

DEPARTMENT OF CSE

CS8592 - OBJECT ORIENTED ANALYSIS AND DESIGN

INTRODUCTION TO OOAD WITH OO BASICS
Object Oriented analysis and design skills are essential for the creation of well-

designed, robust, and maintainable software using OO technologies and languages such as

Java or C#.

Requirements analysis and OOA/D needs to be presented and practiced in the context

of some development process. In this case, an agile (light, flexible) approach to the well-

known Unified Process (UP) is used as the sample iterative development process are

taken . It includes

 Apply principles and patterns to create better object designs.
 Iteratively follow a set of common activities in analysis and design, based on an agile

approach to the UP as an example.

 Create frequently used diagrams in the UML notation.

What is Analysis and Design?
Analysis (do the right thing) emphasizes an investigation of the problem and

requirements, rather than a solution. For example, if a new online trading system is desired,

how will it be used? What are its functions?

Design (do the thing right) emphasizes a conceptual solution (in software and

hardware) that fulfills the requirements, rather than its implementation. For example, a

description of a database schema and software objects. Design ideas often exclude low-level

or "obvious" detail.

OO Basics
Object: A car is an object a real-world entity, identifiably separate from its surroundings. A

UNIT I - UNIFIED PROCESS AND USE CASE DIAGRAMS

Introduction to OOAD with OO Basics – Unified Process – UML diagrams – Use

Case –Case study – the Next Gen POS system, Inception -Use case Modelling –

Relating Use cases – include, extend and generalization – When to use Use-cases

car has a well-defined set of attributes in relation to other object.

Attributes: Data of an object. ,Properties of an object.

Methods: Procedures of an object. or Behavior of an object.

The term object was for formal utilized in the similar language. The term object means a

combination or data and logic that represent some real-world entity.

When developing an object oriented applications, two basic questions arise,

1. What objects does the application need?

2. What functionality should those objects have?

Programming in an object-oriented system consists of adding new kind of objects to

the system and defining how they behave. The new object classes can be built from the

objects supplied by the object-oriented system.

Object state and properties (Attributes)

Properties represent the state of an object. In an object oriented methods we

want to refer to the description of these properties rather than how they are represented in a

particular programming language.

Attributes of car object

We could represent each property in several ways in a programming

languages.

For example: Color

1. Can be declared as character to store sequence or character [ex: red, blue, ..]

2. Can declared as number to store the stock number of paint [ex: red paint, blue

paint, ..]

Car

Cost

Color
Make

Model

3. Can be declared as image (or) video file to refer a full color video image.

The importance of this distinction is that an object abstract state can be

independent of its physical representation.

Object Behavior and Methods:

We can describe the set of things that an object can do on its own (or) we

can do with it. For example: Consider an object car, We can drive the car. We can

stop the car.

Each of the above statements is a description of the objects behavior. The

objects behavior is described in methods or procedures. A method is a function or

procedures that is defined in a class and typically can access to perform some operation.

Behavior denotes the collection of methods that abstractly describes what an object is

capable of doing. The object which operates on the method is called receiver. Methods

encapsulate the behavior or the object, provide interface to the object and hide any of the

internal structures and states maintained by the object. The procedures provide us the means

to communicate with an object and access it properties.

For example: An employee object knows how to compute salary. To compute an employee

salary, all that is required is to send the compute payroll message to the employee object.

Objects Respond to Messages: The capability of an object’s is determined by the methods

defined for it. To do an operation, a message is sent to an object. Objects represented to

messages according to the methods defined in its class.

For example:

When we press on the brake pedal of a car, we send a stop message to the car

object. The car object knows how to respond to the stop message since brake have been

designed with specialized parts such as brake pads and drums precisely respond to that

message.

Different object can respond to the same message in different ways. The car,

motorcycle and bicycle will all respond to a stop message, but the actual operations

performed are object specific.

It is the receiver’s responsibility to respond to a message in an appropriate

manner. This gives the great deal or flexibility, since different object can respond to the

same message in different ways. This is known as polymorphism.

Class Hierarchy

An object-oriented system organizes classes into a subclass super class hierarchy.

The properties and behaviors are used as the basis for making distinctions between classes are

at the top and more specific are at the bottom of the class hierarchy. The family car is the

subclass of car. A subclass inherits all the properties and methods defined in its super class.

Inheritance:It is the property of object-oriented systems that allow objects to be built from

other objects. Inheritance allows explicitly taking advantage of the commonality of objects

when constructing new classes. Inheritance is a relationship between classes where one class

is the parent class of another (derived) class. The derived class holds the properties and

behavior of base class in addition to the properties and behavior of derived class.

Dynamic Inheritance

Dynamic inheritance allows objects to change and evolve over time. Since

base classes provide properties and attributes for objects, hanging base classes changes the

properties and attributes of a class.

Example:

A window objects change to icon and back again. When we double click the

folder the contents will be displayed in a window and when close it, changes back to icon. It

involves changing a base class between a windows class and icon class.

Multiple Inheritances

Some object-oriented systems permit a class to inherit its state (attributes) and behavior

from more than one super class. This kind or inheritance is referred to as multiple

inheritances.

For example: Utility vehicle inherits the attributes from the Car and Truck classes.

Encapsulation and Information Hiding

Information hiding is the principle of concealing the internal data and

procedures of an object. In C++ , encapsulation protection mechanism with private, public

and protected members.

A car engine is an example of encapsulation. Although engines may differ in

implementation, the interface between the driver and car is through a common protocol.

Polymorphism

Poly  ”many” Morph  “form”

It means objects that can take on or assume many different forms.

Polymorphism means that the same operations may behave differently on different classes.

Booch defines polymorphism as the relationship of objects many different classes by some

common super class. Polymorphism allows us to write generic, reusable code more easily,

because we can specify general instructions and delegate the implementation detail to the

objects involved.

Example: In a pay roll system, manager, office worker and production worker objects all

will respond to the compute payroll message, but the actual operations performed are object

specific.

Object Relationship and Associations

Association represents the relationships between objects and classes. Associations are bi-

directional. The directions implied by the name are the forward direction and the opposite is

the inverse direction.

Can fly

Flown by

A pilot “can fly” planes. The inverse of can fly is “is flown by “. Plane “is flown by” pilot

Aggregations: All objects, except the most basic ones, are composed of and may contain

other objects. Breaking down objects in to the objects from which they are composed is de

Pilot Planes

composition. This is possible because an object attributes need not be simple data fields,

attributes can reference other objects. Since each object has an identity, one object can refer

to other objects. This is known as aggregation. The car object is an aggregation of other

objects such as engine, seat and wheel objects.

Static and Dynamic Binding:

Determining which function has to be involved at compile time is called static

binding. Static binding optimized the calls. (Ex) function call.

The process of determining at run time which functions to involve is termed

dynamic binding. Dynamic binding occurs when polymorphic call is issued. It allows some

method invocation decision to be deferred until the information is known.

Object Persistence:

Objects have a lifetime. They are explicitly created and can exist for a period

of time that has been the duration of the process in which they were created. A file or

database can provide support for objects having a longer lifeline, longer than the duration of

the process for which they are created. This characteristic is called object persistence.

What is Object-Oriented Analysis and Design?

Object-Oriented Analysis : It emphasis on finding and describing the objects or

concepts in the problem domain. For example, in the case of the flight information system,

some of the concepts include Plane, Flight, and Pilot.

Object-Oriented Design : It emphasis on defining software objects and how they

collaborate to fulfill the requirements. For example, a Plane software object may have a tail

Number attribute and a get FlightHistory method.

During implementation or object-oriented programming, design objects are

implemented, such as a Plane class in Java.

Object-orientation emphasizes representation of objects.

Example: a simple example a "dice game" in which software simulates a player rolling two

dice. If the total is seven, they win; otherwise, they lose.

i) Define Use Cases : Requirements analysis may include stories or scenarios of how people

use the application; these can be written as use cases. They are a popular tool in

requirements analysis. For example, the Play a Dice Game use case:

Play a Dice Game: Player requests to roll the dice. System presents results: If the

dice face value totals seven, player wins; otherwise, player loses.

ii) Define a Domain Model

There is an identification of the concepts, attributes, and associations that are

considered important. The result can be expressed in a domain model that shows the

important. domain concepts or objects.

Partial domain model of the dice game.

This model illustrates the important concepts Player, Die, and Dice Game, with their

associations and attributes. It is a visualization of the concepts or mental models of a real-

world domain. Thus, it has also been called a conceptual object model.

iii) Assign Object Responsibilities and Draw Interaction Diagrams

Object-oriented design is concerned with defining software objects their

responsibilities and collaborations. It shows the flow of messages between software objects,

and thus the invocation of methods.

For example, the sequence diagram in Figure 1.4 illustrates an OO software design,

by sending messages to instances of the DiceGame and Die classes.

Notice that although in the real world a player rolls the dice, in the software design

the DiceGame object "rolls" the dice (that is, sends messages to Die objects). Software

object designs and programs do take some inspiration from real-world domains, but they are

not direct models or simulations of the real world.

Sequence diagram illustrating messages between software objects.

iv) Define Design Class Diagrams: a static view of the class definitions is usefully

shown with a design class diagram. This illustrates the attributes and methods of the classes.

For example, in the dice game, an inspection of the sequence diagram leads to the

partial design class diagram shown in Figure 1.5. Since a play message is sent to a

DiceGame object, the DiceGame class requires a play method, while class Die requires a

roll and get FaceValue method.

Partial design class diagram.

UML DIAGRAMS

What is the UML?

The Unified Modeling Language is a visual language for specifying, constructing and

documenting the artifacts of systems. The word visual in the definition is a key point -the

UML is the de facto standard diagramming notation for drawing or presenting pictures. The

standard is managed, and was created, by the Object Management Group. It was first added

to the list of OMG adopted technologies in 1997.

UML is composed of 9 graphical diagrams:

1) Class Diagram - describes the structure of a system by showing the system's

classes, their attributes, and the relationships among the classes.

2) Use – Case Diagram - describes the functionality provided by a system in terms of

actors, their goals represented as use cases, and any dependencies among those use

cases.

3) Behavior Diagram

http://en.wikipedia.org/wiki/Object_Management_Group

a. Interaction Diagram

i. Sequence Diagram - shows how objects communicate with each

other in terms of a sequence of messages. Also indicates the lifespan

of objects relative to those messages.

ii. Communication diagram:- how the interactions between objects or

parts in terms of sequenced messages.

b. State Chart Diagram - describes the states and state transitions of the system.

c. Activity Diagram - describes the business and operational step-by-step

workflows of components in a system. An activity diagram shows the overall

flow of control.

4) Implementation Diagram

a. Component Diagram - describes how a software system is split up into

components and shows the dependencies among these components.

b. Deployment Diagram - describes the hardware used in system

implementations and the execution environments and artifacts deployed on the

hardware.

Three Ways to Apply UML

 UML as sketch : Informal and incomplete diagrams created to explore difficult

parts of the problem or solution space, exploiting the power of visual languages.

 UML as blueprint : Relatively detailed design diagrams used either for

1) Reverse Engineering : UML tool reads the source or binaries and generates

UML package, class, and sequence diagrams to visualize and better understanding of

existing code in UML diagrams .

2) Forward Engineering : code generation . Before programming, some detailed

diagrams can provide guidance for code generation (e.g., in Java), either manually or

automatically with a tool. It's common that the diagrams are used for some code, and

other code is filled in by a developer while coding

 UML as programming language : Complete executable specification of a software

system in UML. Executable code will be automatically generated

Three Perspectives to Apply UML

The same UML class diagram notation can be used to draw pictures of concepts in the real

world or software classes in Java.

http://en.wikipedia.org/wiki/Communication_diagram

1. Conceptual perspective - the diagrams are interpreted as describing things in a

situation of the real world or domain of interest.

2. Specification (software) perspective - the diagrams (using the same notation as in

the conceptual perspective) describe software abstractions or components with

specifications and interfaces, but no commitment to a particular implementation (for

example, not specifically a class in C# or Java).

3. Implementation (software) perspective - the diagrams describe software

implementations in a particular technology (such as Java).

The Meaning of "Class" in Different Perspectives

 Conceptual class real-world concept or thing. A conceptual or essential perspective.

The UP Domain Model contains conceptual classes.

 Software class a class representing a specification or implementation perspective of

a software component, regardless of the process or method.

 Implementation class a class implemented in a specific OO language such as Java.

UNIFIED PROCESS (UP)

What is the UP?

A software development process describes an approach to building, deploying, and

possibly maintaining software. The Unified Process has emerged as a popular iterative

software development process for building object-oriented systems. In particular, the

Rational Unified Process or RUP a detailed refinement of the Unified Process, has been

widely adopted.

The UP combines commonly accepted best practices, such as an iterative lifecycle and

risk-driven development, into a cohesive and well-documented process description.

UP for three reasons

1. The UP is an iterative process.

2. UP practices provide an example structure for how to do and thus how to explain

OOA/D.

3. The UP is flexible, and can be applied in a lightweight and agile approach that

includes practices from other agile methods

Iterative and Evolutionary Development

A key practice in both the UP and most other modern methods is iterative development.

 In this lifecycle approach, development is organized into a series of short, fixed-

length (for example, three-week) mini-projects called iterations; the outcome of each

is a tested, integrated, and executable partial system. Each iteration includes its own

requirements analysis, design, implementation, and testing activities.

 The system grows incrementally over time, iteration by iteration, and thus this

approach is also known as iterative and incremental development . Because feedback

and adaptation evolve the specifications and design, it is also known as iterative and

evolutionary development.

Iterative and evolutionary development.

Notice in this example that there is neither a rush to code, nor a long drawn-out

design step that attempts to perfect all details of the design before programming. The

system may not be eligible for production deployment until after many iterations; for

example, 10 or 15 iterations.

To Handle Change on an Iterative Project

 Each iteration involves choosing a small subset of the requirements, and quickly

designing, implementing, and testing

 In addition to requirements clarification, activities such as load testing will prove if

the partial design and implementation are on the right path, or if in the next iteration,

a change in the core architecture is required.

Iterative feedback and evolution leads towards the desired system. The requirements and

design instability lowers over time.

 Work proceeds through a series of structured build-feedback-adapt cycles. in early

iterations the deviation from the "true path" of the system (in terms of its final

requirements and design) will be larger than in later iterations. Over time, the system

converges towards this path, as illustrated in Figure

Benefits of Iterative Development

 less project failure, better productivity, and lower defect rates; shown by research

into iterative and evolutionary methods

 early rather than late mitigation of high risks (technical, requirements, objectives,

usability, and so forth)

 early visible progress

 early feedback, user engagement, and adaptation, leading to a refined system that

more closely meets the real needs of the stakeholders

 managed complexity; the team is not overwhelmed by "analysis paralysis" or very

long and complex steps

 the learning within an iteration can be methodically used to improve the development

process itself, iteration by iteration

What is Iteration Time boxing?

 Most iterative methods recommend an iteration length between two and six weeks.

 Small steps, rapid feedback, and adaptation are central ideas in iterative

development; long iterations subvert the core motivation for iterative development

and increase project risk.

 A very long time-boxed iteration misses the point of iterative development. Short is

good.

Iterations are time-boxed, or fixed in length. For example, if the next iteration is

chosen to be three weeks long, then the partial system must be integrated, tested, and

stabilized by the scheduled date-date slippage is illegal. If it seems that it will be difficult to

meet the deadline, the recommended response is to de-scope-remove tasks or requirements

from the iteration, and include them in a future iteration, rather than slip the completion

date.

In a waterfall lifecycle process there is an attempt to define all or most of the

requirements before programming. It is strongly associated with

 high rates of failure

 lower productivity

 higher defect rates

Percentage of change on software projects of varying sizes.

The Need for Feedback and Adaptation

In complex, changing systems feedback and adaptation are key ingredients for success.

 Feedback from early development, programmers trying to read specifications, and

client demos to refine the requirements.

 Feedback from tests and developers to refine the design or models.
 Feedback from the progress of the team tackling early features to refine the schedule

and estimates.

 Feedback from the client and marketplace to re-prioritize the features to tackle in the

next iteration.

 What is Risk-Driven and Client-Driven Iterative Planning?

The UP encourages a combination of risk-driven and client-driven iterative planning.

This means that the goals of the early iterations are chosen to 1) identify and drive down the

highest risks, and 2) build visible features that the client cares most about.

Risk-driven iterative development includes more specifically the practice of

architecture-centric iterative development, i.e early iterations focus on building, testing, and

stabilizing the core architecture

What are Agile Methods and Attitudes?

Agile development methods usually apply time boxed iterative and evolutionary

development, employ adaptive planning, promote incremental delivery, and include other

values and practices that encourage agility rapid and flexible response to change.

The Agile Manifesto and Principles

The Agile Manifesto

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

The Agile Principles

1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter time scale.

4. Business people and developers must work together daily throughout the project

5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development.

9. The sponsors, developers, and users should be able to maintain a constant pace

indefinitely

10. Continuous attention to technical excellence and good design enhances agility

11. Simplicity the art of maximizing the amount of work not done is essential

12. The best architectures, requirements, and designs emerge from self-organizing teams.

13. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

This example assumes there will ultimately be 20 iterations on the project before delivery:

UP Phases

Evolutionary analysis and design the majority in early iterations.

A UP project organizes the work and iterations across four major phases:

1. Inception - approximate vision, business case, scope, vague estimates.

2. Elaboration - refined vision, iterative implementation of the core architecture,

resolution of high risks, identification of most requirements and scope, more realistic

estimates.

3. Construction - iterative implementation of the remaining lower risk and easier

elements, and preparation for deployment.

4. Transition - beta tests, deployment.

This is not the old "waterfall" or sequential lifecycle of first defining all the

requirements, and then doing all or most of the design. Inception is not a requirements

phase; rather, it is a feasibility phase, where investigation is done to support a decision to

continue or stop.

Similarly, elaboration is a phase where the core architecture is iteratively implemented,

and high-risk issues are mitigated.

Figure - Schedule-oriented terms in the UP.

The UP Disciplines

Disciplines a set of activities (and related artifacts) in one subject area, such as the

activities within requirements analysis. In the UP, an artifact is the general term for any

work product: code, Web graphics, database schema, text documents, diagrams, models, and

so on. There are several disciplines in the UP:

 Business Modeling - The Domain Model artifact, to visualize noteworthy concepts

in the application domain.

 Requirements - The Use-Case Model and Supplementary Specification artifacts to

capture functional and non-functional requirements.

 Design - The Design Model artifact, to design the software objects

What is the Relationship Between the Disciplines and Phases?

Definition: the Development Case: The choice of practices and UP artifacts for a project

may be written up in a short document called the Development Case (an artifact in the

Environment discipline).

Discipline Practice Artifact Incep. Elab. Const. Trans.

Iteration

I1 E1..En C1..Cn T1..T2

Business

Modeling

agile modeling req.

workshop
Domain Model

s

Requirements req. workshop vision

box exercise dot voting

Use-Case

Model s r

Vision s r

Supplementary

Specification
s r

Glossary s r

Design agile modeling test-

driven dev.

Design Model s r

SW
Architecture

Document

s

Data Model s r

Implementation test-driven dev. pair

programming

continuous integration

coding standards

…

Project

Management

agile PM daily Scrum

meeting
…

…

Table- Sample Development Case. s - start; r - refine

CASE STUDY

Applications include UI elements, core application logic, database access, and

collaboration with external software or hardware components. This introduction to OOA/D

focuses on the core application logic layer, with some secondary discussion of the other

layers.

Why focus on OOA/D in the core application logic layer?

 Other layers are usually technology/platform dependent. For example, to explore the

OO design of a Web UI or rich client UI layer in Java, we would need to learn in

detail about a framework such as Struts or Swing.

 In contrast, the OO design of the core logic layer is similar across technologies.

 The essential OO design skills learned in the context of the application logic layer are

applicable to all other layers or components.

 The design approach/patterns for the other layers tends to change quickly as new

frameworks or technologies emerge.

Sample layers and objects in an object-oriented system, and the case study focus.

NEXTGEN POS SYSTEM

The NextGen POS(Point of Sale) System

 A POS system is a computerized application used (in part) to record sales and handle

payments; it is typically used in a retail store.

 It includes hardware components such as a computer and bar code scanner, and

software to run the system.

 It interfaces to various service applications, such as a third-party tax calculator and

inventory control. These systems must be relatively fault-tolerant; that is, even if

remote services are temporarily unavailable (such as the inventory system), they

must still be capable of capturing sales and handling at least cash payments (so that

the business is not crippled).

 A POS system increasingly must support multiple and varied client-side terminals

and interfaces. These include a thin-client Web browser terminal, a regular personal

computer with something like a Java Swing graphical user interface, touch screen

input, wireless PDAs, and so forth.

 we are creating a commercial POS system that we will sell to different clients with

disparate needs in terms of business rule processing. Each client will desire a unique

set of logic to execute at certain predictable points in scenarios of using the system,

such as when a new sale is initiated or when a new line item is added. Therefore, we

will need a mechanism to provide this flexibility and customization.

Using an iterative development strategy, we are going to proceed through requirements,

object-oriented analysis, design, and implementation.

INCEPTION

 Inception : The purpose of the inception phase is not to define all the requirements,

or generate a believable estimate or project plan. Most requirements analysis occurs during

the elaboration phase, in parallel with early production-quality programming and testing.

 Inception (in one sentence) - Envision the product scope, vision, and business case.

 It may include the first requirements workshop, planning for the first iteration, and

then quickly moving forward to elaboration. Common inception artifacts and

indicates the issues they address.

 For example, the Use-Case Model may list the names of most of the expected use

cases and actors, but perhaps only describe 10% of the use cases in detail done in the

service of developing a rough high-level vision of the system scope, purpose, and

risks.

 Note that some programming work may occur in inception in order to create "proof

of concept" prototypes, to clarify a few requirements via UI-oriented prototypes, and

to do programming experiments for key "show stopper" technical questions.

Table -Sample inception artifacts.

Artifact Comment

Vision and Business Case Describes the high-level goals and constraints, the business case,

and provides an executive summary.

Use-Case Model Describes the functional requirements. During inception, the

names of most use cases will be identified, and perhaps 10% of

the use cases will be analyzed in detail.

Supplementary

Specification

Describes other requirements, mostly non-functional. During

inception, it is useful to have some idea of the key non-

functional requirements that have will have a major impact on

the architecture.

Glossary Key domain terminology, and data dictionary.

Risk List & Risk

Management Plan

Describes the risks (business, technical, resource, schedule) and

ideas for their mitigation or response.

Prototypes and proof-of-

concepts
To clarify the vision, and validate technical ideas.

Iteration Plan Describes what to do in the first elaboration iteration.

Phase Plan & Software

Development Plan

Low-precision guess for elaboration phase duration and

effort. Tools, people, education, and other resources.

Development Case A description of the customized UP steps and artifacts for this

project. In the UP, one always customizes it for the project.

Activities in Inception:

Inception is a short step to elaboration. It determines basic feasibility, risk, and scope, to

decide if the project is worth more serious investigation.

Activities and artifacts in inception include:

 a short requirements workshop

 most actors, goals, and use cases named

 most use cases written in brief format; 10-20% of the use cases are written in fully

dressed detail to improve understanding of the scope and complexity

 most influential and risky quality requirements identified

 version one of the Vision and Supplementary Specification written

 risk list

 Technical proof-of-concept prototypes and other investigations to explore the

technical feasibility of special requirements

 user interface-oriented prototypes to clarify the vision of functional requirements

 recommendations on what components to buy/build/reuse, to be refined in

elaboration

o For example, a recommendation to buy a tax calculation package.

 high-level candidate architecture and components proposed

o This is not a detailed architectural description, and it is not meant to be final

or correct. Rather, it is brief speculation to use as a starting point of

investigation in elaboration. For example, "A Java client-side application, no

application server, Oracle for the database,” In elaboration, it may be proven

worthy, or discovered to be a poor idea and rejected.

 plan for the first iteration

USE CASES & USECASE MODELLING

Use cases are text stories, widely used to discover and record requirements. use cases are

text stories of some actor using a system to meet goals. There are 3 formats to represent the

use case

I) Brief Format

II) Casual Format

III) Fully Dressed Format

 Definition: What are Actors, Scenarios, and Use Cases

An actor is something with behavior, such as a person (identified by role), computer

system, or organization; for example, a cashier.

