ002 

Katie Programming EJ002 

 

The above table can be decomposed into the following three tables; therefore it is not in 5NF: 

 

<EmployeeSkills> 

EmpName EmpSkills 

Tom Networking 

Harry Web Development 

Katie Programming 

<EmployeeJob> 

EmpName EmpJob 

Tom EJ001 

Harry EJ002 

Katie EJ002 

<JobSkills> 

EmpSkills EmpJob 

Networking EJ001 

Web Development EJ002 

Programming EJ002 

 
Our Join Dependency: 

{(EmpName, EmpSkills ), ( EmpName, EmpJob), (EmpSkills, EmpJob)} 



CS8492 /Database Management Systems       Department of CSE & IT 2018 - 2019 

St. Joseph’s College of Engineering/St. Joseph’s Institute of Technology Page 18 
 

The above relations have join dependency, so they are not in 5NF. That would mean that a join relation of the 

above three relations is equal to our original relation <Employee>. 
 

FIFTH NORMAL FORM EXAMPLE 
Consider an example of different Subjects taught by different lecturers and the lecturers taking classes for 

different semesters. 

Note: Please consider that Semester 1 has Mathematics, Physics and Chemistry and Semester 2 has only 

Mathematics in its academic year!! 

 
 
In above table, Rose takes both Mathematics and Physics class for Semester 1, but she does not take Physics 

class for Semester 2.  In this case, combination of all these 3 fields is required to identify a valid data. Imagine 

we want to add a new class - Semester3 but do not know which Subject and who will be taking that subject. 

We would be simply inserting a new entry with Class as Semester3 and leaving Lecturer and subject as NULL. 

As we discussed above, it's not a good to have such entries. Moreover, all the three columns together act as a 

primary key, we cannot leave other two columns blank! 

Hence we have to decompose the table in such a way that it satisfies all the rules till 4NF and when join them 

by using keys, it should yield correct record. Here, we can represent each lecturer's Subject area and their 

classes in a better way. We can divide above table into three - (SUBJECT, LECTURER), (LECTURER, 

CLASS), (SUBJECT, CLASS) 

 
 

Now, each of combinations is in three different tables. If we need to identify who is teaching which subject to 

which semester, we need join the keys of each table and get the result. 

For example, who teaches Physics to Semester 1, we would be selecting Physics and Semester1 from table 3 

above, join with table1 using Subject to filter out the lecturer names. Then join with table2 using Lecturer to 

get correct lecturer name. That is we joined key columns of each table to get the correct data. Hence there is no 

lose or new data - satisfying 5NF condition. 
 




























































































































































