A scenario is a specific sequence of actions and interactions between actors and the

system; it is also called a use case instance. It is one particular story of using a system, or

one path through the use case; for example, the scenario of successfully purchasing items

with cash, or the scenario of failing to purchase items because of a credit payment denial.

A use case is a collection of related success and failure scenarios that describe an

actor using a system to support a goal.

Use Cases and the Use-Case Model

 Use cases are text documents, not diagrams, and use-case modeling is primarily an

act of writing text, not drawing diagrams.

 There are also the Supplementary Specification, Glossary, Vision, and Business

Rules. These are all useful for requirements analysis.

 The Use-Case Model may optionally include a UML use case diagram to show the

names of use cases and actors, and their relationships. This gives a nice context

diagram of a system and its environment. It also provides a quick way to list the use

cases by name.

 Motivation: Why Use Cases?

 Lack of user involvement in software projects is near the top of the list of reasons for

project failure. Use cases are a good way to help keep it simple, and make it possible

for domain experts or requirement donors to themselves write use cases.

 Another value of use cases is that they emphasize the user goals and perspective; we

ask the question "Who is using the system, what are their typical scenarios of use,

and what are their goals?" This is a more user-centric emphasis compared to simply

asking for a list of system features.

Definition: Are Use Cases Functional Requirements

Use cases are requirements, primarily functional or behavioral requirements that

indicate what the system will do. A related viewpoint is that a use case defines a contract of

how a system will behave

What are Three Kinds of Actors?

An actor is anything with behavior, including the system under discussion (SuD)

itself when it calls upon the services of other systems. Primary and supporting actors will

appear in the action steps of the use case text. Actors are roles played not only by people,

but by organizations, software, and machines. There are three kinds of external actors in

relation to the SuD:

1. Primary actor has user goals fulfilled through using services of the SuD. For

example, the cashier.

o Why identify? To find user goals, which drive the use cases.

2. Supporting actor provides a service (for example, information) to the SuD. The

automated payment authorization service is an example. Often a computer system,

but could be an organization or person.

o Why identify? To clarify external interfaces and protocols.

3. Offstage actor has an interest in the behavior of the use case, but is not primary or

supporting; for example, a government tax agency.

o Why identify? To ensure that all necessary interests are identified and

satisfied. Offstage actor interests are sometimes subtle or easy to miss unless

these actors are explicitly named.

 Three Common Use Case Formats

 Brief - Terse one-paragraph summary, usually of the main success scenario. The

prior Process Sale example was brief. It was created during early requirements

analysis, to get a quick sense of subject and scope. May take only a few minutes to

create.

Example : Process Sale: A customer arrives at a checkout with items to purchase.

The cashier uses the POS system to record each purchased item. The system presents a

running total and line-item details. The customer enters payment information, which the

system validates and records. The system updates inventory. The customer receives a

receipt from the system and then leaves with the items. Notice that use cases are not

diagrams, they are text.

 Casual - Informal paragraph format. Multiple paragraphs that cover various

scenarios. It was created during early requirements analysis, to get a quick sense of

subject and scope. May take only a few minutes to create.

Example : Handle Returns Usecase

Main Success Scenario: A customer arrives at a checkout with items to

return. The cashier uses the POS system to record each returned item …

Alternate Scenarios: If the customer paid by credit, and the reimbursement

transaction to their credit account is rejected, inform the customer and pay them with

cash.

If the item identifier is not found in the system, notify the Cashier and suggest

manual entry of the identifier code . If the system detects failure to communicate

with the external accounting system,

 Fully Dressed - All steps and variations are written in detail, and there are

supporting sections, such as preconditions and success guarantees. It was created ,

after many use cases have been identified and written in a brief format, then during

the first requirements workshop a few (such as 10%) of the architecturally significant

and high-value use cases are written in detail.

Use Case Section Comment

Use Case Name Start with a verb.

Scope The system under design.

Level "user-goal" or "subfunction"

Primary Actor Calls on the system to deliver its services.

Stakeholders and Interests Who cares about this use case, and what do they want?

Preconditions What must be true on start, and worth telling the reader?

Success Guarantee What must be true on successful completion, and worth telling

the reader.

Main Success Scenario A typical, unconditional happy path scenario of success.

Extensions Alternate scenarios of success or failure.

Special Requirements Related non-functional requirements.

Use Case Section Comment

Technology and Data Variations

List

Varying I/O methods and data formats.

Frequency of Occurrence Influences investigation, testing, and timing of implementation.

Miscellaneous Such as open issues.

Use Case UC1: Process Sale : Fully Dressed Format Example

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:- Cashier: Wants accurate, fast entry, and no payment errors,

as cash drawer shortages are deducted from his/her salary.

- Salesperson: Wants sales commissions updated.

- Customer: Wants purchase and fast service with minimal effort. Wants easily visible

display of entered items and prices. Wants proof of purchase to support returns.

- Company: Wants to accurately record transactions and satisfy customer interests. Wants

to ensure that Payment Authorization Service payment receivables are recorded. Wants

some fault tolerance to allow sales capture even if server components (e.g., remote credit

validation) are unavailable. Wants automatic and fast update of accounting and inventory.

- Manager: Wants to be able to quickly perform override operations, and easily debug

Cashier problems.

- Government Tax Agencies: Want to collect tax from every sale. May be multiple

agencies, such as national, state, and county.

- Payment Authorization Service: Wants to receive digital authorization requests in the

correct format and protocol. Wants to accurately account for their payables to the store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

Special Requirements:

- Touch screen UI on a large flat panel monitor. Text must be visible from 1 meter.

- Credit authorization response within 30 seconds 90% of the time.

- Somehow, we want robust recovery when access to remote services such the

inventory system is failing.

- Language internationalization on the text displayed.

- Pluggable business rules to be insertable at steps 3 and 7.

- …

Format Description:

Scope : It can be either system use case or Business Usecase .

 system use case : A use case describes use of one software system

 business use case: At a broader scope, use cases can also describe how a business is

used by its customers and partners. Such an enterprise-level process description is

called a business use case.

Level : Use cases are classified as at the user-goal level or the sub function level, among

others.

A user-goal level use case is the common kind that describe the scenarios to fulfill the goals

of a primary actor to get work done.

A subfunction-level use case describes substeps required to support a user goal, and is

usually created to factor out duplicate substeps shared by several regular use cases an

example is the subfunction use case Pay by Credit, which could be shared by many regular

use cases.

Primary Actor : The principal actor that calls upon system services to fulfill a goal.

Stakeholders and Interests List It satisfies all the stakeholders' interests. by starting
with the stakeholders and their interests before writing the remainder of the use case, we
have a method to remind us what the more detailed responsibilities of the system should be.

Technology and Data Variations List:

*a. Manager override entered by swiping an override card through a card reader, or entering

an authorization code via the keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code is present) or keyboard.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

…

Frequency of Occurrence: Could be nearly continuous.

Open Issues:

- What are the tax law variations?

- Explore the remote service recovery issue.

- What customization is needed for different businesses?

- Must a cashier take their cash drawer when they log out?

- Can the customer directly use the card reader, or does the cashier have to do it?

Stakeholders and Interests:

Stakeholders and Interests:

- Cashier: Wants accurate, fast entry and no payment errors, as cash drawer shortages

are deducted from his/her salary.

- Salesperson: Wants sales commissions updated.

- …

Preconditions and Success Guarantees (Postconditions)

Preconditions state what must always be true before a scenario is begun in the use case.

Preconditions are not tested within the use case; rather, they are conditions that are assumed

to be true. Typically, a precondition implies a scenario of another use case, such as logging

in, that has successfully completed.

Main Success Scenario and Steps (or Basic Flow) This has also been called the "happy

path" scenario, or the more prosaic "Basic Flow" or "Typical Flow." It describes a typical

success path that satisfies the interests of the stakeholders.

The scenario records the steps, of which there are three kinds:

1. An interaction between actors.

2. A validation (usually by the system).

3. A state change by the system (for example, recording or modifying something).

Main Success Scenario:

1. Customer arrives at a POS checkout with items to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.

4. …

Cashier repeats steps 3-4 until indicates done.

5. …

Extensions (or Alternate Flows)

Extension scenarios are branches (both success and failure) from the main success

scenario, and so can be notated with respect to its steps 1…N. For example, at Step 3 of the

main success scenario there may be an invalid item identifier, either because it was

incorrectly entered or unknown to the system. An extension is labeled "3a"; it first identifies

the condition and then the response. Alternate extensions at Step 3 are labeled "3b" and so

forth.

An extension has two parts: the condition and the handling.

Guideline: When possible, write the condition as something that can be detected by the

system or an actor.

This extension example also demonstrates the notation to express failures within extensions.

Special Requirements

If a non-functional requirement, quality attribute, or constraint relates specifically to

a use case, record it with the use case. These include qualities such as performance,

reliability, and usability, and design constraints (often in I/O devices) that have been

mandated or considered likely.

Technology and Data Variations List

A common example is a technical constraint imposed by a stakeholder regarding

input or output technologies. For example, a stakeholder might say, "The POS system must

Extensions:

3a. Invalid identifier:

1. System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item identity not

important (e.g., 5 packages of veggie-burgers):

1. Cashier can enter item category identifier and the quantity.

7b. Paying by credit:

1. Customer enters their credit account information.
2. System sends payment authorization request to an external Payment Authorization

Service System, and requests payment approval.

2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.

2. Cashier asks Customer for alternate payment.

Special Requirements:

- Touch screen UI on a large flat panel monitor. Text must be visible from 1 meter.

- Credit authorization response within 30 seconds 90% of the time.

- Language internationalization on the text displayed.

- Pluggable business rules to be insertable at steps 2 and 6.

support credit account input using a card reader and the keyboard." It is also necessary to

understand variations in data schemes, such as using UPCs or EANs for item identifiers,

encoded in bar code symbology.

Guidelines For Use Case Modeling:

Guideline 1. Write in an Essential UI-Free Style

Guideline : Write use cases in an essential style; keep the user interface out and focus on

actor intent.

Essential Style

Assume that the Manage Users use case requires identification and authentication:

The design solution to these intentions and responsibilities is wide open: biometric readers,

graphical user interfaces (GUIs), and so forth.

Concrete Style Avoid During Early Requirements Work

In contrast, there is a concrete use case style. In this style, user interface decisions are

embedded in the use case text. The text may even show window screen shots, discuss

window navigation, GUI widget manipulation and so forth. For example:

Guideline 2. Write Terse Use Cases : Delete "noise" words. Even small changes add up,

such as "System authenticates…" rather than "The System authenticates…"

Technology and Data Variations List:

3a. Item identifier entered by laser scanner or keyboard.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we

predict many customers will want digital signature capture.

1. Administrator identifies self.
2. System authenticates identity.

3. …

1. Administrator enters ID and password in dialog box
2. System authenticates Administrator.

3. System displays the "edit users" window

4. …

Guideline 3 : Write Black-Box Use Cases : Black-box use cases are the most common

and recommended kind; they do not describe the internal workings of the system, its

components, or design. Rather, the system is described as having responsibilities, which is a

common unifying metaphorical theme in object-oriented thinking software elements

have responsibilities and collaborate with other elements that have responsibilities.

Black-box style Not Recommended

The system records the sale. The system writes the sale to a database. …or (even worse):

The system generates a SQL INSERT statement for the sale…

Guideline 4 : Take an Actor and Actor-Goal Perspective : Here's the RUP use case

definition, from the use case founder Ivar Jacobson:

A set of use-case instances, where each instance is a sequence of actions a system

performs that yields an observable result of value to a particular actor. It stresses two

attitudes during requirements analysis:

 Write requirements focusing on the users or actors of a system, asking about their

goals and typical situations.

 Focus on understanding what the actor considers a valuable result.

Guideline 5: To Find Use Cases

Use cases are defined to satisfy the goals of the primary actors. Hence, the basic

procedure is:

1. Choose the system boundary. Is it just a software application, the hardware and

application as a unit, that plus a person using it, or an entire organization?

2. Identify the primary actors those that have goals fulfilled through using services of the

system.

3. Identify the goals for each primary actor.

4. Define use cases that satisfy user goals; name them according to their goal. Usually,

user-goal level use cases will be one-to-one with user goals, but there is at least one

exception, as will be examined.

Step 1: Choose the System Boundary

The POS system itself is the system under design; everything outside of it is outside

the system boundary, including the cashier, payment authorization service, and so on. For

example, is the complete responsibility for payment authorization within the system

boundary? No, there is an external payment authorization service actor.

Steps 2 and 3: Find Primary Actors and Goals

Guideline: Identify the primary actors first, as this sets up the framework for further

investigation. The following questions helps to identify other actors .

Who starts and stops the system? Who does system administration?

Who does user and security management? Is "time" an actor because the system

does something in response to a time

event?

Is there a monitoring process that restarts the

system if it fails?

Who evaluates system activity or

performance?

How are software updates handled? Push or pull

update?

Who evaluates logs? Are they

remotely retrieved?

In addition to human primary actors, are there any

external software or robotic systems that call upon

services of the system?

Who gets notified when there are

errors or failures?

Representing Goals of an Actor :

There are at least two approaches:

1. Draw them in a use case diagram, naming the goals as use cases.
2. Write an actor-goal list first, review and refine it, and then draw the use case

diagram.

For example:

Actor Goal Actor Goal

Cashier process sales

process rentals

handle returns

cash in

cash out…

 System

Administrator

add users

modify users

delete users

manage security

manage system

tables…

Manager start up

shut down…

 Sales Activity

System

analyze sales and

performance data

… … … …

Is the Cashier or Customer the Primary Actor?

The answer depends on the system boundary of the system under design, and who we

are primarily designing the system for the viewpoint of the POS system the system services

the goal of a trained cashier (and the store) to process the customer's sale.

Primary actors and goals at different system boundaries.

The customer is an actor, but in the context of the NextGen POS, not a primary actor;

rather, the cashier is the primary actor because the system is being designed to primarily

serve the trained cashier's "power user" goals. The system does not have a UI and

functionality that could equally be used by the customer or cashier. Rather, it is optimized to

meet the needs and training of a cashier.

Second Method to Find Actors and Goals - Event Analysis

Another approach to aid in finding actors, goals, and use cases is to identify external

events. What are they, where from, and why? Often, a group of events belong to the same

use case. For example:

External Event From Actor Goal/Use Case

enter sale line item Cashier process a sale

enter payment Cashier or Customer process a sale

…

Step 4: Define Use Cases

In general, define one use case for each user goal. Name the use case similar to the

user goal for example,

Goal: process a sale; Use Case: Process Sale.

Start the name of use cases with a verb. A common exception to one use case per

goal is to collapse CRUD (create, retrieve, update, delete) separate goals into one CRUD

use case, idiomatically called Manage <X>. For example, the goals "edit user," "delete

user," and so forth are all satisfied by the Manage Users use case.

Guideline 6: Tests To Find Useful Use Cases

There are several rules of thumb, including:

 The Boss Test

 The EBP Test

 The Size Test

The Boss Test : To check for achieving results of measurable value

Your boss asks, "What have you been doing all day?" You reply: "Logging in!" Is

your boss happy?. If not, the use case fails the Boss Test, which implies it is not strongly

related to achieving results of measurable value. It may be a use case at some low goal level,

but not the desirable level of focus for requirements analysis.

The EBP Test

 An Elementary Business Process (EBP) is a term from the business process

engineering field, defined as:

EBP is similar to the term user task in usability engineering, although the meaning

is less strict in that domain. Focus on use cases that reflect EBPs.

 A task performed by one person in one place at one time, in response to a business

event, which adds measurable business value and leaves the data in a consistent state,

e.g., Approve Credit or Price Order

 The EBP Test is similar to the Boss Test, especially in terms of the measurable

business value qualification.

The Size Test

A use case typically contains many steps, and in the fully dressed format will often

require 3- 10 pages of text. A common mistake in use case modeling is to define just a

single step within a series of related steps as a use case by itself, such as defining a use case

called Enter an Item ID. You can see a hint of the error by its small size the use case name

will wrongly suggest just one step within a larger series of steps, and if you imagine the

length of its fully dressed text, it would be extremely large.

Example: Applying the Tests

 Negotiate a Supplier Contract
o Much broader and longer than an EBP. Could be modeled as a business use

case, rather than a system use case.

 Handle Returns

o OK with the boss. Seems like an EBP. Size is good.

 Log In

o Boss not happy if this is all you do all day!

 Move Piece on Game Board

o Single step fails the size test.

Applying UML: Use Case Diagrams

 The UML provides use case diagram notation to illustrate the names of use cases and

actors, and the relationships between them

 Use case diagrams and use case relationships are secondary in use case work. Use

cases are text documents. Doing use case work means to write text.

Partial use case Diagram - context diagram.

Guideline

 Use case diagram is an excellent picture of the system context

 It makes a good context diagram that is, showing the boundary of a system, what lies
outside of it, and how it gets used.

 It serves as a communication tool that summarizes the behavior of a system and its

actors.

Guideline: Diagramming

Notice the actor box with the symbol «actor». This style is used for UML keywords

and stereotypes, and includes guillemet symbols special single-character brackets («actor»,

not <<actor>>)

Notation suggestions.

Alternate actor notation.

 RELATING USE CASES

Use cases can be related to each other. For example, a sub function use case such as

Handle Credit Payment may be part of several regular use cases, such as Process Sale and

Process Rental. It is simply an organization mechanism to (ideally) improve communication

and comprehension of the use cases, reduce duplication of text, and improve management of

the use case documents.

Kinds of relationships

1. The include Relationship

2. The extend Relationship

3. The generalize Relationship

1. The include Relationship

It is common to have some partial behavior that is common across several use cases. For

example, the description of paying by credit occurs in several use cases, including

Process Sale, Process Rental, Contribute to Lay-away Plan.. Rather than duplicate this

text, it is desirable to separate it into its own subfunction use case, and indicate its

inclusion.

…

UC1: Process Sale

…Main Success Scenario:

1.Customer arrives at a POS checkout with goods and/or services to purchase.

…

7.Customer pays and System handles payment.

…

Extensions:

7b. Paying by credit: Include Handle Credit Payment.

7c. Paying by check: Include Handle Check Payment.

UC7: Process Rental

…

Extensions:

6b. Paying by credit: Include Handle Credit Payment.

…

Notice that the Handle Credit Payment subfunction use case was originally in the

Extensions section of the Process Sale use case, but was factored out to avoid duplication.

Another use of the include relationship is to describe the handling of an asynchronous event,

such as when a user is able to, at any time, select or branch to a particular window, function,

or Web page, or within a range of steps.

The basic notation is to use the a*, b*, ... style labels in the Extensions section

UC1: Process FooBars

…

Main Success Scenario:

1. …

Extensions:

a*. At any time, Customer selects to edit personal information: Edit Personal Information.

b*. At any time, Customer selects printing help: Present Printing Help.

2-11. Customer cancels: Cancel Transaction Confirmation.

Use cases and use the include relationship when:

 They are duplicated in other use cases.

This is the include relationship. A slightly shorter (and thus perhaps preferred) notation to

indicate an included use case is simply to underline it or highlight it in some fashion. For

example:

UC1: Process Sale

…

Extensions:

7b. Paying by credit: Handle Credit Payment.

7c. Paying by check: Handle Check Payment.

…

 A use case is very complex and long, and separating it into subunits aids

comprehension.

Concrete, Abstract, Base, and Addition Use Cases

A concrete use case is initiated by an actor and performs the entire behavior desired

by the actor . These are the elementary business process use cases. For example, Process

Sale is a concrete use case.

An abstract use case is never instantiated by itself; it is a subfunction use case that is

part of another use case. Handle Credit Payment is abstract; it doesn't stand on its own, but

is always part of another story, such as Process Sale.

A use case that includes another use case, or that is extended or specialized by

another use case is called a base use case. Process Sale is a base use case with respect to the

included Handle Credit Payment subfunction use case. On the other hand, the use case that

is an inclusion, extension, or specialization is called an addition use case. Handle Credit

Payment is the addition use case in the include relationship to Process Sale. Addition use

cases are usually abstract. Base use cases are usually concrete.

2. The extend Relationship

The idea is to create an extending or addition use case, and within it, describe where and

under what condition it extends the behavior of some base use case. For example:

UC1: Process Sale (the base use case)

…

Extension Points: VIP Customer, step 1. Payment, step 7.

Main Success Scenario:

1. Customer arrives at a POS checkout with goods and/or services to purchase.

…

7. Customer pays and System handles payment.

…

UC15: Handle Gift Certificate Payment (the extending use case)

…Trigger: Customer wants to pay with gift certificate.

Extension Points: Payment in Process Sale.

Level: Subfunction

Main Success Scenario:

1. Customer gives gift certificate to Cashier.

2. Cashier enters gift certificate ID.

…

This is an example of an extend relationship. The use of an extension point, and that

the extending use case is triggered by some condition. Extension points are labels in the

base use case which the extending use case references as the point of extension, so that the

step numbering of the base use case can change without affecting the extending use case.

Use case include relationship in the Use-Case Model.

The extend relationship.

3. The Generalization Relationship

In the context of use case modeling the use case generalization refers to the relationship

which can exist between two use cases and which shows that one use case (child) inherits

the structure, behavior, and relationships of another actor (parent). The child use case is

also referred to the more specialized use case while the parent is also referred to as the more

abstract use case of the relationship.

For those of you familiar with object oriented concepts: use cases in UML are classes and

the generalization is simply the inheritance relationship between two use cases by which

one use case inherits all the properties and relationships of another use case.

You can use the generalization relationship when you find two or more use cases which

have common behavior/logic. In this instance, you can describe the common parts in a

separate use case (the parent) which then is specialized into two or more specialized child

use cases.

Example:

If you are creating a payment system which allows students of a training provider to pay for

courses both on-line and by phone, there will many things in common between the two

scenarios: specifying personal info, specifying payment info, etc. However, there would

also be differences between the two. So, the best way to accomplish this is to create one use

case (the parent) which contains the common behavior and then create two specialized child

use cases which inherit from the parent and which contain the differences specific to

registering on-line vs. by phone.

WHEN TO USE USECASE DIAGRAM

When to Use USECASE DIAGRAM

UML use case diagrams are ideal for:

 Representing the goals of system-user interactions

 Defining and organizing functional requirements in a system
 Specifying the context and requirements of a system

 Modeling the basic flow of events in a use case

 Reverse engineering.

 Forward engineering.

Ex: Online shopping System

Use case diagrams are valuable for visualizing the functional requirements of a system that will

translate into design choices and development priorities. They also help identify any internal or

external factors that may influence the system and should be taken into consideration.

Use case diagrams specify the events of a system and their flows. But use case diagram never

describes how they are implemented. Use case diagram can be imagined as a black box where

only the input, output, and the function of the black box is known. Although use case is not a

good candidate for forward and reverse engineering, still they are used in a slightly different way

to make forward and reverse engineering. The same is true for reverse engineering. Use case

diagram is used differently to make it suitable for reverse engineering. In forward engineering,

use case diagrams are used to make test cases and in reverse engineering use cases are used to

prepare the requirement details from the existing application.

Introduction

CLASS DIAGRAM

 The UML includes class diagrams to illustrate classes, interfaces, and their

associations. They are used for static object modeling.

 Used for static object modeling . It is used to depict the classes within a

model.

 It describes responsibilities of the system , it is used in forward and reverse

engineering

 Keywords used along with class name are { abstract , interface, actor}

Definition: Design Class Diagram

The class diagram can be used to visualize a domain model. we also need a unique

term to clarify when the class diagram is used in a software or design perspective. A

common modeling term for this purpose is design class diagram (DCD).

UML class diagrams in two perspectives

Domain Model

UNIT II - STATIC UML DIAGRAMS

Class Diagram–– Elaboration – Domain Model – Finding conceptual

classes and description classes – Associations – Attributes – Domain

model refinement – Finding conceptual class Hierarchies – Aggregation

and Composition – Relationship between sequence diagrams and use

cases – When to use Class Diagrams

Design Model

Class Diagram Representation

Class is represented as rectangular box showing classname, attributes , operations.

The main elements of class are

1 Attributes

2 Operations & Methods

3 Relationship between classes

1. Attributes (refer pg no 26)

An attribute is a logical data value of an object. Attributes of a classifier also

called structural properties in the UML. The full format of the attribute text notation

is:

Syntax:

visibility name : type multiplicity = default {property-string}

visibility marks include + (public), - (private)

Examples:

different formats

-classOrStaticAttribute:int

+ publicAttribute : string
- privateAttribute

assumedPrivateAttribute

isIntializedAttribute : Bool = true

aCollection:VeggieBurger [*]

attributeMayLegallyBeNull : String[0..1]

finalConstantattribute : int = 5 { readonly}

/derivedAttribute

Guideline: Use the attribute text notation for data type objects and the association line

notation for others.

2. Operations and Methods

Operations : One of the compartments of the UML class box shows the signatures

of operations . Assume the version that includes a return type. Operations are

usually assumed public if no visibility is shown. both expressions are possible

An operation is not a method. A UML operation is a declaration, with a name,

parameters, return type, exceptions list, and possibly a set of constraints of pre-and

post-conditions. methods are implementations.

Syntax :

visibility name (parameter-list) : return-type {property-string}
Example::

UML

REPRESENTATION

+ getPlayer(name : String) : Player {exception IOException}

JAVA CODING public Player getPlayer(String name) throws IOException

To Show Methods in Class Diagrams:

A UML method is the implementation of an operation. A method may be illustrated

several ways, including:

 in interaction diagrams, by the details and sequence of messages

 in class diagrams, with a UML note symbol stereotyped with «method»

3. Relationship between classes

There are different relationship exists between classes. They are

A. Association

B. Generalization & specialization

C. Composition and aggregation

D. Dependency

E. Interface realization

A) Association (refer page no 21)

An association is a relationship between classes. The semantic relationship between

two or more classifiers that involve connections among their instances.

Example

For example, a single instance of a class can be associated with "many" (zero

or more, indicated by the *) Item instances.

B) Generalization & Specialization

Generalization is the activity of identifying commonality among concepts and

defining superclass (general concept) and subclass (specialized concept)

relationships.

Ex1:

In the above example person is the generalized class and specialized classes are

student and professor

Ex2:

In the above example payment is the generalized class and specialized classes are

cash payment , credit payment and check payment .

C) Composition and Aggregation

Composition, also known as composite aggregation, is a strong kind of whole-part

aggregation and is useful to show in some models. A composition relationship

implies that

1) an instance of the part (such as a Square) belongs to only one composite instance

(such as one Board) at a time,

2) the part must always belong to a composite (no free-floating Fingers)
3) the composite is responsible for the creation and deletion of its parts either by

itself creating/deleting the parts, or by collaborating with other objects.

Aggregation is a vague kind of association in the UML that loosely suggests

whole-part relationships .Aggregation implies a relationship where the child can

exist independently of the parent. Example: Class (parent) and Student (child).

Delete the Class and the Students still exist.

For example, a Department class can have an aggregation relationship with a

Company class, which indicates that the department is part of the company.

Aggregations are closely related to compositions.

D) Dependency

A general dependency relationship indicates that a client element (of any kind,

including classes, packages, use cases, and so on) has knowledge of another

supplier element and that a change in the supplier could affect the client.

Dependency can be viewed as another version of coupling, a traditional term in

software development when an element is coupled to or depends on another.

There are many kinds of dependency

 having an attribute of the supplier type

 sending a message to a supplier; the visibility to the supplier could be:
o an attribute, a parameter variable, a local variable, a global variable,

or class visibility (invoking static or class methods)

 receiving a parameter of the supplier type

 the supplier is a superclass or interface

E) Interface realization

The UML provides several ways to show interface implementation, providing an

interface to clients, and interface dependency (a required interface). In the UML,

interface implementation is formally called interface realization

In the above example , Clock is the server program implementing Timer interface

giving Timer as the provided interface, window is the client program with Timer

as required interface. The Timer interface contains the services provided by the

server object.

Qualified Association
A qualified association has a qualifier that is used to select an object (or objects) from a

larger set of related objects, based upon the qualifier key

Association Class

An association class allows you treat an association itself as a class, and model it

with attributes, operations, and other features. For example, if a Company employs

many Persons, modeled with an Employs association, you can model the association

itself as the Employment class, with attributes such as startDate.

ELABORATION

Elaboration is the initial series of iterations during which, on a normal project:

 the core, risky software architecture is programmed and tested

 the majority of requirements are discovered and stabilized

 the major risks are mitigated or retired

 Build the core architecture, resolve the high-risk elements, define most

requirements, and estimate the overall schedule and resources.

 Elaboration is the initial series of iterations during which the team does serious

investigation, implements (programs and tests) the core architecture, clarifies most

requirements, and tackles the high-risk issues.

 Elaboration often consists of two or more iterations; Each iteration is

recommended to be between two and six weeks; prefer the shorter versions

unless the team size is massive. Each iteration is time boxed, i.e its end date

is fixed.

 Elaboration is not a design phase or a phase when the models are fully

developed in preparation for implementation in the construction step that

would be an example of superimposing waterfall ideas on iterative

development and the UP.

 During this phase, no prototypes are created ; rather, the code and design are

production-quality portions of the final system.

 Architectural prototype means a production subset of the final system. More

commonly it is called the executable architecture or architectural baseline.

Key Ideas and Best Practices will manifest in elaboration:

 do short time boxed risk-driven iterations

 start programming early

 adaptively design, implement, and test the core and risky parts of the

architecture

 test early, often, realistically

 adapt based on feedback from tests, users, developers

 write most of the use cases and other requirements in detail, through a series

of workshops, once per elaboration iteration

Table -Sample elaboration artifacts, excluding those started in inception.

Artifact Comment

Domain Model
This is a visualization of the domain concepts; it is similar to a static

information model of the domain entities.

Design Model

This is the set of diagrams that describes the logical design. This includes

software class diagrams, object interaction diagrams, package diagrams,

and so forth.

Software

Architecture

Document

A learning aid that summarizes the key architectural issues and their

resolution in the design. It is a summary of the outstanding design ideas

and their motivation in the system.

Data Model
This includes the database schemas, and the mapping strategies between

object and non-object representations.

Use-Case

Storyboards, UI

Prototypes

A description of the user interface, paths of navigation, usability models,

and so forth.

 Process: Planning the Next Iteration

Organize requirements and iterations by risk, coverage, and criticality.

 Risk includes both technical complexity and other factors, such as

uncertainty of effort or usability.

 Coverage implies that all major parts of the system are at least touched on in

early iterations perhaps a "wide and shallow" implementation across many

components.

 Criticality refers to functions the client considers of high business value.

These criteria are used to rank work across iterations. Use cases or use case

scenarios are ranked for implementation early iterations implement high ranking

scenarios. The ranking is done before iteration-1, but then again before iteration-2,

and so forth, as new requirements and new insights influence the order.

For example:

Rank Requirement (Use Case or Feature) Comment

High Process Sale

Logging

…

Scores high on all rankings.

Pervasive. Hard to add late.

…

Medium Maintain Users

…

Affects security sub domain.

…

Low … …

Based on this ranking, we see that some key architecturally significant

scenarios of the Process Sale use case should be tackled in early iterations.

DOMAIN MODEL

 Domain Models

The figure shows a partial domain model drawn with UML class diagram

notation. It illustrates that the conceptual classes of Payment and Sale are significant

in this domain, that a Payment is related to a Sale in a way that is meaningful to

note, and that a Sale has a date and time, information attributes we care about.

Applying the UML class diagram notation for a domain model yields a

conceptual perspective model. Identifying a rich set of conceptual classes is at the

heart of OO analysis.

What is a Domain Model?

A domain model is a visual representation of conceptual classes or real-

situation objects in a domain . Domain models have also been called conceptual

models domain object models, and analysis object models.

Definition

In the UP, the term "Domain Model" means a representation of real-situation

conceptual classes, not of software objects. The term does not mean a set of

diagrams describing software classes, the domain layer of a software architecture, or

software objects with responsibilities.

A domain model is illustrated with a set of class diagrams in which no

operations (method signatures) are defined. It provides a conceptual perspective. It

may show:

 domain objects or conceptual classes

 associations between conceptual classes

 attributes of conceptual classes

Why Call a Domain Model a "Visual Dictionary"?

Domain Model visualizes and relates words or concepts in the domain. It

also shows an abstraction of the conceptual classes, because there are many other

things one could communicate about registers, sales, and so forth.

The domain model is a visual dictionary of the noteworthy abstractions, domain

vocabulary, and information content of the domain.

A UP Domain Model is a visualization of things in a real-situation domain of

interest, not of software objects such as Java or C# classes, or software objects with

responsibilities. Therefore, the following elements are not suitable in a domain

model:

 Software artifacts, such as a window or a database, unless the domain being

modeled are of software concepts, such as a model of graphical user

interfaces.

 Responsibilities or methods.

A domain model shows real –situation conceptual classes, not software classes
.

A domain model does not show software artifacts or classes

 Two Traditional Meaning of Domain Model

Meaning 1 :"Domain Model" is a conceptual perspective of objects in a real

situation of the world, not a software perspective.

Meaning 2 :"the domain layer of software objects." That is, the layer of software

objects below the presentation or UI layer that is composed of domain objects

software objects that represent things in the problem domain space with related

"business logic" or "domain logic" methods.

CONCEPTUAL CLASSES

A conceptual class is an idea, thing, or object. It may be considered in terms of its

symbol, intension, and extension (see Figure).

 Symbol words or images representing a conceptual class.

 Intension the definition of a conceptual class.

 Extension the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transaction. I

may choose to name it by the (English) symbol Sale. The intension of a Sale may

state that it "represents the event of a purchase transaction, and has a date and time."

The extension of Sale is all the examples of sales; in other words, the set of all sale

instances in the universe.

A conceptual class has a symbol, intension and extension Are

Domain and Data Models the Same Thing?

A domain model is not a data model (which by definition shows persistent data to

be stored somewhere), so do not exclude a class simply because the requirements

don't indicate any obvious need to remember information about it or because the

conceptual class has no attributes. For example, it's valid to have attribute less

conceptual classes, or conceptual classes that have a purely behavioral role in the

domain instead of an information role.

Motivation: Why Create a Domain Model ?

Lower Representational Gap with OO Modeling : This is a key idea in OO:

Use software class names in the domain layer inspired from names in the domain

model, with objects having domain-familiar information and responsibilities. This

supports a low representational gap between our mental and software models.

Lower Representational Gap with OO Modeling

Guideline: How to Create a Domain Model?
Bounded by the current iteration requirements under design:

1. Find the conceptual classes (see a following guideline).

2. Draw them as classes in a UML class diagram.

3. Add associations and attributes.

Guideline: To Find Conceptual Classes

Three Strategies to Find Conceptual Classes :

1. Reuse or modify existing models. This is the first, best, and usually easiest

approach. There are published, well-crafted domain models and data models

for many common domains, such as inventory, finance, health, and so forth.

2. Use a category list. (Method 2)

3. Identify noun phrases. (Method 3)

Method 2: Use a Category List

We can create a domain model by making a list of candidate conceptual classes.

The guidelines also suggest some priorities in the analysis. Examples are drawn

from the 1) POS, 2) Monopoly game 3) airline reservation domains.

Table - Conceptual Class Category List.

Conceptual Class Category Examples

business transactions

Guideline: These are critical (they involve money),

so start with transactions.

Sale,

Payment

Reservation

transaction line items

Guideline: Transactions often come with related line

items, so consider these next.

SalesLineItem

product or service related to a transaction or

transaction line item

Guideline: Transactions are for something (a

product or service). Consider these next.

Item

Flight, Seat, Meal

where is the transaction recorded?

Guideline: Important.

Register, Ledger

FlightManifest

roles of people or organizations related to the

transaction; actors in the use case

Guideline: We usually need to know about the

parties involved in a transaction.

Cashier, Customer, Store

MonopolyPlayer

Passenger, Airline

place of transaction; place of service Store

Airport, Plane, Seat

noteworthy events, often with a time or place we

need to remember
Sale, Payment

MonopolyGame Flight

physical objects

Guideline: This is especially relevant when creating

device-control software, or simulations.

Item, Register Board,

Piece, Die Airplane

descriptions of things ProductDescription

FlightDescription

Guideline: Descriptions are often in a catalog. ProductCatalog

FlightCatalog

containers of things (physical or information) Store, Bin Board Airplane

Table - Conceptual Class Category List.

Conceptual Class Category Examples

things in a container Item Square (in a Board)

Passenger

other collaborating systems CreditAuthorizationSystem

AirTrafficControl

records of finance, work, contracts, legal matters Receipt, Ledger

MaintenanceLog

financial instruments Cash, Check, LineOfCredit

TicketCredit

schedules, manuals, documents that are regularly

referred to in order to perform work

DailyPriceChangeList

RepairSchedule

Method 3: Finding Conceptual Classes with Noun Phrase Identification

Another useful technique (because of its simplicity) suggested is linguistic

analysis: Identify the nouns and noun phrases in textual descriptions of a domain,

and consider them as candidate conceptual classes or attributes.

Guideline

Linguistic analysis has become more sophisticated; it also goes by the name natural

language modeling. for example, The current scenario of the Process Sale use case

can be used.

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services to

purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description , price, and

running total. Price calculated from a set of price rules.

Underlined words are nouns. The next level of scrutiny derives class names.

 Example: Find and Draw Conceptual Classes

Case Study: POS Domain

From the category list and noun phrase analysis, a list is generated of

candidate conceptual classes for the domain. There is no such thing as a "correct"

list. It is a somewhat arbitrary collection of abstractions and domain vocabulary

Initial POS domain model.

Guidelines

1. Agile Modeling Sketching a Class Diagram : The sketching style in the UML

class diagram is to keep the bottom and right sides of the class boxes open. This

makes it easier to grow the classes as we discover new elements.

2. Agile Modeling Maintain the Model in a Tool? The purpose of creating a

domain model is to quickly understand and communicate a rough approximation of

the key concepts.

3. Report Objects - Include 'Receipt' in the Model? Receipt is a term in the POS

domain. But it's only a report of a sale and payment, and thus duplicate

information.

4. Use Domain Terms :

Make a domain model in the spirit of how a cartographer or mapmaker works:

 Use the existing names in the territory. For example, if developing a model

for a library, name the customer a "Borrower" or "Patron" the terms used by

the library staff.

 Exclude irrelevant or out-of-scope features. For example, in the Monopoly

domain model for iteration-1

 Do not add things that are not there.

5. How to Model the Unreal World? Some software systems are for domains that

find very little analogy in natural or business domains; software for

telecommunications is an example. For example, here are candidate conceptual

classes related to the domain of a telecommunication switch: Message, Connection,

Port, Dialog, Route, and Protocol.

6. A Common Mistake with Attributes vs. Classes If we do not think of some

conceptual class X as a number or text in the real world, X is probably a conceptual

class, not an attribute. As an example, should store be an attribute of Sale, or a

separate conceptual class Store?

In the real world, a store is not considered a number or text the term suggests

a legal entity, an organization, and something that occupies space. Therefore, Store

should be a conceptual class.

As another example, consider the domain of airline reservations. Should

destination be an attribute of Flight, or a separate conceptual class Airport?

In the real world, a destination airport is not considered a number or text-it is

a massive thing that occupies space. Therefore, Airport should be a concept.

7 When to Model with 'Description' Classes? A description class contains

information that describes something else. For example, a Product Description that

records the price, picture, and text description of an Item.

Motivation: Why Use 'Description' Classes? The need for description classes is

common in many domain models. The need for description classes is common in

sales, product, and service domains. It is also common in manufacturing, which

requires a description of a manufactured thing that is distinct from the thing itself

Figure. Descriptions about other things. The * means a multiplicity of "many." It

indicates that one Product Description may describe many (*) Items.

When Are Description Classes Useful?

Add a description class (for example, Product Description) when:

 There needs to be a description about an item or service, independent of the

current existence of any examples of those items or services.

 Deleting instances of things they describe (for example, Item) results in a

loss of information that needs to be maintained, but was incorrectly

associated with the deleted thing.

 It reduces redundant or duplicated information.

Example: Descriptions in the Airline Domain

As another example, consider an airline company that suffers a fatal crash of

one of its planes. Assume that all the flights are cancelled for six months pending

completion of an investigation. Also assume that when flights are cancelled, their

corresponding Flight software objects are deleted from computer memory.

Therefore, after the crash, all Flight software objects are deleted.

If the only record of what airport a flight goes to is in the Flight software

instances, which represent specific flights for a particular date and time, then there

is no longer a record of what flight routes the airline has The problem can be solved,

both from a purely conceptual perspective in a domain model and from a software

perspective in the software designs, with a FlightDescription that describes a flight

and its route, even when a particular flight is not scheduled in following figure

Descriptions about other things.

Note that the prior example is about a service (a flight) rather than a good.

Descriptions of services or service plans are commonly needed.

 Associations

An association is a relationship between classes (more precisely, instances

of those classes) that indicates some meaningful and interesting connection (see

Figure)

In the UML, associations are defined as "the semantic relationship between

two or more classifiers that involve connections among their instances."

 Include the following associations in a domain model:

 Associations for which knowledge of the relationship needs to be preserved

for some duration ("need-to-remember" associations).

 Associations derived from the Common Associations List.

Guideline 1. Avoid Adding Many Associations

 We need to avoid adding too many associations to a domain model. In a

graph with n nodes, there can be (n·(n-1))/2 associations to other nodes-a

potentially very large number. A domain model with 20 classes could have

190 associations lines!

 During domain modeling, an association is not a statement about data flows,

database foreign key relationships, instance variables, or object connections

in a software solution; it is a statement that a relationship is meaningful in a

purely conceptual perspective-in the real domain.

Applying UML: Association Notation

An association is represented as a line between classes with a capitalized

association name. See Figure

The UML notation for associations.

The ends of an association may contain a multiplicity expression indicating

the numerical relationship between instances of the classes.

The association is inherently bidirectional, meaning that from instances of

either class, logical traversal to the other is possible. This traversal is purely

abstract; it is not a statement about connections between software entities.

An optional "reading direction arrow" indicates the direction to read the

association name; it does not indicate direction of visibility or navigation. If the

arrow is not present, the convention is to read the association from left to right or

top to bottom.

Guideline 2: To Name an Association in UML

Name an association based on a ClassName-VerbPhrase - ClassName format where

the verb phrase creates a sequence that is readable and meaningful. Simple

association names such as "Has" or "Uses" are usually poor, as they seldom enhance

our understanding of the domain.

For example,

 Sale Paid-by CashPayment

o bad example (doesn't enhance meaning): Sale Uses CashPayment

 Player Is-on Square

o bad example (doesn't enhance meaning): Player Has Square

Association names should start with a capital letter, since an association

represents a classifier of links between instances; in the UML, classifiers should

start with a capital letter.

Applying UML: Roles

Each end of an association is called a role. Roles may optionally have:

 multiplicity expression

 name

 navigability

Applying UML: Multiplicity

Multiplicity defines how many instances of a class A can be associated with

one instance of a class B

Multiplicity on an association.

For example, a single instance of a Store can be associated with "many"

(zero or more, indicated by the *) Item instances.

Multiplicity values.

Applying UML: Multiple Associations Between Two Classes

The domain of the airline is the relationships between a Flight and an

Airport the flying-to and flying-from associations are distinctly different

relationships, which should be shown separately.

Multiple associations.

Guideline 3 : To Find Associations with a Common Associations List

Start the addition of associations by using the list in Table . It contains

common categories that are worth considering, especially for business information

systems. Examples are drawn from the 1) POS, 2) Monopoly, and 3) airline

reservation domains.

Table - Common Associations List.

Category Examples

A is a transaction related to another

transaction B

CashPaymentSale CancellationReservation

A is a line item of a transaction B SalesLineItemSale

Category Examples

A is a product or service for a transaction

(or line item) B

ItemSalesLineItem(or Sale)FlightReservation

A is a role related to a transaction B CustomerPayment PassengerTicket

A is a physical or logical part of B DrawerRegister SquareBoard

SeatAirplane

A is physically or logically contained in/on B RegisterStore, ItemShelf

SquareBoard PassengerAirplane

A is a description for B ProductDescriptionItem FlightDescriptionFlight

A is known / logged / recorded / reported /

captured in B

SaleRegister PieceSquare

ReservationFlightManifest

A is a member of B CashierStore PlayerMonopolyGame

PilotAirline

A is an organizational subunit of B DepartmentStore MaintenanceAirline

A uses or manages or owns B CashierRegister PlayerPiece PilotAirplane

A is next to B SalesLineItemSalesLineItem

SquareSquare CityCity

Roles as Concepts versus Roles in Associations :In a domain model, a real-world

role especially a human role may be modeled in a number of ways, such as a

discrete concept, or expressed as a role in an association.For example, the role of

cashier and manager may be expressed in at least the two ways illustrated in Fig

Qualified Associations (Refer pg no 9)

Reflexive Associations : A concept may have an association to itself; this is known

as a reflexive association

Example: Associations in the Domain Models

Case Study: NextGen POS : The domain model in Figure shows a set of

conceptual classes and associations that are candidates for our POS domain model.

The associations are primarily derived from the "need-to-remember" criteria of

these iteration requirements, and the Common Association List. For example:

 Transactions related to another transaction Sale Paid-by CashPayment.

 Line items of a transaction Sale Contains SalesLineItem.

 Product for a transaction (or line item) SalesLineItem Records-sale-of Item.

NextGen POS partial domain model.

 Attributes : An attribute is a logical data value of an object. Include attributes that

the requirements (for example, use cases) suggest or imply a need to remember

information. For example, a receipt (which reports the information of a sale) in the

Process Sale use case normally includes Therefore,

 Sale needs a dateTime attribute.

 Store needs a name and address.

 Cashier needs an ID.

Applying UML- Attribute Notation : Attributes are shown in the second

compartment of the class box . Their type and other information may optionally be

shown.

Class and attributes.

More Notation

The full syntax for an attribute in the UML is:

visibility name : type multiplicity = default {property-string}

Some common examples are shown in Fig

Attribute notation in UML.

{readOnly} is probably the most common property string for attributes.

Multiplicity can be used to indicate the optional presence of a value, or the

number of objects that can fill a (collection) attribute.

Derived Attributes : When we want to communicate that 1) this is a noteworthy

attribute, but 2) it is derivable, we use the UML convention: a / symbol before the

attribute name.

Guideline 1 : Suitable Attribute Types - Focus on Data Type Attributes in the

Domain Model

Most attribute types should be what are often thought of as "primitive" data

types, such as numbers and Booleans. For example, the current Register attribute in

the Cashier class in Figure is undesirable because its type is meant to be a Register,

which is not a simple data type (such as Number or String).

Relate with associations, not attributes

Guideline : The attributes in a domain model should preferably be data types. Very

common data types include: Boolean, Date (or DateTime), Number, Character,

String (Text), Time. Other common types include: Address, Color, Geometrics

(Point, Rectangle), Phone Number, Social Security Number, Universal Product

Code (UPC), SKU, ZIP or postal codes, enumerated types

A common confusion is modeling a complex domain concept as an attribute. To

illustrate, a destination airport is not really a string; it is a complex thing that

occupies many square kilometers of space. Therefore, Flight should be related to

Airport via an association, not with an attribute, as shown in Fig.

Don't show complex concepts as attributes; use associations.

Guideline : Relate conceptual classes with an association, not with an attribute.

Data Types

Attributes in the domain model should generally be data types; informally

these are "primitive" types such as number, boolean, character, string, and

enumerations (such as Size = {small, large}).

For example, it is not (usually) meaningful to distinguish between:

 Separate instances of the Integer 5.

 Separate instances of the String 'cat'.

 Separate instance of the Date "Nov. 13, 1990".

Guideline 1 : When to define New Data type Classes ?

Guidelines for modeling data types

Represent what may initially be considered a number or string as a new data type

class in the domain model if:

 It is composed of separate sections. –Ex phone number, name of person
 There are operations associated with it, such as parsing or validation. - social

security number

 It has other attributes. - promotional price could have a start (effective) date

and end date

 It is a quantity with a unit. - payment amount has a unit of currency

 It is an abstraction of one or more types with some of these qualities.

Item identifier in the sales domain is a generalization of types such as Universal

Product Code (UPC) and European Article Number (EAN)

Applying these guidelines to the POS domain model attributes yields the following

analysis:

 The item identifier is an abstraction of various common coding schemes,

including UPC-A, UPC-E, and the family of EAN schemes. These numeric

coding schemes have subparts identifying the manufacturer, product, country

(for EAN), and a check-sum digit for validation. Therefore, there should be a

data type ItemID class, because it satisfies many of the guidelines above.

 The price and amount attributes should be a data type Money class because

they are quantities in a unit of currency.

 The address attribute should be a data type Address class because it has

separate sections.

Applying UML: Where to Illustrate These Data Type Classes?

Two ways to indicate a data type property of an object.

Should the ItemID class be shown as a separate class in a domain model?. Since

ItemID is a data type (unique identity of instances is not used for equality testing), it

may be shown only in the attribute compartment of the class box, as shown in above

Figure. On the other hand, if ItemID is a new type with its own attributes and

associations, showing it as a conceptual class in its own box may be informative.

Guideline 2 : No Attributes Representing Foreign Keys

In Following Fig the currentRegisterNumber attribute in the Cashier class is

undesirable because its purpose is to relate the Cashier to a Register object. The

better way to express that a Cashier uses a Register is with an association, not with a

foreign key attribute.

Do not use attributes as foreign keys.

Guideline 3 : Modeling Quantities and Units

Most numeric quantities should not be represented as plain numbers. Consider price

or weight. These are quantities with associated units, and it is common to require

knowledge of the unit to support conversions.

Modeling quantities.

Example: Attributes in the Domain Models -Case Study: NextGen POS

See following Fig. The attributes chosen reflect the information requirements for

this iteration the Process Sale cash-only scenarios of this iteration. For example:

CashPayment amountTendered To determine if sufficient payment was provided, and

to calculate change, an amount (also known as "amount tendered") must

be captured.

CashPayment amountTendered To determine if sufficient payment was provided, and

to calculate change, an amount (also known as "amount tendered") must

be captured.

Product-

Description

description To show the description on a display or receipt.

itemId To look up a ProductDescription.

price To calculate the sales total, and show the line item price.

Sale dateTime A receipt normally shows date and time of sale, and this is

useful for sales analysis.

SalesLineItem quantity To record the quantity entered, when there is more than one

item in a line item sale (for example, five packages of tofu).

Store address, name The receipt requires the name and address of the store.

NextGen POS partial domain model.

DOMAIN MODEL REFINEMENT

OBJECTIVES

 Refine the domain model with generalizations, specializations, association

classes, time intervals, composition, and packages.

 Generalization and specialization are fundamental concepts in domain

modeling that support an economy of expression;

 Association classes capture information about an association itself.

 Time intervals capture the important concept that some business objects are

valid for a limited time.

 Packages are a way to organize large domain models into smaller units.

Concepts Category List : This Table shows some concepts being considered in

this iteration.

Category Examples

physical or tangible objects CreditCard, Check

Transactions CashPayment, CreditPayment,

CheckPayment

other computer or electro-mechanical

systems external to our system

CreditAuthorizationService,

CheckAuthorizationService

abstract noun concepts

Organizations CreditAuthorizationService,

CheckAuthorizationService

records of finance, work, contracts, legal

matters

AccountsReceivable

Generalization

The concepts CashPayment, CreditPayment, and CheckPayment are all very

similar. In this situation, it is possible (and useful) to organize them (as in following

Figure) into a generalization-specialization class hierarchy (or simply class

hierarchy) in which the super class Payment represents a more general concept,

and the subclasses more specialized ones.

Generalization-specialization hierarchy.

Generalization is the activity of identifying commonality among concepts

and defining superclass (general concept) and subclass (specialized concept)

relationships. Identifying a superclass and subclasses is of value in a domain model

because their presence allows us to understand concepts in more general, refined

and abstract terms.

Guideline : Identify domain superclasses and subclasses relevant to the current

iteration, and illustrate them in the Domain Model.

Class hierarchy with separate and shared arrow notations.

Defining Conceptual Superclasses and Subclasses :

Definition : A conceptual super class definition is more general or encompassing

than a subclass definition.

For example, consider the superclass Payment and its subclasses

(CashPayment, and so on). Assume the definition of Payment is that it represents

the transaction of transferring money (not necessarily cash) for a purchase from one

party to another, and that all payments have an amount of money transferred. The

model corresponding to this is shown in following Figure.

Payment class hierarchy.

A Credit Payment is a transfer of money via a credit institution which needs

to be authorized. My definition of Payment encompasses and is more general than

my definition of Credit Payment.

Definition : All members of a conceptual subclass set are members of their

superclass set.For example, in terms of set membership, all instances of the set

CreditPayment are also members of the set Payment. In a Venn diagram, this is

shown as in following Fig

Venn diagram of set relationships.

Conceptual Subclass Definition Conformance : When a class hierarchy is

created, statements about superclasses that apply to subclasses are made. For

example, the following Figure states that all Payments have an amount and are

associated with a Sale.

Subclass conformance.

Guideline: 100% Rule

100% of the conceptual superclass's definition should be applicable to the

subclass. The subclass must conform to 100% of the superclass's:

 attributes

 associations

Conceptual Subclass Set Conformance : A conceptual subclass should be a

member of the set of the superclass. Thus, CreditPayment should be a member of

the set of Payments.

Guideline: Is-a Rule

All the members of a subclass set must be members of their superclass set.

In natural language, this can usually be informally tested by forming the

statement: Subclass is a Superclass.

Guideline :Correct Conceptual Subclass

A potential subclass should conform to the:

 100% Rule (definition conformance)

 Is-a Rule (set membership conformance)

When to Define a Conceptual Subclass?

Definition: A conceptual class partition is a division of a conceptual class into

disjoint subclasses. For example, in the POS domain, Customer may be correctly

partitioned (or subclassed) into MaleCustomer and FemaleCustomer. But is it

relevant or useful to show this in our model (see following figure)? This partition is

not useful for our domain; the next section explains why

Legal conceptual class partition, but is it useful in our domain

Motivations to Partition a Conceptual Class into Subclasses

Create a conceptual subclass of a superclass when:

1. The subclass has additional attributes of interest.

2. The subclass has additional associations of interest.

3. The subclass concept is operated on, handled, reacted to, or manipulated

differently than the superclass or other subclasses, in ways that are of

interest.

4. The subclass concept represents an animate thing (for example, animal,

robot) that behaves differently than the superclass or other subclasses, in

ways that are of interest.

Based on the above criteria, it is not compelling to partition Customer into the

subclasses MaleCustomer and FemaleCustomer because they have no additional

attributes or associations, are not operated on (treated) differently, and do not

behave differently in ways that are of interest . This table shows some examples of

class partitions from the domain of payments and other areas, using these criteria

Example subclass partitions

Conceptual Subclass Motivation Examples

The subclass has additional attributes of

interest.

Payments not applicable.Library Book, subclass

of LoanableResource, has an ISBN attribute.

Conceptual Subclass Motivation Examples

The subclass has additional associations

of interest.

Payments CreditPayment, subclass of Payment, is

associated with a CreditCard.

Library Video, subclass of LoanableResource, is

associated with Director.

The subclass concept is operated upon,

handled, reacted to, or manipulated

differently than the superclass or other

subclasses, in ways that are of interest.

Payments CreditPayment, subclass of Payment, is

handled differently than other kinds of payments

in how it is authorized.

Library Software, subclass of LoanableResource,

requires a deposit before it may be loaned.

The subclass concept represents an

animate thing (for example, animal,

robot) that behaves differently than the

superclass or other subclasses, in ways

that are of interest.

Payments not applicable.

Library not applicable.

Market Research MaleHuman, subclass of

Human, behaves differently than FemaleHuman

with respect to shopping habits.

When to Define a Conceptual Superclass?

Motivations to generalize and define a superclass: Guideline

Create a superclass in a generalization relationship to subclasses when:

 The potential conceptual subclasses represent variations of a similar concept.

 The subclasses will conform to the 100% and Is-a rules.
 All subclasses have the same attribute that can be factored out and expressed

in the superclass.

 All subclasses have the same association that can be factored out and related

to the superclass.

NextGen POS Conceptual Class Hierarchies

Justifying Payment subclasses.

Payment Classes : Based on the above criteria for partitioning the Payment class,

it is useful to create a class hierarchy of various kinds of payments. The justification

for the superclass and subclasses is shown in Figure .

Authorization Service Classes : Credit and check authorization services are

variations on a similar concept, and have common attributes of interest. This leads

to the class hierarchy in following Figure.

Justifying the AuthorizationService hierarchy

Abstract Conceptual Classes

Definition : If every member of a class C must also be a member of a subclass, then

class C is called an abstract conceptual class.For example, assume that every

Payment instance must more specifically be an instance of the subclass

CreditPayment, CashPayment, or CheckPayment. This is illustrated in the Venn

diagram of Figure (b). Since every Payment member is also a member of a

subclass, Payment is an abstract conceptual class by definition.

Abstract conceptual classes.

Abstract Class Notation in the UML : To review, the UML provides a notation to

indicate abstract classes the class name is italicized

Abstract class notation.

Guideline : Identify abstract classes and illustrate them with an italicized name in

the Domain Model, or use the {abstract} keyword.

Modeling Changing States

Assume that a payment can either be in an unauthorized or authorized state, and it

is meaningful to show this in the domain model. As shown in Figure , one modeling

approach is to define subclasses of Payment: Unauthorized Payment and Authorized

Payment.

Guideline : Do not model the states of a concept X as subclasses of X. Rather, either:

 Define a state hierarchy and associate the states with X, or

 Ignore showing the states of a concept in the domain model; show the states in state

diagrams instead.

Modeling changing states.

Association Classes

The following domain requirements set the stage for association classes:

 Authorization services assign a merchant ID to each store for identification

during communications.

 A payment authorization request from the store to an authorization service

needs the merchant ID that identifies the store to the service.

 Furthermore, a store has a different merchant ID for each service.

Placing merchantID in Store is incorrect because a Store can have more than one

value for merchantID. The same is true with placing it in AuthorizationService (see

Figure).

Inappropriate use of an attribute.

Guideline : In a domain model, if a class C can simultaneously have many values

for the same kind of attribute A, do not place attribute A in C. Place attribute A in

another class that is associated with C.

For example:

 A Person may have many phone numbers. Place phone number in another

class, such as PhoneNumber or ContactInformation, and associate many of

these to Person.

First attempt at modeling the merchantID problem.

The fact that both Store and AuthorizationService are related to

ServiceContract is a clue that it is dependent on the relationship between the two.

The merchantID may be thought of as an attribute related to the association between

Store and AuthorizationService.

This leads to the notion of an association class, in which we can add features

to the association itself. ServiceContract may be modeled as an association class

related to the association between Store and AuthorizationService.

.

An association class

Guideline : Clues that an association class might be useful in a domain model:

 An attribute is related to an association.

 Instances of the association class have a lifetime dependency on the

association.

 There is a many-to-many association between two concepts and information

associated with the association itself.

AGGREGATION AND COMPOSITION (Refer Pg No: 7)

How to Identify Composition : Guideline

Consider showing composition when:

 The lifetime of the part is bound within the lifetime of the composite there is

a create-delete dependency of the part on the whole.

 There is an obvious whole-part physical or logical assembly.

 Some properties of the composite propagate to the parts, such as the location.

 Operations applied to the composite propagate to the parts, such as

destruction, movement, and recording.

Composition in the NextGen Domain Model

In the POS domain, the SalesLineItems may be considered a part of a composite

Sale;

Aggregation in the point-of-sale application.

SYSTEM SEQUENCE DIAGRAMS

Use cases describe how external actors interact with the software system we

are interested in creating. During this interaction an actor generates system events to

a system, usually requesting some system operation to handle the event.

For example, when a cashier enters an item's ID, the cashier is requesting

the POS system to record that item's sale (the enterItem event). That event initiates

an operation upon the system. The use case text implies the enterItem event, and the

SSD makes it concrete and explicit.

A system sequence diagram is a picture that shows, for one particular

scenario of a use case, the events that external actors generate their order, and inter-

system events. All systems are treated as a black box.

Guideline : Draw an SSD for a main success scenario of each use case, and

frequent or complex alternative scenarios.

SSD for a Process Sale scenario.

Why Draw an SSD?

A software system reacts to three things:

1) external events from actors (humans or computers),

2) timer events,

3) faults or exceptions (which are often from external sources).

Therefore, it is useful to know what, precisely, are the external input events

the system events. They are an important part of analyzing system behavior.

System behavior is a description of what a system does, without explaining

how it does it. One part of that description is a system sequence diagram.

 RELATIONSHIP BETWEEN SSDS AND USE CASES

An SSD shows system events for one scenario of a use case, therefore it is

generated from inspection of a use case (see Figure below).

SSDs are derived from use cases; they show one scenario.

How to Name System Events and Operations?

Which is better, scan(itemID) or enterItem(itemID)?

System events should be expressed at the abstract level of intention rather

than in terms of the physical input device.

Thus "enterItem" is better than "scan" (that is, laser scan) because it captures

the intent of the operation while remaining abstract and noncommittal with respect

to design choices about what interface is used to capture the system event.

Choose event and operation names at an abstract level.

 Example: Monopoly SSD

The Play Monopoly Game use case is simple, as is the main scenario. The

observing person initializes with the number of players, and then requests the

simulation of play, watching a trace of the output until there is a winner.

SSD for a Play Monopoly Game scenario.

Process:

Draw SSDs only for the scenarios chosen for the next iteration. Don't create

SSDs for all scenarios, unless you are using an estimation technique that requires

identification of all system operations.

WHEN TO USE CLASS DIAGRAMS

Class diagram is a static diagram and it is used to model the static view of a system.

The static view describes the vocabulary of the system.

Class diagram is also considered as the foundation for component and deployment

diagrams. Class diagrams are not only used to visualize the static view of the system

but they are also used to construct the executable code for forward and reverse

engineering of any system.

Class diagram clearly shows the mapping with object-oriented languages such as

Java, C++, etc. From practical experience, class diagram is generally used for

construction purpose.

Class Diagrams are used for −

 Describing the static view of the system.

 Showing the collaboration among the elements of the static view.

 Describing the functionalities performed by the system.

 Construction of software applications using object oriented languages.

 Forward and reverse engineering.

Ex: Order Processing System

DYNAMIC DIAGRAMS

There are two kinds of object models: dynamic and static. Dynamic

models, such as UML interaction diagrams (sequence diagrams or communication

diagrams), State chart diagram , Activity diagram, help design the logic, the behavior

of the code or the method bodies. They tend to be the more interesting, difficult,

important diagrams to create. Static models, such as UML class diagrams, help

design the definition of packages, class names, attributes, and method signatures (but

not method bodies).

The main behavior or dynamic diagrams in UML are

 Interaction diagrams are:

o Sequence diagrams

o Collaboration diagrams
 State chart diagrams

 Activity diagrams

UNIT III - DYNAMIC AND IMPLEMENTATION UML DIAGRAMS

Dynamic Diagrams – UML interaction diagrams – System sequence

diagram – Collaboration diagram – When to use Communication

Diagrams – State machine diagram and Modeling –When to use State

Diagrams – Activity diagram – When to use activity diagrams

Implementation Diagrams – UML package diagram – When to use package

diagrams – Component and Deployment Diagrams – When to use

Component and Deployment diagrams

UML INTERACTION DIAGRAMS
The UML includes interaction diagrams to illustrate how objects interact via

messages. They are used for dynamic object modeling. There are two common types:

 Sequence Diagram

 Communication Diagram

Ex: Sequence and Communication Diagrams

public class A

{private B myB = new B();

public void doOne()

{ myB.doTwo();

myB.doThree();

}}

Class A has a method named doOne and an attribute of type B. Also, that class B has

methods named doTwo and doThree.

Sequence Diagram Communication Diagram

Sequence diagrams illustrate interactions in

a kind of fence format, in which each new

object is added to the right

illustrate object interactions in a graph or network

format, in which objects can be placed anywhere

on the diagram

Strengths and Weaknesses of Sequence vs. Communication Diagrams

Type Strengths Weaknesses

sequence clearly shows sequence or time

ordering of messages

large set of detailed notation options

forced to extend to the right when

adding new objects; consumes

horizontal space

fewer notation options

communication space economical flexibility to add

new objects in two dimensions

more difficult to see sequence of

messages

Common UML Interaction Diagram Notation

Lifeline boxes to show participants in interactions.

Basic Message Expression Syntax

The UML has a standard syntax for these message expressions:

return = message(parameter : parameterType) : returnType
Parentheses are usually excluded if there are no parameters, though still legal.

For example:

initialize(code)

initialize

d = getProductDescription(id)

d = getProductDescription(id:ItemID)

d = getProductDescription(id:ItemID) : ProductDescription

Singleton Objects

There is only one instance of a class instantiated never two. it is a "singleton"

instance. In a UML interaction diagram (sequence or communication), such an object is

marked with a '1' in the upper right corner of the lifeline box.

Singletons in interaction diagrams.

Basic Sequence Diagram Notation

Name Symbol Description

Lifeline Boxes

and Lifelines ,

Messages

All UML examples show the lifeline as

dashed (because of UML 1 influence), in

fact the UML 2 specification says it may

be solid or dashed.

Found message the sender will not be

specified, is not known, or that the

message is coming from a random

source.

Reply or

Return Msgs

There are two ways to show the return

result from a message:

1. Using the message syntax

returnVar = message(parameter).

2. Using a reply (or return) message

line at the end of an activation

bar.

Messages to

"self" or

"this"

message being sent from an object to

itself by using a nested activation bar

Creation of

Instances and

Object

Destruction

It is desirable to show explicit destruction

of an object. The UML lifeline notation

provides a way to express this destruction

Frames

To support conditional and looping constructs (among many other things), the

UML uses frames. Frames are regions or fragments of the diagrams; they have an

operator or label (such as loop) and a guard (conditional clause).

Frame

Operator
Meaning

alt
Alternative fragment for mutual exclusion conditional logic expressed

in the guards.

loop

Loop fragment while guard is true. Can also write loop(n) to indicate

looping n times. There is discussion that the specification will be

enhanced to define a FOR loop, such as loop(i, 1, 10)

opt Optional fragment that executes if guard is true.

par Parallel fragments that execute in parallel.

region Critical region within which only one thread can run.

Alt Frame

Alternative fragment for

mutual exclusion

conditional logic expressed

in the guards.

Loop

Frame

Loop fragment while guard

is true. Can also write

loop(n) to indicate looping

n times. the specification

will be enhanced to define

a FOR loop, such as loop(i,

1, 10)

Opt

Frame

Optional fragment that

executes if guard is true.

Nesting of

frames

Frames can be nested

Relating

Interaction

Diagrams

An interaction occurrence

(also called an interaction

use) is a reference to an

interaction within another

interaction. It is useful, for

example, when you want to

simplify a diagram and

factor out a portion into

another diagram, or there is

a reusable interaction

occurrence.

to Invoke

Static (or

Class)

Methods

The classes Class and Type

are metaclasses, which

means their instances are

themselves classes. A

specific class, such as class

Calendar, is itself an

instance of class Class.

Thus, class Calendar is an

instance of a metaclass.

Asynchron

ous and

Synchrono

us Calls

An asynchronous message

call does not wait for a

response.

They are used in multi-

threaded environments

such as .NET and Java.

The UML notation for

asynchronous calls is a

stick arrow message;

regular synchronous

(blocking) calls are shown

with a filled arrow.

Basic Communication Diagram Notation

Name Symbol Description

Links ,

Messages

 A link is a connection path

between two objects; it indicates some

form of navigation and visibility

between the objects

Each message between objects

is represented with a message

expression , direction of the message ,

message Number

Messages to

"self" or

"this"

A message can be sent from an

object to itself.

This is illustrated by a link to

itself, with messages flowing along the

link.

Creation of

Instances

The message may be annotated

with a UML stereotype, like so:

«create». The create message may

include parameters, indicating the

passing of initial values.

Message

Number

Sequencing

The first message is not

numbered. Thus, msg1 is unnumbered.

The order and nesting of

subsequent messages is shown with a

legal numbering scheme in which

nested messages have a number

appended to them.

Conditional

Messages

A conditional message by following a

sequence number with a conditional

clause in square brackets, similar to an

iteration clause. The message is only

sent if the clause evaluates to true.

Mutually

Exclusive

Conditional

Paths

 modify the sequence expressions with a

conditional path letter. The first letter

used is a by convention.

either 1a or 1b could execute after

msg1. Both are sequence number 1

since either could be the first internal

message.

Iteration or

Looping

a simple * can be used

Messages to a

Classes to

Invoke Static

(Class)

Methods

Meta class stereotype is used to

represent static method call

Asynchronou

s and

Synchronous

Calls

asynchronous calls are shown with a

stick arrow; synchronous calls with a

filled arrow.

WHEN TO USE COMMUNICATION DIAGRAMS

The purpose of interaction diagrams is to visualize the interactive behavior of the

system. Visualizing the interaction is a difficult task. Hence, the solution is to use

different types of models to capture the different aspects of the interaction.

Sequence and collaboration diagrams are used to capture the dynamic nature but from

a different angle. The purpose of interaction diagram is −

 To capture the dynamic behavior of a system.

 Model message passing between objects or roles that deliver thefunctionalities

of use cases and operations

 To describe the structural organization of the objects.

 To describe the interaction among objects.Support the identification of objects

(hence classes), and their attributes (parameters of message) and operations

(messages) that participate in use cases

Sequence diagram vs Communication diagram Example

UML STATE MACHINE DIAGRAMS AND

MODELLING

A UML state machine diagram illustrates the interesting events and states of an object,

and the behavior of an object in reaction to an event. Transitions are shown as arrows,

labeled with their event. States are shown in rounded rectangles. It is common to

include an initial pseudo-state, which automatically transitions to another state when

the instance is created.

State machine diagram for a telephone

A state machine diagram shows the lifecycle of an object: what events it experiences,

its transitions, and the states it is in between these events. Therefore, we can create a

state machine diagram that describes the lifecycle of an object at arbitrarily simple or

complex levels of detail, depending on our needs

Definitions: Events, States, and Transitions

An event is a significant or noteworthy occurrence. For example:

 A telephone receiver is taken off the hook.

A state is the condition of an object at a moment in time the time between events. For

example:

 A telephone is in the state of being "idle" after the receiver is placed on the

hook and until it is taken off the hook.

A transition is a relationship between two states that indicates that when an event

occurs, the object moves from the prior state to the subsequent state. For example:

 When the event "off hook" occurs, transition the telephone from the "idle" to

"active" state.

Guidelines : To Apply State Machine Diagrams:

Object can be classified into

1) State-Independent Object - If an object always responds the same way to an

event, then it is considered state-independent (or modeless) with respect to that

event. The object is state-independent with respect to that message.

2) State-Dependent Objects - State-dependent objects react differently to events

depending on their state or mode.

Guideline : Consider state machines for state-dependent objects with complex

behavior, not for state-independent objects . For example, a telephone is very

state-dependent. The phone's reaction to pushing a particular button (generating

an event) depends on the current mode of the phoneoff hook, engaged, in a

configuration subsystem, and so forth.

Modeling State-Dependent Objects : state machines are applied in two ways:

1. To model the behavior of a complex reactive object in response to events.

2. To model legal sequences of operations protocol or language specifications.

o This approach may be considered a specialization of #1, if the "object"

is a language, protocol, or process. A formal grammar for a context-free
language is a kind of state machine.

1. Complex Reactive Objects

a) Physical Devices controlled by software

o Phone, car, microwave oven: They have complex and rich reactions to
events, and the reaction depends upon their current mode.

b) Transactions and related Business Objects
o How does a business object (a sale, order, payment) react to an event?

For example, what should happen to an Order if a cancel event occurs?
And understanding all the events and states that a Package can go

through in the shipping business can help with design, validation, and

process improvement.

c) Role Mutators : These are objects that change their role.
o A Person changing roles from being a civilian to a veteran. Each role is

represented by a state.

Example 1: Physical Devices / Nested States – Telephone Object

A state allows nesting to contain substates; a substate inherits the transitions of its

superstate (the enclosing state. It may be graphically shown by nesting them in a

superstate box..

For example, when a transition to the Active state occurs, creation and transition into

the PlayingDialTone substate occurs. No matter what substate the object is in, if the

on hook event related to the Active superstate occurs, a transition to the Idle state

occurs.

Example 2: Transactions and related Business Objects

Order Processing System – Order Object

2) Protocols and Legal Sequences

a) Communication Protocols

o TCP, and new protocols, can be easily and clearly understood with a
state machine diagram. For example, a TCP "close" request should be
ignored if the protocol handler is already in the "closed" state.

b) UI Page/Window Flow or Navigation When doing UI modeling, it can be

useful to understand the legal sequence between Web pages or windows;

Applying a state machine to Web page navigation modeling.

c) UI Flow Controllers or Sessions These are usually server-side objects

representing an ongoing session or conversations with a client. For example, a

Web application that remembers the state of the session with a Web client and

controls the transitions to new Web pages, or the modified display of the

current Web page, based upon the state of the session and the next operation

that is received.

d) Use Case System Operations Do you recall the system operations for Process

Sale: makeNewSale, enterItem etc. These should arrive in a legal order; for

example, endSale should only come after one or more enterItem operations.

STATE DIAGRAM : COFFEE VENDING MACHINE

WHEN TO USE STATE DIAGRAM

State chart diagram is one of the five UML diagrams used to model the dynamic

nature of a system. They define different states of an object during its lifetime and

these states are changed by events. State chart diagrams are useful to model the

reactive systems. Reactive systems can be defined as a system that responds to

external or internal events.

State chart diagram describes the flow of control from one state to another state. States

are defined as a condition in which an object exists and it changes when some event is

triggered. The most important purpose of State chart diagram is to model lifetime of

an object from creation to termination.

State chart diagrams are also used for forward and reverse engineering of a system.

However, the main purpose is to model the reactive system.

The main usage can be described as −

 To model the object states of a system.

 To model the reactive system. Reactive system consists of reactive objects.

 To identify the events responsible for state changes.

 Forward and reverse engineering.

Example:

UML ACTIVITY DIAGRAMS

A UML activity diagram shows sequential and parallel activities in a process. They

are useful for modeling business processes, workflows, data flows, and complex

algorithms.

Purpose: To understand & Communicate the structure & dynamics of the

organization in which a system is to be deployed.

Elements:

Start , end, activity ,action, object , fork ,join, decision , merge, time signal , rake ,

accept signal , swim lane

Symbol Name Use

Start/ Initial Node Used to represent the starting point or the

initial state of an activity

Activity / Action

State

Used to represent the activities of the process

Action Used to represent the executable sub-areas of

an activity

Object Used to represent the object

Control Flow / Edge Used to represent the flow of control from one

action to the other

 Object Flow /

Control Edge

Used to represent the path of objects moving

through the activity

Decision Node Used to represent a conditional branch point

with one input and multiple outputs

Merge Node Used to represent the merging of flows. It has

several inputs, but one output.

Fork Used to represent a flow that may branch into

two or more parallel flows

Merge Used to represent a flow that may branch into

two or more parallel flows

Signal Receipt Used to represent that the signal is received

rake Further can be expanded into sub activity

diagram

swim lane Divides the diagram into vertical zones

Time Signal Timing condition can be specified

Example: Showing usage of symbols

Example

This diagram shows a sequence of actions, some of which may be parallel. Two

points to remember :

 once an action is finished, there is an automatic outgoing transition

 the diagram can show both control flow and data flow

Guideline to Apply Activity Diagrams

1. Business Process Modeling

Client uses activity diagrams to understand their current complex business processes

by visualizing them. The partitions are useful to see the multiple parties and parallel

actions involved in the shipping process, and the object nodes illustrate what's

mov0ing around.

Ex: Borrow books return books usecase of Library Information system

2. Data Flow Modeling

data flow diagrams (DFD) became a popular way to visualize the major steps and data

involved in software system processes. This is not the same as business process

modeling; rather, DFDs were usually used to show data flows in a computer system,

although they could in theory be applied to business process modeling.

3. Concurrent Programming and Parallel Algorithm Modeling

Parallel algorithms in concurrent programming problems involve multiple partitions,

and fork and join behavior. The UML activity diagram partitions can be used to

represent different operating system threads or processes. The object nodes can be

used to model the shared objects and data. Forking can be used to model the creation

and parallel execution of multiple threads or processes, one per partition.

4. Guidelines
 If modeling a business process, take advantage of the "rake" notation and sub-

activity diagrams. On the first overview "level 0" diagram, keep all the actions

at a very high level of abstraction, so that the diagram is short and sweet.

Expand the details in sub-diagrams at the "level 1" level, and perhaps even

more at the "level 2" level, and so forth.

Example: NextGen Activity Diagram

The partial model in Figure illustrates applying the UML to the Process Sale use case

process.

Activity Diagram Ex1: Borrow Books (Library Information System)

WHEN TO USE ACTIVITY DIAGRAMS

Activity diagram is suitable for modeling the activity flow of the system. An

application can have multiple systems. Activity diagram also captures these systems

and describes the flow from one system to another. This specific usage is not available

in other diagrams. These systems can be database, external queues, or any other

system.

Activity diagram gives high level view of a system. This high level view is mainly for

business users or any other person who is not a technical person. This diagram is used

to model the activities of business requirements. The diagram has more impact on

business understanding rather than on implementation details.

Activity diagram can be used for −

 Modeling work flow by using activities.

 Modeling business requirements.

 High level understanding of the system's functionalities.

 Investigating business requirements at a later stage.

Example

UML PACKAGE DIAGRAMS
UML package diagrams are often used to illustrate the logical architecture of a

system-the layers, subsystems, packages . A layer can be modeled as a UML package;

It is part of the Design Model and also be summarized as a view in the Software

Architecture Document.

Logical Architecture is the large scale organization of the software classes into

packages subsystem and layers It is called logical architecture because there’s no

decision about how these elements are deployed across different operating system

processes or across physical computers in a network.

Layer is a coarse grained grouping of classes , packages, or subsystems that has

cohesive responsibility for major aspect of the system .

There are 2 types of Layers.

1) Higher Layer (Contain more application specific services ex: UI layer)

2) Lower layer (Contain more generalized services ex: Technical Services layer)

Higher Layer calls upon services of lower layer , but vice versa is not .

Typically layers in the Object Oriented System has 7 standard layers. The important

layers are

 User Interface – Has various I/O formats & forms.
 Application Logic and Domain Objects - software objects representing

domain concepts (for example, a software class Sale) that fulfill application

requirements, such as calculating a sale total.

 Technical Services general purpose objects and subsystems that provide

supporting technical services, such as interfacing with a database or error

logging.

Architecture Types

strict layered architecture  a layer only calls upon the services of the layer

directly below it. This design is common in network protocol stacks, but not in

information systems

Relaxed layered architecturea higher layer calls upon several lower layers. For

example, the UI layer may call upon its directly subordinate application logic layer,

and also upon elements of a lower technical service layer, for logging and so forth.

Layers shown with UML package diagram notation.

Elements

Name Symbol Description

Package

package can group anything:

classes, other packages, use

cases

Dependency

depended-on package

Fully qualified Name java::util::Date To represents a namespace

(outer package named "java"

with a nested package named

"util" with a Date class)

Ex:

Package Diagram : Library Information System

WHEN TO USE PACKAGE DIAGRAMS

1. It is used in large scale systems to picture dependencies between major

elements in the system.

2. Package diagrams represent a compile time grouping mechanism.

UML DEPLOYMENT AND COMPONENT

DIAGRAMS

 Deployment Diagrams : A deployment diagram shows the assignment of concrete

software artifacts (such as executable files) to computational nodes (something with

processing services). It shows the deployment of software elements to the physical

architecture and the communication (usually on a network) between physical elements

Two Nodes of Deployment Diagram :

1) Device Node : This is a Physical Computing Resource representing a

computer with memory or mobile.

2) Execution Environment Node :

This is a software computing resource that runs within an outer node (such as a

computer) and which itself provides a service to host and execute other executable

software elements. For example:

o an operating system (OS) is software that hosts and executes programs

o a virtual machine (VM, such as the Java or .NET VM) hosts and

executes programs

o a database engine (such as PostgreSQL) receives SQL program requests

and executes them, and hosts/executes internal stored procedures

(written in Java or a proprietary language)

o a Web browser hosts and executes JavaScript, Java applets, Flash, and

other executable technologies

o a workflow engine

o a servlet container or EJB container

Elements:

Name

Symbol

Description

Device Node :

Physical Computing Resource

Execution

Environment Node

{OS = Linux }

{JVM = sun Hot Spot 2.0}

a software computing resource

Communication

path

 Connection between nodes with protocol

name

Artifact:

Name of the project fie

 As the UML specification suggests, many node types may show stereotypes,

such as «server», «OS», «database», or «browser», but these are not official

predefined UML stereotypes.

 Note that a device node or EEN may contain another EEN. For example, a

virtual machine within an OS within a computer.

 A particular EEN can be implied, or not shown, or indicated informally with a

UML property string; for example, {OS=Linux}.

 The normal connection between nodes is a communication path, which may be

labeled with the protocol. These usually indicate the network connections.

 A node may contain and show an artifact a concrete physical element, usually a

file. This includes executables such as JARs, assemblies, .exe files, and scripts.

It also includes data files such as XML, HTML, and so forth.

Deployment Diagram Ex: Next Generation POS System

In the diagram ,there are 2 servers namely DellpowerEdge 3600 with RedHat Linux

OS , Tomcat 6, Apache 2.1 are software computing resources , in tomcat server

webstore.war file is loaded. In the other server DellpowerEdge 3400 with RedHat

Linux OS, database PostgresSQL 10 are software computing resources.

There are 2 client nodes connected to server via HTTP & SOAP /HTTP protocol. In

first client exe file is shown as artifact. In the other client , web base application is

enabled by browser .

COMPONENT DIAGRAMS

A component represents a modular part of a system that encapsulates its contents and

whose manifestation is replaceable within its environment. A component defines its

behavior in terms of provided and required interfaces. A component serves as a type,

whose conformance is defined by these provided and required interfaces.

Features of UML component

1) It has interfaces

2) it is modular, self-contained and replaceable.

The second point implies that a component tends to have little or no dependency on

other external elements . it is a relatively stand-alone module.

Example : A good analogy for software component modeling is a home

entertainment system; we expect to be able to easily replace the DVD player or

speakers. They are modular, self-contained, replaceable, and work via standard

interfaces.

For example, at a large-grained level, a SQL database engine can be modeled as a

component; any database that understands the same version of SQL and supports the

same transaction semantics can be substituted. At a finer level, any solution that

implements the standard Java Message Service API can be used or replaced in a

system.

Elements:

Name

Symbol

Description

Component

with Provided

Interface

stand-alone module.

Dependency System getting services from the

component

Guideline : Component-based modeling is suitable for relatively large-scale

elements, because it is difficult to think about or design for many small, fine-grained

replaceable parts.

Ex: Next Generation POS system .

WHEN TO USE COMPONENT AND DEPLOYMENT DIAGRAMS

Component diagrams are used to visualize the static implementation view of a system.

Component diagrams are special type of UML diagrams used for different purposes.

Component diagrams can be used to −

 Model the components of a system.

 Model the database schema.

 Model the executables of an application.

 Model the system's source code.

Model the components of a system

Ex: Order System

Modeling Source Code

 Either by forward or reverse engineering, identify the set of source code files of

interest and model them as components stereotyped as files.

 For larger systems, use packages to show groups of source code files.

 Consider exposing a tagged value indicating such information as the version

number of the source code file, its author, and the date it was last changed. Use

tools to manage the value of this tag.

 Model the compilation dependencies among these files usingdependencies.

Again, use tools to help generate and manage these dependencies.

Modeling an Executable Release

 Identify the set of components to model.

 Consider the stereotype of each component in this set. find a small number of

different kinds of components (such as executables, libraries, tables, files,

and documents).

 For each component in this set, consider its relationship to its neighbors.

It shows only dependencies among the comp

Modeling a Physical Database

 Identify the classes in the model that represent the logical database schema.

 Select a strategy for mapping these classes to tables.

 To visualize, specify, construct, and document your mapping, create

a component diagram that contains components stereotyped as tables.

 Where possible, use tools to help you transform your logical design into

a physical design.

PANIMALAR ENGINEERING COLLEGE

 One way to describe object design “After identifying your requirements and creating

a domain model, then add methods to the software classes, and define the messaging

between the objects to fulfill the requirements”

 Not really- Answer the following questions:

o What methods belong to where?

o How the objects should interact?

 GRASP as Methodical Approach to Learning Basic Object Design

UML versus Design Principles

 The UML is simply a standard visual modeling language, knowing its details doesn’t

teach you how to think in objects – that is the theme of this course

 The critical design tool for software development is a mind well educated in design

principles. It is not the UML or any other technology

Object Design

After the requirements identification, add the methods to the classes and define the message

between the objects. The designing of object starts with

 Inputs

 Activities

 Outputs

Inputs to object design

 Use case model

 Domain Model

 System Sequence Diagrams

 Operation Contracts

UNIT IV - DESIGN PATTERNS

GRASP: Designing objects with responsibilities – Creator – Information expert – Low

Coupling – High Cohesion – Controller Design Patterns – creational – factory method –

structural – Bridge – Adapter – behavioural – Strategy – observer –Applying GoF design

patterns – Mapping design to code

4.1 INTRODUCTION

 Supplementary Specification

Activities of object design

 Dynamic and static modeling (draw both interaction and complementary class

diagrams)

 Applying various OOD principles

o GRASP- General Responsibility Assignment Software Patterns

o GoF (Gang of Four)design patterns

o Responsibility-Driven Design (RDD)

Outputs of object design

 Modeling for the difficult part of the design that we wished to explore before coding

 Specifically for object design,

o UML Interaction diagrams

o Class diagrams

o Package diagrams

 UI sketches and prototypes

 Database models Report sketches and prototypes

 RDD is a general metaphor for thinking about OO software design.

 Thinking of software objects as having responsibilities an abstraction of what they

do. Responsibility means a contract or obligation of a classifier.

 RDD is a general metaphor for thinking about object oriented design.

Responsibilities are related to the obligation of an object in terms of its behavior

o what an object should know?

o what an object should do?

Responsibilities is of two types : Doing , Knowing

1. Knowing responsibilities:

o knowing about private encapsulated data

o knowing about related objects

o knowing about things it can derive or calculate

2. Doing responsibilities:

a. doing something itself, such as creating an object or doing a calculation

b. initiating action in other objects

c. controlling and coordinating activities in other objects.

What's the Connection Between Responsibilities, GRASP, and UML Diagrams?

4.2 RDD

assigning responsibilities to objects while coding or while modeling. Within the UML,

drawing interaction diagrams becomes the occasion for considering these responsibilities.

Responsibilities are implemented using methods

What are Patterns?

A pattern is a named description of a problem and solution that can be applied to new

contexts; ideally, a pattern advises us on how to apply its solution in varying circumstances

and considers the forces and trade-offs.

Many patterns, given a specific category of problem, guide the assignment of

responsibilities to objects.

Example : The format is

Pattern Name : Information Expert

Problem : What is a basic principle by which to assign responsibilities to objects?

Solution : Assign a responsibility to the class that has the information needed to

fulfill it.

GRASP stands for “General Responsibility Assignment Software Patterns”

 It is a Learning Aid for OO Design with Responsibilities. This approach to

understanding and using design principles is based on patterns of assigning

responsibilities.

 We can apply the GRASP principles while drawing UML interaction diagrams, and

also while coding where we deciding on responsibly assignments.

 GRASP defines nine basic OO design principles or basic building blocks in

design.

 They are

1. Information Expert

2. Creator

3. Controller

4. Low Coupling

5. High Cohesion

6. Polymorphism

7. Pure Fabrication

8. Indirection

9.Protected Variations.

4.3 APPLYING GRASP TO OBJECT DESIGN

All these patterns answer some software problem, and in almost every case these problems

are common to almost every software development project.

PATTERN/

PRINCIPLE
DESCRIPTION

Information

Expert

A general principle of object design and responsibility assignment?

Assign a responsibility to the information expert – the class that has the

information necessary to fulfill the responsibility.

Creator

Who creates? (Note that Factory is a common alternate solution.)

Assign class B the responsibility to create an instance of class A if one of

these is true:

1. B contains A

2. B aggregates A

3. B has the initializing data for A

4. B records A

5. B closely uses A

Controller

What first object beyond the UI layer receives and coordinates (“controls”)

a system operation?

Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the

software is running within, or a major subsystem (these are all

variations of a façade controller).

2. Represents a use case scenario within which the system operation

occurs (a use-case or session controller)

Low coupling

(evaluative)

How to reduce the impact of change?

Assign responsibilities so that (unnecessary) coupling remains low. Use this

principle to evaluate alternatives.

High

Cohesion

(evaluative)

How to keep objects focused, understandable, and manageable, and as a

side-effect, support low Coupling?

Assign responsibilities so that cohesion remains high. Use this to evaluate

alternatives.

Polymorphism

Who is responsible when behavior varies by type?

When related alternatives or behaviors vary by type (class), assign

responsibility for the behavior – using polymorphic operations – to the

types for which the behavior varies.

Pure

Fabrication

Who is responsible when you are desperate, and do not want to violate high

cohesion and low coupling?

Assign a highly cohesive set of responsibilities to an artificial or

convenience “behavior” class that does not represent a problem domain

concept – something made up, in order to support high cohesion, low
coupling, and reuse.

Indirection

How to assign responsibilities to avoid direct coupling?

Assign the responsibilities to an intermediate object to mediate between

other components or services, so that they are not directly coupled.

Protected

Variations

How to assign responsibility to objects, subsystems and systems so that the

variations or instability in these elements do not have an undesirable impact

on other elements?

Identify points of predicted variation or instability; assign responsibilities to

create a stable “interface” around them.

4.3.1 Creator

Problem

Who should be responsible for creating a new instance of some class?

One of the most common activities in object oriented system is creation of objects. General

principle is applied for the assignment of creation responsibilities.

Design supports :

1) low coupling

2) increased clarity

3) encapsulation

4) reusability.

Solution

Assign class B the responsibility to create an instance of class A if one of these is true

 B "contains" or compositely aggregates A.

 B records A.

 B closely uses A.

 B is an expert while creating A (B passes the initializing data for A that is passed

to A when created.)

B is a creator of A objects. If more than one option applies, usually prefer a class B which

aggregates or contains class A.

Example:

In the NextGen POS application, who should be responsible for creating a SalesLineItem

instance? By Creator, we should look for a class that aggregates, contains, and so on,

SalesLineItem instances. Consider the partial domain model in Figure

Partial Domain Model

Here “Sale “ takes the responsibility of creating ‘SalesLineItem’ instance . Since sale

contains many ‘SalesLineItem’ objects.

The assignment of responsibilities requires that a ‘makeLineitem’ must also be defined

in ‘Sale’.

Creating a SalesLineItem

Creator guides the assigning of responsibilities related to the creation of objects, a very

common task. The basic intent of the Creator pattern is to find a creator that needs to be

connected to the created object in any event. Choosing it as the creator supports low

coupling.

All very common relationships between classes in a class diagram are,

 Composite aggregate part

 Container contains Content

 Recorder records

Creator suggests that the enclosing container or recorder class is a good candidate for the

responsibility of creating the thing contained or recorded.

Example:- ‘Payment’ instance while creation initialized with ‘sale ‘ total. ‘Sale’ is a

candidate creator of ‘Payment’.

Contradictions:

Based upon some external property value, creation requires significant complexity like,

 Recycled instances for performances.

 Creating an instance from one of a family of similar classes based upon some

external property value, etc.

In such cases we go for helper class called

 Concrete Factory, and

 Abstract Factory

Benefits of the creator

 Low coupling is supported which implies Lower maintenance and higher

opportunities for reuse

4.3.2 INFORMATION EXPERT (OR EXPERT)

Problem

What is the general principle of assigning responsibilities to objects?

During Object Design, when the interactions between objects are defined, we make choices

about the assignment of responsibilities to software classes. This makes the software easier

to

 Maintain

 Understand and

 Extend

Solution

Assign a responsibility to the information expert, the class that has the information

necessary to fulfill the responsibility.

Example:-

NextGEN POS Application

Some class needs to know the grand total of a sale. Start assigning responsibilities by clearly

stating the responsibility.

1. Look at relevant classes in the Design Model if available,

2. Otherwise, look in the Domain Model

Example:-

If the design work has been just started, then look into the domain model, the real-world

“sale”. In design model, software class ‘sale’ is added with the responsibility for getting

total with the method ‘getTotal’.

Partial domain model for association of sale

After adding the getTotal() , the partial interaction and class diagrams given as :

To determine expert using the above the SalesLineItem should determine subtotal.

 SalesLineItem Quantity

 ProductDescription Price

By information expert using the above the Sales LineItem should determine subtotal. This is

done by Sale sending get Subtotal messages to each Sales LineItem and sum the results.

Calculating Sales Total

After knowing and answering subtotal , a SalesLineItem sends it a message asking for the

product price. ProductDescription is an information expert on answering its price.

Calculating the sale total

Finally, we assigned three design classes of the objects with three responsibilities to find the sales

total.

Design Class

Responsibility

Sale

knows sale total

SalesLineItem

knows line item subtotal

Design Class

Responsibility

ProductDescription

knows product price

 The Information Expert is frequently used in the assignment of responsibilities

 Experts express the common "intuition" that objects do things related to the information

they have.

 Partial information experts will collaborate in the task.

 For example:- Sales total problem experts will collaborates in the task.

 Information expert thus has real world analogy.

 Information experts are basic guiding principle used continuously in object design.

Contradictions

Solution suggested by Expert is undesirable, usually because of problems in coupling and

cohesion.

To overcome this,

 Keep application logic in one place(like domain software objects)

 Keep database objects in another place(separate persistence services subsystem.

 Supporting a separation of major concerns improves coupling and cohesion in a

design.

Benefits

 Information encapsulation is maintained since objects use their own information

to fulfill tasks.

 High cohesion is usually supported

4.3.3 LOW COUPLING

Coupling is a measure of how strongly one element is connected to, has knowledge of, or

relies on other elements.

An element with low (or weak) coupling is not dependent on too many other elements.

Types of coupling

Low coupling or weak coupling High coupling or strong coupling

An element if does not depend on too

many other elements like classes,

subsystems and systems it is having

low coupling.

A class with high coupling relies on many other

classes.

The Problem of high coupling are

 Forced local changes because of changes in

related classes.

 Harder to understand in isolation.

 Harder to reuse because its use requires the

additional presence of the classes on which it

is dependent

Problem :

How to support low dependency, low change impact, and increased reuse?

Solution :

Assign a responsibility so that coupling remains low. Use this principle to evaluate

alternatives.

Example:-

NextGen case Study

We have to create payment instance and associate it with sale.

DESIGN 1: Suggested by creator

1) The Register creates the Payment and

2) It adds coupling of Register to Payment.

Register creates Payment

DESIGN 2: Suggested by low coupling

1) The Sale does the creation of a Payment and

2) It does not increase the coupling.

Sales creates Payment

Low coupling is an evaluation principle for evaluating all designs decisions. In object-

oriented languages such as C++, Java, and C#, common forms of coupling from TypeX to

TypeY include the following:

 TypeX has an attribute (data member or instance variable) that refers to a TypeY

instance, or TypeY itself.

 A TypeX object calls on services of a TypeY object.

 TypeX has a method that references an instance of TypeY, or TypeY itself, by any

means. These typically include a parameter or local variable of type TypeY, or the

object returned from a message being an instance of TypeY.

 TypeX is a direct or indirect subclass of TypeY.

 TypeY is an interface, and TypeX implements that interface.

Contradictions

High coupling to stable elements and to pervasive elements is a problem. For example, a

J2EE application can safely couple itself to the Java libraries

Benefits

 Not affected by changes in other components

 Simple to understand in isolation

 Convenient to reuse

4.3.4 CONTROLLER

Problem

What first object beyond the UI layer receives and coordinates ("controls") a system

operation?

System operations were first explored during the analysis of SSD. These are the major input

events upon our system.

Example:-

1) When a cashier using a POS terminal presses the "End Sale" button indicating “sale has

ended”.

2) When a writer using a word processor presses the "spell check" button to perform

checking of spelling.

A controller is the first object beyond the User Interface (UI) layer that is responsible for

receiving or handling a system operation message.

Solution

Assign the responsibility to one of the following

 Represents the overall "system," a "root object,"

- These are all variations of a facade controller.

 Represents a use case scenario called

- <UseCaseName>Handler,
- <UseCaseName>Coordinator, or

- <UseCaseName>Session

o Use the same controller class for all system events in the same use case
scenario.

o Informally, a session is an instance of a conversation with an actor.
Sessions can be of any length but are often organized in terms of use cases
(use case sessions)

Example: NextGen application contains several system operations.

Some system operations of NextGen POS Application.

During the design the responsibility of system operations Is done by the controller.

The controller pattern some choices are,

Represents the overall

"system," "root object,"

device, or subsystem.

Register,

POSSystem

Represents a receiver or

handler of all system ProcessSaleHandler,

events of a use case ProcessSaleSession

scenario.

A controller should assign other objects the work that needs to be done. It coordinates or

controls the activity. Same controller class can be used for all system events to maintain

information about the state of use case. A common defect in the design of controllers is it

suffers from bad cohesion.

The system operations identified during system behavior analysis are assigned to one or

more controller classes like,

Allocation of system operations

Controller

The Facade controller representing the overall system, device, or a subsystem. facade

controller representing the overall system, device, or a subsystem.

Façade controllers

1) Facade controllers are suitable when there are not "too many" system events,

2) When the user interface (UI) cannot redirect system event messages to alternating

controllers, such as in a message-processing system.

Use case controller

A use case controller is a good choice when there are many system events across

different processes; it factors their handling into manageable separate classes and also

provides a basis for knowing and reasoning about the state of the current scenario in

progress.

Guideline

Normally, a controller should delegate to other objects the work that needs to

be done; it coordinates or controls the activity. It does not do much work

itself.

Benefits

1. Increased potential for reuse and pluggable interfaces .

2. Opportunity to reason about the state of the use case.

Implementation

The code has

 Process JFrame window referring to domain controller object – Register.

 Define handler for button click.

 Show key message – sending enterItem message to the controller.

Code

public class ProcessSaleJFrame extends JFrame

{

// the window has a reference to the 'controller' domain object

(1) private Register register;

// the window is passed the register, on creation

public ProcessSaleJFrame(Register _register)

{

register = _register;

}

// this button is clicked to perform the

// system operation "enterItem"

private JButton BTN_ENTER_ITEM;

(2) BTN_ENTER_ITEM.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

// utility class

(3) register.enterItem(id, qty);

}

}); // end of the addActionListener call

return BTN_ENTER_ITEM;

} // end of method

// …

} // end of class

Bloated Controllers

Issues and Solutions

Poorly designed, a controller class will have low cohesion unfocused and handling too many

areas of responsibility; this is called a bloated controller.

Signs of bloating are:

 There is only a single controller class receiving all system events in the system, and

there are many of them. This sometimes happens if a facade controller is chosen.

 The controller itself performs many of the tasks necessary to fulfill the system event,

without delegating the work. This usually involves a violation of Information Expert

and High Cohesion.

 A controller has many attributes, and it maintains significant information about the

system or domain, which should have been distributed to other objects, or it

duplicates information found elsewhere.

Among the Cures for a bloated controller are these two:

1. Add more controllers a system does not have to need only one. For example, consider an

application with many system events, such as an airline reservation system.

2. Design the controller so that it primarily delegates the fulfillment of each system

operation responsibility to other objects.

UI Layer Does Not Handle System Events

An important corollary of the Controller pattern is that UI objects (for example, window

objects) and the UI layer should not have responsibility for handling system events. Assume

the NextGen application has a window that displays sale information and captures cashier

operations.

Desirable coupling of UI layer to domain layer

Assigning the responsibility for system operations to objects in the application or

domain layer by using the Controller pattern rather than the UI layer can increase reuse

potential. If a UI layer object (like the SaleJFrame) handles a system operation that

represents part of a business process, then business process logic would be contained in

an interface (for example, window-like) object; the opportunity for reuse of the business

logic then diminishes because of its coupling to a particular interface and application.

Less desirable coupling of interface layer to domain layer

4.3.5 HIGH COHESION

Problem

How to keep objects focused, understandable, and manageable, and as a side effect, support

Low Coupling?

Cohesion (or more specifically, functional cohesion) is a measure of how strongly related

and focused the responsibilities of an element are. An element with highly related

responsibilities that does not do a tremendous amount of work has high cohesion. These

elements include classes, subsystems, and so on.

Solution

Assign a responsibility so that cohesion remains high. Use this to evaluate alternatives.

A class with low cohesion does many unrelated things or does too much work. Such classes

are undesirable; they suffer from the following problems:

 hard to comprehend

 hard to reuse

 hard to maintain

 delicate; constantly affected by change

Low cohesion classes often represent a very "large grain" of abstraction or have taken on

responsibilities that should have been delegated to other objects.

Example

Create a payment instance and associate it with sale

DESIGN 1

 Register records a Payment in the real-world domain, the Creator pattern suggests

Register as a candidate for creating the Payment.

 The Register instance could then send an addPayment message to the Sale, passing

along the new Payment as a parameter.

Register creates Payment

DESIGN 2

The second design delegates the payment creation responsibility to the Sale supports

higher cohesion in the Register.

Sale creates Payment

 In the second design, payment creation in the responsibility of

sale.

a. It is highly desirable because it supports High Cohesion & Low Coupling

Scenarios of varying degrees of functional cohesion

1. Very low cohesion: A class is solely responsible for many things in very different

functional areas.

Ex : Assume the existence of a class called RDB-RPC-Interface which is completely

responsible for interacting with relational databases and for handling remote

procedure calls. These are two vastly different functional areas, and each requires

lots of supporting code.

2. Low cohesion: A class has sole responsibility for a complex task in one functional

area.

Ex: Assume the existence of a class called RDBInterface which is completely

responsible for interacting with relational databases. The methods of the class are all

related, but there are lots of them, and a tremendous amount of supporting code;

there may be hundreds or thousands of methods.

3. High cohesion: A class has moderate responsibilities in one functional area and

collaborates with other classes to fulfill tasks.

Ex: Assume the existence of a class called RDBInterface that is only partially

responsible for interacting with relational databases. It interacts with a dozen other

classes related to RDB access in order to retrieve and save objects.

4. Moderate cohesion: A class has lightweight and sole responsibilities in a few

different areas that are logically related to the class concept but not to each other.

Ex: Assume the existence of a class called Company that is completely responsible

for (a) knowing its employees and (b) knowing its financial information. These two

areas are not strongly related to each other, although both are logically related to the

concept of a company.

Rule of thumb

A class with high cohesion has a relatively small number of methods, with highly related

functionality, and does not do too much work. It collaborates with other objects to share

the effort if the task is large.

 Easy to maintain

 Understand and

 Reuse

Modular Design

Modularity is the property of a system that has been decomposed into a set of

cohesive and loosely coupled modules. Modular design creates methods and

classes with single purpose, clarity and high cohesion.

Lower cohesion is had in

 Grouping responsibilities or code into one class or component.

 Distributed server objects.

Benefits

 Clarity and ease of comprehension of the design is increased.

 Maintenance and enhancements are simplified.

 Low coupling is often supported.

 Reuse of fine-grained, highly related functionality is increased because a cohesive

class can be used for a very specific purpose.

In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

published a book titled Design Patterns - Elements of Reusable Object-Oriented

Software which initiated the concept of Design Pattern in Software development.

These authors are collectively known as Gang of Four (GOF). According to these authors

design patterns are primarily based on the following principles of object orientated design.

 Program to an interface not an implementation

 Favor object composition over inheritance

Pattern & Description

There are 23 design patterns which can be classified in three categories:

Creational Patterns : These design patterns provide a way to create objects while hiding

the creation logic, rather than instantiating objects directly using new operator. This gives

program more flexibility in deciding which objects need to be created for a given use case.

4.4 APPLYING GOF DESIGN PATTERNS

Structural Patterns : These design patterns concern class and object composition. Concept

of inheritance is used to compose interfaces and define ways to compose objects to obtain

new functionalities.

Behavioral Patterns : These design patterns are specifically concerned with

communication between objects.

The 23 design patterns are listed below:

4.4.1 Creational Patterns

 Make the system independent of how objects are created composed and represented

 Abstract the instantiation process

o Hide how instances of these classes are created and assembled

o Hide references to concrete classed used in the system

 Govern the what, when, who , how object creation

1. Abstract Factory: Creates an instance of several families of classes. Provide an

interface for creating families of related or dependent objects without specifying their

concrete classes.

2. Builder: Separates object construction from its representation. Separate the construction

of a complex object from its representation so that the same construction processes can

create different representations.

3. Factory Method: Creates an instance of several derived classes. Define an interface for

creating an object, but let subclasses decide which class to instantiate. Factory Method

lets a class defer instantiation to subclasses.

4. Prototype: A fully initialized instance to be copied or cloned. Specify the kinds of

objects to create using a prototypical instance, and create new objects by copying this

prototype.

5. Singleton: A class of which only a single instance can exist. Ensure a class only has one

instance, and provide a global point of access to it.

FACTORY

Name Factory

Problem: Who should be responsible for creating objects when there are special considerations,

such as complex creation logic, a desire to separate the creation responsibilities for

better cohesion, and so forth?

Solution:

(advice)

Create a Pure Fabrication object called a Factory that handles the creation.

This is also called as

 Simple Factory or

 Concrete Factory.

This pattern is not a GoF design pattern, but extremely widespread. It is also a simplification

of the GoF Abstract Factory pattern. The adapter raises a new problem in the design,

 Who create adapters?

 How to create adapters?

When domain objects create the adapter, their responsibilities are beyond pure application

logic and related to connectivity with other software components.

So, when a domain object creates adapters,

 It does not support goal of separation of concerns.

 It lowers cohesion.

So, we go in for ‘factory’ pattern, when pure fabrication “factory” object is defined to create

objects.

Advantages of factory

A common alternative in this case is to apply the Factory pattern, in which a Pure

Fabrication "factory" object is defined to create objects.

Factory objects have several advantages:

 Separate the responsibility of complex creation into cohesive helper objects.

 Hide potentially complex creation logic.

 Allow introduction of performance-enhancing memory management strategies, such

as object caching or recycling.

The Factory pattern

In the ServicesFactory, the logic to decide which class to create is resolved by reading in the

class name from an external source and then dynamically loading the class. This is an

example of a partial data-driven design.

4.4.2 Structural Patterns

 Help identify and describe relationship between entities

 Address how classes and objects are composed to form large structures

 Class oriented pattern use inheritance to compose interfaces and implementation

 Object Oriented Patterns describe ways to compose objects to realize new functionality ,

possibly by changing the composition at runtime.

These design patterns concern class and object composition. Concept of inheritance is used

to compose interfaces and define ways to compose objects to obtain new functionalities.

1. Adapter: Match interfaces of different classes.Convert the interface of a class into

another interface clients expect. Adapter lets classes work together that couldn’t

otherwise because of incompatible interfaces.

25 OOAD/ UNIT-IV

2. Bridge: Separates an object’s interface from its implementation. Decouple anabstraction

from its implementation so that the two can vary independently.

3. Composite: A tree structure of simple and composite objects. Compose objects into tree

structures to represent part-whole hierarchies. Composite lets clients treat I ndividual

objects and compositions of objects uniformly.

4. Decorator: Add responsibilities to objects dynamically. Attach additional

responsibilities to an object dynamically. Decorators provide a flexible

alternative to subclassing for extending functionality.

5. Facade: A single class that represents an entire subsystem. Provide a unified interface to

a set of interfaces in a system. Facade defines a higher-level interface that makes the

subsystem easier to use.

6. Flyweight: A fine-grained instance used for efficient sharing. Use sharing to support

large numbers of fine-grained objects efficiently. A flyweight is a shared object that can

be used in multiple contexts simultaneously. The flyweight acts as an independent object

in each context — it’s indistinguishable from an instance of the object that’s notshared.

7. Proxy: An object representing another object. Provide a surrogate or placeholder for

another object to control access to it.

ADAPTER

Name

Adapter

Problem:

How to resolve incompatible interfaces, or provide a stable interface to

similar components with different interfaces?

Solution:

(advice)

Convert the original interface of a component into another interface, through

an intermediate adapter object.

Example:

The NextGen POS system needs to

supports many third party services

like,

 Tax calculators

 Credit authorization

 Inventory systems

 Accounting systems etc.,

PEC / CSE

Add a level of indirection with objects to adapt to the solution.

The Adapter pattern

Here a particular adapter instance will be instantiated , such as

 SAP for accounting, and will adapt the postSale request to the external interface.

 SOAP XML interface over HTTPS for an intranet Web services.

Using an Adapter

The type names include the pattern name "Adapter." This is a relatively common style and

has the advantage of easily communicating to others reading the code or diagrams what

design patterns are being used.

GRASP Principles as a Generalization of Other Patterns

The Adapter pattern can be viewed as a specialization of some GRASP building blocks.

Adapter supports Protected Variations with respect to changing external interfaces or third-

party packages through the use of an Indirection object that applies interfaces and

Polymorphism.

Example: Adapter and GRASP

Relating Adapter to some core GRASP principles

BRIDGE

Name:

Bridge

Problem:

To decouple the implementation from its abstraction

Solution:

(advice)

Decouple an abstraction from its implementation so that the two can vary

independently

The bridge uses encapsulation, aggregation, and can use inheritance to separate

responsibilities into different classes. Bridge design pattern is a modified version of the

notion of “prefer composition over inheritance”.

 Creates two different hierarchies. One for abstraction and another

 for implementation.

 Avoids permanent binding by removing the dependency between abstraction and

implementation.

 We create a bridge that coordinates between abstraction and implementation.

 Abstraction and implementation can be extended separately.

 Should be used when we have need to switch implementation at runtime.

 Client should not be impacted if there is modification in implementation of

abstraction.

 Best used when you have multiple implementations.

Example :

A household switch controlling lights, ceiling fans, etc. is an example of the Bridge. The

purpose of the switch is to turn a device on or off. The actual switch can be implemented as

a pull chain, simple two position switch, or a variety of dimmer switches.

Elements of Bridge Design Pattern

 Abstraction – core of the bridge design pattern and defines the crux (Create ,

Retrieve, Update , Delete) Contains a reference to the implementer.

 Refined Abstraction – Extends the abstraction takes the finer detail one level below.

Hides the finer elements from implementers.

 Implementer – This interface is the higher level than abstraction. Just defines the

basic operations.

 Concrete Implementation – Implements the above implementer by providing

concrete implementation.

Generic UML Diagram for Bridge Design Pattern

Need for Bridge Design Pattern

Without Bridge Pattern With Bridge Pattern

When there are inheritance hierarchies

creating concrete implementation, you

loose flexibility because of

interdependence.

Decouple implementation from interface

and hiding implementation details from

client is the essence of bridge design

pattern.

Example : for core elements of Bridge Design Pattern

Vehicle -> Abstraction

manufacture()

Car -> Refined Abstraction 1

manufacture()

Bike -> Refined Abstraction 2

manufacture()

Workshop -> Implementor

work()

Produce -> Concrete Implementation 1

work()

Assemble -> Concrete Implementation 2

work()

Example Coding :

// abstraction in bridge pattern

abstract class Vehicle {

protected Workshop workShop1;

protected Workshop workShop2;

protected Vehicle(Workshop workShop1, Workshop workShop2) {

this.workShop1 = workShop1;

this.workShop2 = workShop2;

}

abstract public void manufacture();

}

// Refine abstraction 1 in bridge pattern

public class Car extends Vehicle {

public Car(Workshop workShop1, Workshop workShop2) {

super(workShop1, workShop2);

}

public void manufacture() {
System.out.print("Car ");

workShop1.work();

workShop2.work();

} }

public class Bike extends Vehicle {
public Bike(Workshop workShop1, Workshop workShop2) {

super(workShop1, workShop2);

}

public void manufacture() {
System.out.print("Bike ");

workShop1.work();

workShop2.work();

} }
// Implementor for bridge pattern

public interface Workshop {

abstract public void work();

}
//Concrete implementation 1 for bridge pattern

public class Produce implements Workshop {

public void work() {

System.out.print("Produced"); }}

public class Assemble implements Workshop {

public void work() {

System.out.println(" Assembled.");

}}
//Demonstration of bridge design pattern

public class BridgePattern {

public static void main(String[] args) {
Vehicle vehicle1 = new Car(new Produce(), new Assemble());

vehicle1.manufacture();

Vehicle vehicle2 = new Bike(new Produce(), new Assemble());

vehicle2.manufacture();

}
}

4.4.3 Behavioral Patterns

 Describes algorithms assignments of responsibilities and interaction between objects.

 Behavioral class patterns use inheritance to distribute behavior

 Behavioral object patterns use composition

1. Chain of Resp. : A way of passing a request between a chain of objects. Avoid coupling

the sender of a request to its receiver by giving more than one object a chance to handle

the request. Chain the receiving objects and pass the request along the chain until an

object handles it.

2. Command: Encapsulate a command request as an object. Encapsulate a request as an

object, thereby letting you parameterize clients with different requests, queue or log

requests, and support undoable operations.

3. Interpreter: A way to include language elements in a program. Given a language,

define a representation for its grammar along with an interpreter that uses the

representation to interpret sentences in the language.

4. Iterator: Sequentially access the elements of a collection. Provide a way to access the

elements of an aggregate object sequentially without exposing its underlying

representation.

5. Mediator: Defines simplified communication between classes. Define an object that

encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping

objects from referring to each other explicitly, and it lets you vary their interaction

independently.

6. Memento: Capture and restore an object's internal state. Without violating

encapsulation, capture and externalize an object’s internal state so that the object can be

restored to this state later.

7. Observer: A way of notifying change to a number of classes. Define a one-to-many

dependency between objects so that when one object changes state, all its dependents are

notified and updated automatically.

8. State: Alter an object's behavior when its state changes. Allow an object to alter its

behavior when its internal state changes. The object will appear to change its class.

Output:

Car Produced Assembled.

Bike Produced Assembled.

9. Strategy: Encapsulates an algorithm inside a class. Define a family of algorithms,

encapsulate each one, and make them interchangeable. Strategy lets the algorithm

vary independently from clients that use it.

10. Template: Defer the exact steps of an algorithm to a subclass. Define the skeleton of an

algorithm in an operation, deferring some steps to subclasses. Template Method lets

subclasses redefine certain steps of an algorithm without changing the algorithm’s

structure.

11. Visitor: Defines a new operation to a class without change. Represent an operation to be

performed on the elements of an object structure. Visitor lets you define a new operation

without changing the classes of the elements on which it operates

STRATEGY

Name

Strategy

Problem:

How to design for varying, but related, algorithms or policies? How to design

for the ability to change these algorithms or policies?

Solution:

(advice)

Define each algorithm/policy/strategy in a separate class, with a common

interface.

Example

Since the behavior of pricing varies by the strategy (or algorithm), we create multiple

SalePricingStrategy classes, each with a polymorphic getTotal method . Each getTotal

method takes the Sale object as a parameter, so that the pricing strategy object can find the

pre-discount price from the Sale, and then apply the discounting rule. The implementation

of each getTotal method will be different: PercentDiscountPricingStrategy will discount by

a percentage, and so on.

A strategy object is attached to a context objectthe object to which it applies the algorithm.

In this example, the context object is a Sale. When a getTotal message is sent to a Sale, it

delegates some of the work to its strategy object

Creating a Strategy with a Factory

There are different pricing algorithms or strategies, and they change over time. Who should

create the strategy? A straightforward approach is to apply the Factory pattern again: A

PricingStrategyFactory can be responsible for creating all strategies (all the pluggable or

changing algorithms or policies) needed by the application.

OBSERVER

Name:

Observer (Publish-Subscribe)

Problem:

Different kinds of subscriber objects are interested in the state changes or

events of a publisher object, and want to react in their own unique way when

the publisher generates an event. Moreover, the publisher wants to maintain

low coupling to the subscribers. What to do?

Solution:

(advice)

Define a "subscriber" or "listener" interface. Subscribers implement this

interface. The publisher can dynamically register subscribers who are interested

in an event and notify them when an event occurs.

Example:

When the Sale changes its total, the Sale object sends a message to a window, asking it to

refresh its display. To extend the solution found for changing data, add the ability for a GUI

window to refresh its sale.

The Model-View Separation principle discourages such solutions. It states that "model"

objects (non-UI objects such as a Sale) should not know about view or presentation objects

such as a window. It promotes Low Coupling from other layers to the presentation (UI)

layer of objects.

Its promotes Low coupling.

The major ideas and steps in this example:

1. An interface is defined; in this case, PropertyListener with the operation

onPropertyEvent.

2. Define the window to implement the interface.SaleFrame1 will implement the

method onPropertyEvent.

3. When the SaleFrame1 window is initialized, pass it the Sale instance from which it is

displaying the total.

4. The SaleFrame1 window registers or subscribes to the Sale instance for notification

of "property events," via the addPropertyListener message.

5. The Sale does not know about SaleFrame1 objects; rather, it only knows about

objects that implement the PropertyListener interface.

6. The Sale instance is thus a publisher of "property events." When the total changes, it

iterates across all subscribing PropertyListeners, notifying each.

The observer SaleFrame1 subscribes to the publisher Sale

When the Sale total changes, it iterates across all its registered subscribers, and"publishes an

event" by sending the onPropertyEvent message to each.

The Sale publishes a property event to all its subscribers

SaleFrame1, which implements the PropertyListener interface, thus implements an

onPropertyEvent method.

When the SaleFrame1 receives the message, it sends a message to its JTextField GUI widget

object to refresh with the new sale total.

 There is still some coupling from the model object (the Sale) to the view object. But

it is a loose coupling to an interface independent of the presentation layer the

PropertyListener interface.coupling to a generic interface of objects that do notneed

to be present, and which can be dynamically added (or removed), supports low

coupling.

 Therefore, Protected Variations with respect to a changing user interface has been

achieved through the use of an interface and polymorphism.

Who is the observer, listener, subscriber, and publisher

Why Is It Called Observer, Publish-Subscribe, or Delegation Event Model?

This idiom was called “Publish-subscribe”, and it is still widely known by that name. One

object "publishes events," such as the Sale publishing the "property event" when the total
changes.

It has been called “Observer” because the listener or subscriber is observing the event.

It has also been called the “Delegation Event Model “(in Java) because the publisher

delegates handling of events to "listeners".

Implementation in an object-oriented language requires writing source code for

 class and interface definitions

 method definitions

Implementation is discussed in Java

1. Creating Class Definitions from Design Class Diagrams(DCD)

2. Creating Methods from Interaction Diagrams

3. Collection Classes in Code

4. Exceptions and Error Handling

5. Order of Implementation

6. Test-Driven or Test-First Development

4.5 MAPPING DESIGN TO CODE

1. Creating Class Definitions from DCDs

DCDs depict the class or interface name, superclasses, operation signatures, and attributes

of a class. If the DCD was drawn in a UML tool, it can generate the basic class definition

from the diagrams.

Defining a Class with Method Signatures and Attributes

From the DCD, a mapping to the attribute definitions (Java fields) and method signatures

for the Java definition of SalesLineItem is straightforward.

SalesLineItem in Java.

Note :

The addition in the source code of the Java constructor SalesLineItem(…). It is derived from

the create(desc, qty) message sent to a SalesLineItem in the enterItem interaction diagram.

This indicates, in Java, that a constructor supporting these parameters is required.

2. Creating Methods from Interaction Diagrams

The sequence of the messages in an interaction diagram translates to a series of statements

in the method definitions.

The enterItem interaction diagram illustrates the Java definition of the enterItem method.

For this example, we will explore the implementation of the Register and its enterItem

method.

A Java definition of the Register class.is given below :

The enterItem interaction diagram.

The enterItem message is sent to a Register instance; therefore, the enterItem method is

defined in class Register.

public void enterItem(ItemID itemID, int qty)

Message 1: A getProductDescription message is sent to the ProductCatalog to retrieve a

ProductDescription.

ProductDescription desc = catalog.getProductDescription(itemID);

Message 2: The makeLineItem message is sent to the Sale.

currentSale.makeLineItem(desc, qty);

The Register class

The enterItem method.

3. Collection Classes in Code

One-to-many relationships are common. For example, a Sale must maintain visibility to a

group of many SalesLineItem instances. In OO programming languages, these relationships

are usually implemented with the introduction of a collection object, such as a List or Map,

or even a simple array.

Adding a collection.

For example, the Java libraries contain collection classes such as ArrayList and HashMap,

which implement the List and Map interfaces, respectively. Using ArrayList, the Sale class

can define an attribute that maintains an ordered list of SalesLineItem instances.

4. Exceptions and Error Handling

In terms of the UML, exceptions can be indicated in the property strings of messages and

operation declarations .

5 Order of Implementation

Classes need to be implemented from least-coupled to most-coupled, For example,

possible first classes to implement are either Payment or ProductDescription; next are

classes only dependent on the prior implementationsProductCatalog or SalesLineItem.

Possible order of class implementation and testing.

6. Test-Driven or Test-First Development

An excellent practice promoted by the iterative and agile XP method and applicable to the

UP (as most XP practices are), is test-driven development (TDD).In OO unit testing TDD-

style, test code is written before the class to be tested, and the developer writes unit testing

code for nearly all production code.

The basic rhythm is

o to write a little test code,

o write a little production code

o make it pass the test

o write some more test code, and so forth.

Example

Suppose if we create TDD for the Sale class. Before programming the Sale class, we write

a unit testing method in a SaleTest class that does the following:

Each testing method follows this pattern:

1. Create the fixture.

2. Do something to it (some operation that you want to test).

3. Evaluate that the results are as expected.

Example:

public class SaleTest extends TestCase

{

// …

// test the Sale.makeLineItem method

public void testMakeLineItem()

{

// STEP 1: CREATE THE FIXTURE

// -this is the object to test ,it is an idiom to name it

'fixture'

Sale fixture = new Sale();

// set up supporting objects for the test

Money total = new Money(7.5);

Money price = new Money(2.5);

ItemID id = new ItemID(1);

ProductDescription desc =

new ProductDescription(id, price, "product 1");

// STEP 2: EXECUTE THE METHOD TO TEST

// NOTE: We write this code **imagining** there

// is a makeLineItem method. This act of imagination

// test makeLineItem

sale.makeLineItem(desc, 1);

sale.makeLineItem(desc, 2);

// STEP 3: EVALUATE THE RESULTS

// there could be many assertTrue statements

// for a complex evaluation

// verify the total is 7.5

assertTrue(sale.getTotal().equals(total));

}

}

NextGen POS Program Solution

Class Store

public class Store

{

private ProductCatalog catalog = new ProductCatalog();

private Register register = new Register(catalog);

public Register getRegister() { return register; }

}

Class ProductDescription

public class ProductDescription

{

private ItemID id;

private Money price;

private String description;

public ProductDescription (ItemID id, Money price, String

description)

{ this.id = id;

this.price = price;

this.description = description;

}

public ItemID getItemID() { return id; }

public Money getPrice() { return price; }

public String getDescription() { return description; }

}

Class ProductCatalog

public class ProductCatalog

{

public ProductCatalog()

{

// sample data

ItemID id1 = new ItemID(100);

ItemID id2 = new ItemID(200);

Money price = new Money(3);

ProductDescription desc;

desc = new ProductDescription(id1, price, "product 1");

descriptions.put(id1, desc);

desc = new ProductDescription(id2, price, "product 2");

descriptions.put(id2, desc);

}

public ProductDescription getProductDescription(ItemID id)

{

return descriptions.get(id);

}

}

Class SalesLineItem

public class SalesLineItem

{

private int quantity;

private ProductDescription description;

public SalesLineItem (ProductDescription desc, int quantity)

{

this.description = desc;

this.quantity = quantity;

}

public Money getSubtotal()

{ return description.getPrice().times(quantity); }

}

Class Payment

// all classes are probably in a package named

// something like:

package com.foo.nextgen.domain;

public class Payment

{

private Money amount;

public Payment(Money cashTendered){ amount = cashTendered; }

public Money getAmount() { return amount; }

}

Class Register

public class Register

{

private ProductCatalog catalog;

private Sale currentSale;

public Register(ProductCatalog catalog)

{ this.catalog = catalog; }

public void endSale()

{ currentSale.becomeComplete(); }

public void enterItem(ItemID id, int quantity)

{

ProductDescription desc = catalog.getProductDescription(id);

currentSale.makeLineItem(desc, quantity);

}

public void makeNewSale()

{ currentSale = new Sale(); }

public void makePayment(Money cashTendered)

{ currentSale.makePayment(cashTendered); }

}

Class Sale

public class Sale

{

private List<SalesLineItem> lineItems = new

ArrayList()<SalesLineItem>;

private Date date = new

Date(); private boolean

isComplete = false; private

Payment payment;

public Money getBalance()

{ return payment.getAmount().minus(

getTotal()); } public void becomeComplete() { isComplete = true; } public boolean isComplete() { return isComplete; }

public void makeLineItem (ProductDescription desc,

int quantity)

{ lineItems.add(new SalesLineItem(desc, quantity)); }

public Money getTotal()

{ Money total = new

Money(); Money

subtotal = null;

for (SalesLineItem lineItem : lineItems)

{

subtotal =

lineItem.getSubtotal();

total.add(subtotal);

}

return total;

}

public void makePayment(Money cashTendered)

{ payment = new Payment(cashTendered); }

}

Introduction.

Object oriented systems development is a way to develop software by building

self – contained modules or objects that can be easily replaced, modified and reused.

In an object–oriented environment, software is a collection of discrete objects that

encapsulate their data as well as the functionality of model real–world events

“objects” and emphasizes its cooperative philosophy by allocating tasks among the

objects of the applications. A class is an object oriented system carefully delineates

between its interface (specifications of what the class can do) and the implementation

of that interface (how the class does what it does).

A method is an implementation of an object's behavior. A model is an abstract

of a system constructed to understand the system prior to building or modifying it.

Methodology is going to be a set of methods, models and rules for developing systems

based on any set of standards. The process is defined as any operation being

performed.

5.1 OBJECT ORIENTED METHODOLOGIES

Object oriented methodologies are set of methods, models, and rules for

developing systems. Modeling can be done during any phase of the software life cycle

.A model is a an abstraction of a phenomenon for the purpose of understanding the

methodologies .Modeling provides means of communicating ideas which is easy to

understand the system complexity .

Object-Oriented Methodologies are widely classified into three

1.The Rumbaugh et al. OMT (Object modeling technique)

2.The Booch methodology

3. Jacobson's methodologies

UNIT V TESTING

Object Oriented Methodologies – Software Quality Assurance – Impact of

object orientation on Testing – Develop Test Cases and Test Plans.

A methodology is explained as the science of methods. A method is a set of

procedures in which a specific goal is approached step by step. Too min any

Methodologies have been reviewed earlier stages.

 In 1986, Booch came up with the object-oriented design concept, the Booch

method.

 In 1987,Sally Shlaer and Steve Mellor came up with the concept of the

recursive design approach.

 In 1989, Beck and Cunningham came up with class-responsibility collaboration

(CRC) cards.

 In 1990,Wirfs-Brock, Wilkerson, and Wiener came up with responsibility

driven design.

 In 1991, Peter Coad and Ed Yourdon developed the Coad lightweight and

prototype-oriented approach. In the same year Jim Rumbaugh led a team at the

research labs of General Electric to develop the object modeling technique

(OMT).

 In 1994,Ivar Jacobson introduced the concept of the use case.

These methodologies and many other forms of notational language provided

system designers and architects many choices but created a much split, competitive

and confusing environment. Also same basic concepts appeared in very different

notations, which caused confusion among users .Hence, a new evolvement of the

object oriented technologies which is called as second generation object-oriented

methods.

Advantages /Charecteristics

• The Rumbaugh et al. method is well-suited for describing the object model or static

structure of the system.

• The Jacobson et.al method is good for producing user-driven analysis models

• The Booch method detailed object-oriented design models

Rumbaugh et. al.’s Object Modeling Technique (OMT)

• OMT describes a method for the analysis, design, and implementation of a system

using an object-oriented technique.

• Class, attributes, methods, inheritance, and association also can be expressed easily

• The dynamic behavior of objects within a system can be described using OMT

Dynamic model

• Process description and consumer-producer relationships can expressed using

OMT’s Functional model

• OMT consists of four phases, which can be performed iteratively:

1. Analysis. The results are objects and dynamic and functional models.

2. System design. The result is a structure of the basic architecture of the system.

3. Object design. This phase produces a design document, consisting of detailed

objects and dynamic and functional models.

4. Implementation. This activity produces reusable, extendible, and robust code.

• OMT separates modeling into three different parts:

1. An object model, presented by the object model and the data dictionary.

2. A dynamic model, presented by the state diagrams and event flow diagrams.

3. A functional model, presented by data flow and constraints.

OMT Object Model

• The object model describes the structure of objects in a system:

• Their identity , relationships to other objects, attributes, and operations

• The object model is represented graphically with an object diagram

• The object diagram contains classes interconnected by association lines

Example of an object

model

 The above example provides OMT object model of a bank system. The boxes

represent classes and the filled triangle represents specialization.

 Association between Account and Transaction is one-to-many. Since one

account can have many transactions, the filled circle represents many (zero or

more).

 The relationship between Client and Account classes is one-to-one. A client

can have only one account and account can belong to only one person (in this

model joint accounts are not considered)

OMT Dynamic Model

• OMT dynamic model depict states, transitions, events, and actions

• OMT state transition diagram is a network of states and events

• Each state receives one or more events, at which time it makes the transition to the

next state.

Example of a state transition for ATM Transaction

Here the round boxes represent states and the arrows represent transitions

OMT Functional Model

• The OMT DFD shows the flow of data between different process in a business

• DFD use four primary symbols:

• Process is any function being performed ; For Ex, verify password or PIN in the

ATM system

• Data flow shows the direction of data element movement: foe Ex. PIN code

• Data store is a location where data are stored: for ex. Account is a data store in the

ATM example

• External entity is a source or destination of a data element; fro ex. The ATM card

Reader

On the whole , the Rumbaugh et al .OMT methodology provides one of the strongest

tool sets for the analysis and design of object-oriented systems .

Example of OMT DFD of an ATM system

The above example is OMT DFD of the ATM system .The data flow lines

include arrows to show the direction of data element movement .The circle represents

processes. The boxes represents external entities .A data store reveals the storage of

data.

The Booch Methodology

• It is a widely used object oriented method that helps us to design the system

using object paradigm.

• The Booch methodology covers the analysis and design phases of systems

development.

• Booch sometimes is criticized for his large set of symbols.

• You start with class and object diagram in the analysis phase and refine these

diagrams in various steps.

The Booch method consists of the following diagrams:

– Class diagrams

– Object diagrams

– State transition diagrams

– Module diagrams

– Process diagrams

– Interaction diagrams

Object Modeling using Booch Notation

Example :Alarm class state transition diagram with Booch notation.The arrows

represents specialization

The Booch methodology prescribes

– A macro development process serve as a controlling framework for the micro

process and can take weeks or even months. The primary concern of the macro

process is technical management of the system

– A micro development process.

The macro development process consists of the following steps:

1. Conceptualization :

 you establish the core requirements of the system

 You establish a set of goals and develop a prototype to prove the concept

2. Analysis and development of the model.

Use the class diagram to describe the roles and responsibilities objects are to carry out

in performing the desired behavior of the system .Also use the Object diagram to

describe the desired behavior of the system in terms of scenarios or use the interaction

diagram.

3. Design or create the system architecture.

In this phase, You use the class diagram to decide what class exist and how they relate

to each other .Object diagram to used to regulate how objects collaborate. Then use

module diagram to map out where each class and object should be declared. Process

diagram – determine to which processor to allocate a process.

4. Evolution or implementation. – refine the system through many iterations

5. Maintenance. - make localized changes the the system to add new requirements

and eliminate bugs.

Micro Development Process

Each macro development process has its own micro development process

• The micro process is a description of the day to- day activities by a single or small

group of

s/w developers

• The micro development process consists of the following steps:

1. Identify classes and objects.

2. Identify class and object semantics.

3. Identify class and object relationships.

4. Identify class and object interfaces and implementation.

The Jacobson et al. Methodologies

• The Jacobson et al. methodologies (e.g., OOBE, OOSE, and Objectory) cover the

entire life cycle and stress traceability between the different phases both forward and

backward. This traceability enables reuse of analysis and design work, possibly much

bigger factors in the reduction of development time than reuse of code.

Use Cases

• Use cases are scenarios for understanding system requirements.

• A use case is an interaction between users and a system.

• The use-case model captures the goal of the user and the responsibility of the system

to its users.

The use case description must contain:

– How and when the use case begins and ends.

– The interaction between the use case and its actors, including when the interaction

occurs and what is exchanged. How and when the use case will store data in the

system.

– Exceptions to the flow of events.

 Every single use case should describe one main flow events

 An exceptional or additional flow of events could be added

 The exceptional use case extends another use case to include the additional one

 The use-case model employs extends and uses relationships

 The extends relationship is used when you have one use case that is similar to

another use case

The uses relationships reuse common behavior in different use cases

• Use cases could be viewed as a concrete or abstract

• Abstract use case is not complete and has no actors that initiate it but is used by

another use case.

Abstract Usecase

ATM Transaction use cases.

Object-Oriented Software Engineering: Objectory

 Object-oriented software engineering (OOSE), also called Objectory, is a

method of object oriented development with the specific aim to fit the

development of large, real-time systems. The development process, called use-

case driven development, stresses that use cases are involved in several phases

of the development.

 The system development method based on OOSE is a disciplined process for

the industrialized development of software, based on a use-case driven design.

It is an approach to object-oriented analysis and design that centers on

understanding the ways in which a system actually is used.

 By organizing the analysis and design models around sequences of user

interaction and actual usage scenarios, the method produces systems that are

both more usable and more robust, adapting more easily to changing usage

 The maintenance of each model is specified in its associated process. A process

is created when the first development project starts and is terminated when the

developed system is taken out of service

Objectory is built around several different models:

– Use case model.

– defines the outside (actors) and inside(use case) of the system behavior

– Domain object model. The object of the “real” world are mapped into

the domain object model

– Analysis object model.

– how the source code (implementation) should be carried out and written

– Implementation model.

– represents the implementation of the system

– Test model.

- constitute the test plan, specifications, and reports

Object-Oriented Business Engineering (OOBE)

Object-oriented business engineering (OOBE) is object modeling at the enterprise

level. Use cases again are the central vehicle for modeling, providing traceability

throughout the software engineering processes.

OOBE consists of : object modeling at enterprises level

– Analysis phase

 The analysis phase defines the system to be built in terms of the problem-

domain object model, the requirements model and the analysis model .This

reduces complexity and promotes maintainability over the life of the system

,since the description of the system will be independent of hardware and

software requirements .

 The analysis process is iterative but the requirements and the analysis models

should be stable before moving on to subsequent models. Jacobson et al.

suggest that prototyping with a tool might be useful during this phase to help

specify user interfaces.

– Design& Implementation phases

 The implementation environment must be identified for the design model .

This include factors such as DBMS, distribution of process ,constraints due to

the programming language, available component libraries and incorporation

user interface tools

 It may be possible to identify implementation environment concurrently with

analysis. The analysis objects that fit the current implementation environment.

– Testing phase.

Finally Jacobson describes several testing levels and techniques such as unit

testing, integration testing and system testing.

Patterns

A design pattern is defined as that it identifies the key aspects of a common

design sturture that make it useful for creating a reusable object-orinted design . It also

identifies the participating classes and instances their roles and collaborations and the

distribution of responsibilities.[Gamma,Helson,Johnson definition]

A pattern involves a general description of solution to a recurring problem

bundle with various goals and constraints. But a pattern does more than just identify a

solution; it also explains why the solution is needed.

• A pattern is useful information that captures the essential structure and insight of a

successful family of proven solutions to a recurring problem that arises within a

certain context and system of forces.

• Its help software developers resolve commonly encountered, difficult problems and

a vocabulary for communicating insight and experience about these problems and

their solutions.

The main idea behind using patterns is to provide documentation to help categorize

and communicate about solutions to recurring problems.

• The pattern has a name to facilitate discussion and the information it represents.

A good pattern will do the following:

• It solves a problem.

Patterns capture solutions, not just abstract principles or strategies.

• It is a proven concept.

Patterns capture solutions with a track record, not theories or speculation.

• The solution is not obvious.

The best patterns generate a solution to a problem indirectly—a necessary approach

for the most difficult problems of design.

• It describes a relationship.

Patterns do not just describe modules, but describe deeper system structures and

mechanisms.

Generative and Non-Generative Patterns

 Generative patterns are the patterns that not only describe a recurring problem

but also tell us how to generate something and can be observed in the resulting

system architectures.

 Non-generative patterns are static and passive .They describe recurring

phenomena without necessarily saying how to reproduce them.

Patterns Template

Every pattern must be expressed in form of a template which establishes a

relationship between a context , a system of forces which raises in that context and a

configuration which allows these forces to resolve themselves in that context. The

following components should be present in a pattern template

 Name –A meaningful name .This allows us to use a singlew word or short

phrase to refer a pattern and the knowledge and the structure it

describes.Sometimes a pattern may have more than one commonly used or

recognizable name in the literature .In this case nick names can be used .

 Problem-A statement of a problem that describes its intent: the goals and

objectives it wants to reach within the given context and forces .

 Context-The preconditions under which the problem and its solution seem to

recur and for which solution is desirable. This tells us about the pattern

applicability.

 Forces-A description of the relevant forces and constraints and how they

interact or conflict with one another and with goals to that wish to achieve.

Forces reveal the intricacies of the problem and define the kinds of trade-offs

that must be considered in the presences of the tension or dissonance they

create. A good pattern description should fully encapsulate all the forces that

have an impact on it.

 Solution

 Examples

 Resulting context

 Rationale

 Related Patterns

 Known uses-The known occurrences of the pattern and its application within

existing systems .This helps validate a pattern by verifying that it indeed is a

proven solution to a recurring problem .

AntiPatterns

• A pattern represents a “best practice” whereas an antipattern represents “worst

practice” or a

“lesson leaned”

• Antipattern come in two verities:

• Those describe a bad solution to a problem that resulted in a bad situation

• Those describing how to get out of a bad situation and how to proceed from there to

a good solution

• The pattern has a significant human component.

- All software serves human comfort or quality of life.

-The best patterns explicitly appeal to aesthetics and utility.

Capturing Patterns

 Patterns should provide not only facts but also tell us a story that captures the

experience they are trying to convey.

 A pattern should help its users comprehend existing systems, customize

systems to fit user needs, and construct new systems.

 The process of looking for patterns to document is called pattern mining.

• Guidelines for capturing patterns:

– Focus on practicability.-Patterns should describe proven solutuions to recurring

problems rather than the latest scientific results .

– Aggressive disregard of originality.-Pattern writers do not need to be the original

inventor or discoverer of the solutions that they document.

– Non-anonymous review.-Paper submissions are shepherded rather than reviewed. It

contacts the pattern authors and discusses with him or her how the patterns might be

clarified or improved on

– Writers' workshops instead of presentations.-Open forums are used here to improve

the patterns which are lacking

– Careful editing

.-Incorporating all the review comments and insights given by the writers workshops.

Frameworks

• A framework is a way of presenting a generic solution to a problem that can be

applied to all

levels in a development.

• A single framework typically encompasses several design patterns and can be viewed

as the

implementation of a system of design patterns.

A definition of object oriented software framework is given by Gamma et al.

Differences between Design Patterns and Frameworks

• Design patterns are more abstract than frameworks.

• Design patterns are smaller architectural elements than frameworks.

• Design patterns are less specialized than frameworks.

The Unified Approach

• The idea behind the UA is not to introduce yet another methodology.

• The main motivation here is to combine the best practices, processes, methodologies,

and guidelines along with UML notations and diagrams.

The unified approach to software development revolves around (but is not limited to)

the following processes and components.

The processes are:

– Use-case driven development.

– Object-oriented analysis.

– Object-oriented design.

– Incremental development and prototyping.

– Continuous testing.

UA Methods and Technology

• The methods and technology employed includes:

– Unified modeling language (UML) used for modeling.

– Layered approach.

– Repository for object-oriented system development patterns and frameworks.

– Promoting Component-based development.

UA Object-Oriented Analysis:

Use-Case Driven

• The use-case model captures the user requirements.

• The objects found during analysis lead us to model the classes.

• The interaction between objects provide a map for the design phase to model the

relationships and designing classes.

OOA Process consists of the following steps :

1. Identify the Actors

2. Develop the simple business process model using UML activity diagram

3. Develop the Use Case

4. Develop interaction diagrams

5. Identify classes

UA Object-Oriented Design:

• Booch provides the most comprehensive object-oriented design method.

• However, Booch methods can be somewhat imposing to learn and especially tricky

to figure out where to start.

• UA realizes this by combining Jacobson et al.'s analysis with Booch's design concept

to create a comprehensive design process.

OOD Process consists of:

• Design classes , their attributes, methods, associations, structures and protocols,

apply design axioms

• Design the Access Layer
• Design and prototype User Interface

• User satisfaction and usability Test based on the usage / Use cases

Iterative Development and Continuous Testing

• The UA encourages the integration of testing plans from day 1 of the project.

• Usage scenarios or Use Cases can become test scenarios; therefore, use cases will

drive the usability testing.

• You must iterate and reiterate until, you are satisfied with the system.

Modeling Based on the Unified Modeling Language

• The UA uses the unified modeling language (UML) to describe and model the

analysis and design phases of system development.

The UA Proposed Repository

• The requirement, analysis, design, and implementation documents should be stored

in the repository, so reports can be run on them for traceability.

• This allows us to produce designs that are traceable across requirements, analysis,

design, implementation, and testing.

Two-Layer Architecture

In a two-layer system, user interface screens are tied directly to the data through

routines that sit directly behind the screens.

This approach results in objects that are very specialized and cannot be reused easily

in other projects.

Three-Layer Architecture

• Your objects are completely independent of how:

– they are represented to the user (through an interface) or

– how they are physically stored.

User Interface layer

This layer consists of objects with which the user interacts as well as the objects

needed to manage or control the interface. It is also called as a view layer. The UI

interface layer objects are indentified during OOD phase .

This layer is typically responsible for two major aspects of the applications:

• Responding to user interaction-Here the user interface layer objects must be

designed to translate actions by the user , such as clicking on a button or selecting

from a menu ,into an appropriate response .

That response may be to open or close another interface or to send a message down

into the business layer to start some business process.

• Displaying business objects.-The display of the objects is shown by using list boxes

and graphs

Business Layer

1. The responsibilities of the business layer are very straightforward:

2. model the objects of the business and how they interact to accomplish the business

processes.

Business Layer: Real Objects

These objects should not be responsible for:

Access Layer

• The access layer contains objects that know how to communicate with the place

where the data actually resides,

•Whether it be a relational database, mainframe, Internet, or file.

• The access layer has two major responsibilities:

• Translate request-This layer must be able to translate any data-related requests from

the business layer into the appropriate protocol for data access.(For eg . if a customer

number 5333 is to be retrieved from the Database , an SQL statement is created by the

access layer and execute it)

• Translate result –It translates the data retrieved back into the appropriate business

objects and passes those objects back up into the business layer

Architecture for Access layer ,Business layer and view layer

5.2 SOFTWARE QUALITY ASSURANCE

The major key areas of SQA are

 Bugs and Debugging

 Testing strategies.

 The impact of an object orientation on testing.

 How to develop test cases.

 How to develop test plans.

Two issues in software quality are:

 Validation or user satisfaction

 Verification or quality assurance.

Elimination of the syntactical bug is the process of debugging. Detection and

elimination of the logical bug is the process of testing.

Error Types:

• Language errors or syntax errors

• Run-time errors

• Logic errors

Identifying Bugs and Debugging

• The first step in debugging is recognizing that a bug exists.

• Sometimes it's obvious; the first time you run the application, it shows itself.

• Other bugs might not surface until a method receives a certain value, or until you

take a closer look at the output

However, these steps might help:

 Selecting appropriate testing strategies

 Developing test cases and sound test plan.

Debugging Tools

• Debugging tools are a way of looking inside the program to help us determine what

happens and why.

• It basically gives us a snapshot of the current state of the program.

Testing Strategies

There are four types of testing strategies, These are:

 Black Box Testing

 White Box Testing

 Top-down Testing

 Bottom-up Testing

Black Box Testing

• In a black box, the test item is treated as "black" whose logic is unknown.

• All that's known is what goes in and what comes out, the input and output

• Black box test works very nicely in testing objects in an Object-Oriented

environment.

White Box Testing

White box testing assumes that specific logic is important, and must be tested

to guarantee system’s proper functioning. This testing looks for bugs that have a low

probability of execution that has been overlooked in previous investigations. The main

use of this testing is error-based testing , when all level based objects are tested

carefully .

One form of white box testing is called path testing

• It makes certain that each path in a program is executed at least once during testing.

Two types of path testing are:

 Statement testing coverage- The main idea of the statement testing coverage is

test every statement in the objects method executing it at least once.

 Branch testing coverage –The main idea here is to perform enough tests to

ensure that every branch alternative has been executed at least once under some

test. It is feasible to fully test any program of considerable size.

Top-down Testing

It assumes that the main logic of the application needs more testing than supporting

logic.

Bottom-up Approach

• It takes an opposite approach.

• It assumes that individual programs and modules are fully developed as standalone

processes.

• These modules are tested individually, and then combined for integration testing.

System Usability & Measuring User Satisfaction

• Verification

- "Am I building the product right?"

Validation

- "Am I building the right product?"

Two main issues in software quality are

Validation or user satisfaction and

verification or quality assurance.

• The process of designing view layer classes consists of the following steps:

1. In the macro-level user interface (UI) design process, identify view layer objects.

2. In the micro-level UI, apply design rules and GUI guidelines.

3. Test usability and user satisfaction.

4. Refine and iterate the design.

Usability and User Satisfaction Testing

Two issues will be discussed:

1. Usability Testing and how to develop a plan for usability testing.

2. User Satisfaction Test and guidelines for developing a plan for user satisfaction

testing.

• The International Organization for Standardization (ISO) defines usability as the

effectiveness ,efficiency, and satisfaction with which a specified set of users can

achieve a specified set of tasks in particular environments.

• Defining tasks. What are the tasks?

• Defining users. Who are the users?

• A means for measuring effectiveness, efficiency, and satisfaction

The phrase two sides of the same coin is helpful for describing the relationship

between the

Usability and functionality of a system.

Bottom – Up Testing

It supports testing user interface and system integration. In the bottom-up strategy,

each module at lower levels is tested with higher modules until all modules are tested.

It takes help of Drivers for testing

Advantages:

 Fault localization is easier.

 No time is wasted waiting for all modules to be developed unlike Big-bang

approach

Disadvantages:

 Critical modules (at the top level of software architecture) which control the

flow of application are tested last and may be prone to defects.

 An early prototype is not possible

Top-down Testing:

In Top to down approach, testing takes place from top to down following the control

flow of the software system. Takes help of stubs for testing. It starts with the details of

the system and proceeds to higher levels by a progressive aggregation of details until

they fit requirements of system.

Advantages:

 Fault Localization is easier.

 Possibility to obtain an early prototype.

 Critical Modules are tested on priority; major design flaws could be found and

fixed first.

Disadvantages:

 Needs many Stubs.

 Modules at a lower level are tested inadequately.

5.3 IMPACT OF OBJECT ORIENTATION ON

TESTING Errors.

٥ Less Plausible (not worth testing for)

٥ More Plausible (worth testing for now)

٥ New types of errors may appear

Impact of Inheritance on Testing.

 Does not reduce the volume of test cases

 Rather, number of interactions to be verified goes up at each level of the

hierarchy

 Testing approach is essentially the same for OO oriented and Non-Object

oriented environment.

 However, can reuse superclass/base class test cases

 Since OO methods are generally smaller, these are easier to test . But there are

more opportunities for integration faults.

Reusability of tests.

Reusable Test Cases and Test Steps is a tool to improve re-usability and

maintainability of Test Management by reducing redundancy between Test Cases in

projects. Often the Test scenarios require that some Test Cases and Test Steps contain

repeated or similar actions performed during a Testing cycle.

The models used for analysis and design should be used for testing at the same

time. The class diagram describes relationship between objects .which is a useful

information form testing .Also it shows the inheritance structure which is important

information for error-based testing.

Error based testing

Error based testing techniques search a given class’s method for particular clues of

interests, and then describe how these clues should be tested.

Usability testing

Measures the ease of use as well as the degree of comfort and satisfaction users have

with the software.

• Usability testing must begin with defining the target audience and test goals.

• Run a pilot test to work out the bugs of the tasks to be tested.

• Make certain the task scenarios, prototype, and test equipment work smoothly.

Guidelines for Developing Usability Testing

―Focus groups" are helpful for generating initial ideas or trying out new ideas.

It requires a moderator who directs the discussion about aspects of a task or design

• Apply usability testing early and often.

• Include all of software‘s components in the test.

• The testing doesn‘t need to be very expensive, a tape recorder, stopwatch, notepad

and an office can produce excellent results.

• Tests need not involve many subjects.

• More typically, quick, iterative tests with a small, well-targeted sample of 6 to 10

participants can identify 80– 90 percent of most design problems.

• Focus on tasks, not features.

• Remember that your customers will use features within the context of particular

tasks.

• Make participants feel comfortable by explaining the testing process.

• Emphasize that you are testing the software, not the participants.

• If they become confused or frustrated, it is not a reflection on them.

• Do not interrupt participants during a test.

• If they need help, begin with general hints before moving to specific advice.

• Keep in mind that less intervention usually yields better results.

• Record the test results using a portable tape recorder, or better, a video camera.

• You may also want to follow up the session with the user satisfaction test.

• The test is inexpensive, easy to use and it is educational to those who administrate it

and those who fill it out. Even if the results may never be summarized, or filled out,

the process of creating the test itself will provide us with useful information.

5.4 TEST CASES

A test case is a set of What – if questions. To test a system you must construct some

best input cases, that describe how the output will look. Next, perform the tests and

compare the

outcome with the expected output.

Myer’s (objective of testing)

Testing is a process of executing a program with the intent of finding errors.

Good test case.That has a high probability of finding an as – yet – undiscovered error.

Successful test case That detects an as – yet – undiscovered error.

Guidelines for Developing quality assurance test cases.

Freedman and Thomas have developed guidelines that have been adopted for the UA:

 Describe which feature or service your test attempts to cover.

 If the test case is based on a use case, it is good idea to refer to the use-case

name.

 Specify what you are testing and which particular feature.

 test the normal use of the object methods.

 test the abnormal but reasonable use of the objects methods.

 test the boundary conditions.

 Test objects interactions and the messages sent among them.

 Attempting to reach agreement on answers generally will raise other what-if

questions.

 The internal quality of the software, such as its reusability and extensibility,

should be assessed as well.

5.5 TEST PLAN

* A Test plan is developed to detect and identify potential problems before delivering

the

software to its users.

* A test plan offers a road map.

* A dreaded and frequently overlooked activity in software development.

Steps

 Objectives of the test.- create the objectives and describes how to achieve them

 Development of a test case- develop test case, both input and expected output.

 Test analysis.- This step involves the examination of the test output and the

documentations of the test results

Regression Testing.- All passed tests should be repeated with the revised program,

called "Regression". This can discover errors introduced during the debugging

process. When sufficient testing is believed to have been conducted, this fact should

be reported, and testing to this specific product is complete

Beta Testing.

Beta Testing can be defined as the second stage of testing any product before

release where a sample of the released product with minimum features and

characteristics is being given to the intended audience for trying out or temporarily

using the product.

Unlike an alpha test, the beta test is being carried out by real users in the real

environment. This allows the targeted customers to dive into the product's design,

working, interface, functionality, etc.

Alpha Testing.

Alpha Testing can be defined as a form of acceptance testing which is carried

out for identifying various types of issues or bugs before publishing the build or

executable of software public or market. This test type focuses on the real users

through black box and white box testing techniques. The focus remains on the task

which a general user might want or experience.

Alpha testing any product is done when product development is on the verge of

completion. Slight changes in design can be made after conducting the alpha test. This

testing methodology is performed in lab surroundings by the developers.

Here developers see things in the software from users point and try to detect the

problems. These testers are internal company or organization's employees or may be a

part of the testing team. Alpha testing is done early at the end of software

development before beta testing.

Guidelines (for preparing test plan)

 Specify Requirements generated by user.

 Specify Schedule and resources.

 Determine the testing strategy.

 Configuration Control System.

 Keep the plan up to date.

 At the end of each milestone, fill routine updates.

MYER’S DEBUGGING PRINCIPLES

Bug locating principles.

 Think

 If you reach an impasse, sleep on it.

 If the impasse remains, describe the problem to someone else. Use debugging

tools.

 Experimentation should be done as a last resort.

Debugging principles.

 Where there is one bug , there is likely to be another.

 Fix the error, not just the symptom.

 The probability of solution being correct drops down as the size increases.

 Beware of error correction, it may create new errors

Case study :

Develping Test cases for vianet ATM bank system

Test cases are derived from the following use case scenarios

1. Bank Transaction

2. Checking transaction history

3. Savings/current account

4. Deposit/Withdarw

5. valid/invalid PIN

Example of vianet ATM system for user satisfaction test

	What is Analysis and Design?
	OO Basics
	Object state and properties (Attributes)
	Object Behavior and Methods:
	Class Hierarchy
	Dynamic Inheritance
	Multiple Inheritances
	Encapsulation and Information Hiding
	Polymorphism
	Object Relationship and Associations
	Static and Dynamic Binding:
	Object Persistence:
	ii) Define a Domain Model
	iii) Assign Object Responsibilities and Draw Interaction Diagrams

	UML DIAGRAMS
	What is the UML?
	4) Implementation Diagram
	Three Ways to Apply UML
	Three Perspectives to Apply UML
	The Meaning of "Class" in Different Perspectives

	UNIFIED PROCESS (UP)
	What is the UP?
	UP for three reasons
	Iterative and Evolutionary Development

	To Handle Change on an Iterative Project
	Benefits of Iterative Development
	What is Iteration Time boxing?
	The Need for Feedback and Adaptation

	What is Risk-Driven and Client-Driven Iterative Planning?
	What are Agile Methods and Attitudes?
	The Agile Manifesto and Principles
	The Agile Principles
	Figure - Schedule-oriented terms in the UP.
	What is the Relationship Between the Disciplines and Phases?

	CASE STUDY
	Why focus on OOA/D in the core application logic layer?

	NEXTGEN POS SYSTEM
	The NextGen POS(Point of Sale) System

	INCEPTION
	Activities in Inception:

	USE CASES & USECASE MODELLING
	Definition: What are Actors, Scenarios, and Use Cases
	Use Cases and the Use-Case Model
	Motivation: Why Use Cases?
	Definition: Are Use Cases Functional Requirements
	What are Three Kinds of Actors?
	Three Common Use Case Formats
	Example : Handle Returns Usecase
	Use Case UC1: Process Sale : Fully Dressed Format Example
	Special Requirements:
	Format Description:
	Preconditions and Success Guarantees (Postconditions)
	Extensions (or Alternate Flows)
	Special Requirements
	Technology and Data Variations List
	Guidelines For Use Case Modeling:
	Essential Style
	Concrete Style Avoid During Early Requirements Work
	Guideline 5: To Find Use Cases
	Step 1: Choose the System Boundary
	Steps 2 and 3: Find Primary Actors and Goals
	Representing Goals of an Actor :
	Is the Cashier or Customer the Primary Actor?
	Second Method to Find Actors and Goals - Event Analysis
	Step 4: Define Use Cases
	Guideline 6: Tests To Find Useful Use Cases
	The Boss Test : To check for achieving results of measurable value
	The EBP Test
	EBP is similar to the term user task in usability engineering, although the meaning is less strict in that domain. Focus on use cases that reflect EBPs.
	The Size Test
	Example: Applying the Tests
	Applying UML: Use Case Diagrams
	Guideline
	Guideline: Diagramming

	RELATING USE CASES
	Kinds of relationships
	1. The include Relationship
	UC1: Process FooBars

	Use cases and use the include relationship when:
	Concrete, Abstract, Base, and Addition Use Cases
	2. The extend Relationship
	UC1: Process Sale (the base use case)
	UC15: Handle Gift Certificate Payment (the extending use case)

	3. The Generalization Relationship
	Example:

	WHEN TO USE USECASE DIAGRAM
	When to Use USECASE DIAGRAM

	CLASS DIAGRAM
	Definition: Design Class Diagram
	Class Diagram Representation
	1. Attributes (refer pg no 26)
	Syntax:
	Syntax :
	A) Association (refer page no 21)
	B) Generalization & Specialization
	Ex1:
	Ex2:
	C) Composition and Aggregation
	D) Dependency
	E) Interface realization
	Qualified Association

	ELABORATION
	Elaboration is the initial series of iterations during which, on a normal project:
	Key Ideas and Best Practices will manifest in elaboration:
	Process: Planning the Next Iteration

	DOMAIN MODEL
	Domain Models
	What is a Domain Model?
	Definition
	Why Call a Domain Model a "Visual Dictionary"?
	Two Traditional Meaning of Domain Model

	CONCEPTUAL CLASSES
	A conceptual class has a symbol, intension and extension Are Domain and Data Models the Same Thing?
	Motivation: Why Create a Domain Model ?
	Guideline: To Find Conceptual Classes Three Strategies to Find Conceptual Classes :
	Method 2: Use a Category List
	Method 3: Finding Conceptual Classes with Noun Phrase Identification
	Guideline
	Main Success Scenario (or Basic Flow):
	Example: Find and Draw Conceptual Classes
	Guidelines
	4. Use Domain Terms :
	When Are Description Classes Useful?
	Example: Descriptions in the Airline Domain
	Associations
	Include the following associations in a domain model:
	Guideline 1. Avoid Adding Many Associations
	Applying UML: Association Notation
	The UML notation for associations.
	Guideline 2: To Name an Association in UML
	Applying UML: Roles
	Applying UML: Multiplicity
	Applying UML: Multiple Associations Between Two Classes
	Guideline 3 : To Find Associations with a Common Associations List
	Qualified Associations (Refer pg no 9)
	Example: Associations in the Domain Models
	More Notation
	visibility name : type multiplicity = default {property-string}
	Guideline 1 : Suitable Attribute Types - Focus on Data Type Attributes in the Domain Model
	Data Types
	Guideline 1 : When to define New Data type Classes ? Guidelines for modeling data types
	Guideline 2 : No Attributes Representing Foreign Keys
	Guideline 3 : Modeling Quantities and Units

	DOMAIN MODEL REFINEMENT
	OBJECTIVES
	Generalization
	Defining Conceptual Superclasses and Subclasses :
	Subclass conformance.
	Guideline: Is-a Rule
	Guideline :Correct Conceptual Subclass
	When to Define a Conceptual Subclass?
	Motivations to Partition a Conceptual Class into Subclasses
	When to Define a Conceptual Superclass?
	NextGen POS Conceptual Class Hierarchies
	Abstract Conceptual Classes
	Association Classes

	AGGREGATION AND COMPOSITION (Refer Pg No: 7)
	How to Identify Composition : Guideline
	Composition in the NextGen Domain Model

	SYSTEM SEQUENCE DIAGRAMS
	Why Draw an SSD?

	RELATIONSHIP BETWEEN SSDS AND USE CASES
	How to Name System Events and Operations?
	Example: Monopoly SSD
	Process:

	DYNAMIC DIAGRAMS
	UML INTERACTION DIAGRAMS
	Basic Communication Diagram Notation
	Sequence diagram vs Communication diagram Example
	UML STATE MACHINE DIAGRAMS AND MODELLING
	State machine diagram for a telephone
	Definitions: Events, States, and Transitions
	Guidelines : To Apply State Machine Diagrams:
	Modeling State-Dependent Objects : state machines are applied in two ways:
	1. Complex Reactive Objects
	b) Transactions and related Business Objects
	Example 1: Physical Devices / Nested States – Telephone Object
	Example 2: Transactions and related Business Objects
	2) Protocols and Legal Sequences
	WHEN TO USE STATE DIAGRAM

	Example:
	Elements:
	Example
	Guideline to Apply Activity Diagrams
	2. Data Flow Modeling
	3. Concurrent Programming and Parallel Algorithm Modeling
	4. Guidelines
	Example: NextGen Activity Diagram

	WHEN TO USE ACTIVITY DIAGRAMS
	Example
	Architecture Types

	WHEN TO USE PACKAGE DIAGRAMS
	UML DEPLOYMENT AND COMPONENT DIAGRAMS
	2) Execution Environment Node :
	Elements:
	Deployment Diagram Ex: Next Generation POS System

	COMPONENT DIAGRAMS
	Features of UML component
	Elements:

	WHEN TO USE COMPONENT AND DEPLOYMENT DIAGRAMS
	Model the components of a system
	UML versus Design Principles
	Object Design
	 Inputs
	 Outputs
	Activities of object design
	Outputs of object design
	1. Knowing responsibilities:
	2. Doing responsibilities:
	What's the Connection Between Responsibilities, GRASP, and UML Diagrams?
	What are Patterns?
	4.3.1 Creator
	Solution
	Example:

	Partial Domain Model
	The assignment of responsibilities requires that a ‘makeLineitem’ must also be defined in ‘Sale’.
	Contradictions:
	 Concrete Factory, and
	4.3.2 INFORMATION EXPERT (OR EXPERT)
	Problem
	Solution

	NextGEN POS Application
	Partial domain model for association of sale
	 SalesLineItem Quantity
	Calculating Sales Total
	Calculating the sale total
	Contradictions
	Benefits
	4.3.3 LOW COUPLING
	Types of coupling
	Solution :
	Example:-

	Sales creates Payment
	Contradictions (1)
	Benefits (1)
	4.3.4 CONTROLLER
	Example:-

	Solution (1)
	Example: NextGen application contains several system operations.
	Allocation of system operations
	Façade controllers
	Use case controller

	Guideline
	Normally, a controller should delegate to other objects the work that needs to be done; it coordinates or controls the activity. It does not do much work itself.
	Benefits
	Implementation
	Code
	UI Layer Does Not Handle System Events
	Desirable coupling of UI layer to domain layer
	Less desirable coupling of interface layer to domain layer 4.3.5 HIGH COHESION
	Solution
	Example
	DESIGN 1
	Register creates Payment
	Sale creates Payment
	Scenarios of varying degrees of functional cohesion
	Rule of thumb

	Modular Design
	Modularity is the property of a system that has been decomposed into a set of cohesive and loosely coupled modules. Modular design creates methods and classes with single purpose, clarity and high cohesion.
	Benefits
	Pattern & Description
	4.4.1 Creational Patterns
	Advantages of factory
	The Factory pattern
	4.4.2 Structural Patterns
	ADAPTER
	Example:

	The Adapter pattern
	Using an Adapter
	GRASP Principles as a Generalization of Other Patterns
	Relating Adapter to some core GRASP principles

	 Creates two different hierarchies. One for abstraction and another for implementation.
	 We create a bridge that coordinates between abstraction and implementation.
	 Should be used when we have need to switch implementation at runtime.
	 Best used when you have multiple implementations.
	Example :
	Generic UML Diagram for Bridge Design Pattern
	Example : for core elements of Bridge Design Pattern
	Example Coding :
	4.4.3 Behavioral Patterns
	Creating a Strategy with a Factory
	Example:

	The observer SaleFrame1 subscribes to the publisher Sale
	The Sale publishes a property event to all its subscribers
	Who is the observer, listener, subscriber, and publisher Why Is It Called Observer, Publish-Subscribe, or Delegation Event Model?
	1. Creating Class Definitions from DCDs
	Defining a Class with Method Signatures and Attributes
	Note :

	2. Creating Methods from Interaction Diagrams
	The enterItem interaction diagram.
	The Register class
	3. Collection Classes in Code
	Adding a collection.
	4. Exceptions and Error Handling
	5 Order of Implementation
	Possible order of class implementation and testing.
	Example

	NextGen POS Program Solution
	Class ProductDescription
	Class ProductCatalog
	Class SalesLineItem
	Class Payment
	Class Register
	Class Sale

	Introduction.
	5.1 OBJECT ORIENTED METHODOLOGIES
	Advantages /Charecteristics
	Rumbaugh et. al.’s Object Modeling Technique (OMT)
	OMT Object Model

	Example of an object model
	OMT Dynamic Model
	The Booch Methodology
	Object Modeling using Booch Notation
	1. Conceptualization :
	2. Analysis and development of the model.
	3. Design or create the system architecture.

	The Jacobson et al. Methodologies
	ATM Transaction use cases.
	Object-Oriented Software Engineering: Objectory
	Objectory is built around several different models:

	Patterns
	AntiPatterns
	Capturing Patterns

	Frameworks
	Differences between Design Patterns and Frameworks

	The Unified Approach
	UA Methods and Technology
	UA Object-Oriented Analysis:
	OOA Process consists of the following steps :
	UA Object-Oriented Design:
	OOD Process consists of:
	Iterative Development and Continuous Testing
	Modeling Based on the Unified Modeling Language
	The UA Proposed Repository

	Two-Layer Architecture
	Three-Layer Architecture
	User Interface layer
	Business Layer
	Business Layer: Real Objects
	Access Layer
	Architecture for Access layer ,Business layer and view layer
	Error Types:
	Identifying Bugs and Debugging
	Debugging Tools

	Black Box Testing
	White Box Testing
	Two types of path testing are:

	Top-down Testing
	Bottom – Up Testing
	Top-down Testing:
	5.3 IMPACT OF OBJECT ORIENTATION ON TESTING Errors.
	Impact of Inheritance on Testing.
	Reusability of tests.
	Error based testing
	Usability testing
	Guidelines for Developing Usability Testing

	5.4 TEST CASES
	Myer’s (objective of testing)

	Guidelines for Developing quality assurance test cases.
	5.5 TEST PLAN
	Beta Testing.
	Alpha Testing.

	Guidelines (for preparing test plan)
	MYER’S DEBUGGING PRINCIPLES
	Bug locating principles.
	Debugging principles.

	Case study :
	Example of vianet ATM system for user satisfaction test

