MOHAMED SATHAK A J COLLEGE OF ENGINEERING, Chennai - 603103

LESSON PLAN - THEORY

				SSON PLAN - SEMECHANIC	THEORY CAL ENGINEERIN	'G							
	Name of the	ENGINEEDING THEDMODY			AL ENGINEERIN	<u> </u>	2021						
	Subject	ENGINEERING THERMODYN	AMICS	Regulation			2021						
Su	bject Code	ME 3391		Year / S	Sem	11 / 111							
Acad	lamic Year	2023-2024		Batch 2022-2026									
				Course Obj	ective								
		the basics and application of zeroth and f											
		the second law of thermodynamics in ana			al devices.								
mpart k	cnowledge on	availability and applications of second lav	w of thermodynai	mics			_						
Γeach th	ne various pro	perties of steam through steam tables and	Mollier chart.										
Impart !	knowledge on	the macroscopic properties of ideal and r	eal gases.										
				Course Out	come								
At the e	nd of the cour	rse the students would be able to		6/cm, 100	ورق السَّمَا								
201: A _j	pply the zeroth	h and first law of thermodynamics by form	nulating temperat	ture scales and	calculating the proper	rty changes in closed	andopen e	ngineering systems					
CO2: A	pply the secon	nd law of thermodynamics in analysing the	e performance of	thermal devices	s through energy and	entropy calculations.							
CO3:Apply the second law of thermodynamics in evaluating the various properties of steam through steam tables and Mollier chart													
CO4: A	pply the prope	erties of pure substance in computing the 1	macroscopic prop	perties of ideal	and real gases using g	gas laws and appropr	ate thermo	dynamic relations					
CO5: A _l	pply the prope	erties of gas mixtures in calculating the pro	operties of gas m	nixtures and app	lying various thermo	dynamic relations to	calculate pr	operty changes.					
			13.	Lesson Pl	an								
Sl. No.		Topic(s)	T / R*	Periods Required	Mode of Teaching (BB / PPT / NPTEL / MOOC / etc)	Blooms Level (L1- L6)	со	PO					
		U	NIT – I BASI	CS, ZEROT	H AND FIRST I	L AW							
1	Review of Ba	asics	T2	1	ВВ/РРТ	L1	1	PO1					
2	Thermodyna	amic systems	T2	1	BB/PPT	L1	1	PO1					
	Properties ar Equilibrium	nd processes Thermodynamic	R1	1	BB/PPT	L1	1	PO1					
4	Displacemen	nt work-P-V diagram	Т2	1	BB/PPT	L1	1	PO1, PO2					
5	Thermal equ	ıilibrium	R1	1	BB/PPT	L2	1	PO1, PO2					
6	Zeroth law		Т2	1	BB/PPT	L2	1	PO1, PO2					
7	Concept of to	emperature and Temperature Scales	T2	1	BB/PPT	L3	1	PO1, PO2, P12					
8	First law app	plication to closed and open systems	T2	1	BB/PPT	L3	1	PO1, PO2, PO3					
9	First law ste	ady and unsteady flow processes.	Т2	1	BB/PPT	L3	1	PO1, PO2, PO3,PO4					
Evaluat	tion method	Tutorials given to the students					_						
nternal	al Assesment	Γest											
			UNIT II SE	COND LAW	AND ENTROP	PY							
10	Heat Engine	e – Refrigerator	R1	1	BB/PPT	L2	2	PO1, PO2					
11	Heat pump		R1	1	BB/PPT	L2	2	PO1, PO2,P12					
		of second law and their equivalence &											
12 1	corollaries.	n second law and their equivalence &	R1	2	BB/PPT	L3	2	PO1, PO2					

BB/PPT

L2

2

PO1, PO2,

T1,T2

corollaries.

13

Carnot cycle

1

14	Reversed Carnot cycle - Performance	Т2	2	BB/PPT	L2	2	PO3,PO4
15	Clausius inequality	R2	1	BB/PPT	L2	2	PO1, PO2
16	Concept of entropy	T1	1	BB/PPT	L2	2	PO1, PO2, PO3
17	T-s diagram - Tds Equations	T2	1	BB/PPT	L3	2	PO1, PO2, PO3
18	Entropy change for a pure substance	R2	1	BB/PPT	L3	2	PO1, PO2, PO3

Suggested Activity: Tuorial given to the students

Evaluation method

* Tuorial are evaluated marks were given based on the students answer to the question.

19	Ideal gases undergoing different processes	R3	1	BB/PPT	L2	3	PO1, PO2, P12
20	principle of increase in entropy	R2,T1	1	BB/PPT	L2	3	PO1, PO2, P12
21	Applications of II Law.	T2,R2	1	BB/PPT	L3	3	PO1, PO2. PO9, PSO1,PSO3
22	High grade energy	Т2	1.	BB/PPT	L3	3	PO1, PO2, PO3
23	Low grade energy	T1 .	1	BB/PPT	L3	3	PO1, PO2, PO4
24	Availability	R1,T1	1	BB/PPT	L2	3	PO1, PO2, PO3
25	Irreversibility for open system	T2	1	BB/PPT	L2	3	PO1, PO2, PO3
26	Availability and Irreversibility for closed system	R2	2	BB/PPT	L2	3	PO1, PO2, PO4
27	I and II law Efficiency	R4	2	BB/PPT	L2	3	PO1, PO2, PO4

Suggested Activity: Tuorial given to the students

Evaluation method

* Quiz Counducted and marks are given to team members based on the students answer to the question.

			I١																	

	011	11 17 1 1011	EKTIESOF	ICKE SUBSIA	ITCES		
28	Steam	T1,R1	1 Fodel	BB/PPT	L1	4	PO1, PO2,P11
29	Formation and its thermodynamic properties	R2	1	BB/PPT	L1	4	PO1, PO2,P11
30	p-v, p-T, T-v	T1	1	BB/PPT	L2	4	PO1, PO2, PO6
31	T-s, h-s diagrams	R3	1	BB/PPT	L2	4	PO1, PO2, PO6
32	PVT surface	R1	1	BB/PPT	L2	4	PO1, PO2, PO6
33	Determination of dryness fraction.	T1,R1,T2	2	BB/PPT	L2	4	PO1, PO2, PO9
34	Calculation of work done and heat transfer in non	Т1	2	BB/PPT	L3	4	PO1, PO2, PO3,PO4, P12
35	flow and flow processes	R3,R4	1	BB/PPT	L3	4	PO1, PO2, PSO1, PSO2
36	using Steam Table Mollier chart	R2	2	BB/PPT	L3	4	PO1, PO2, PSO1, PSO2

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any: * Assignment given to the students

Evaluation method

* assignments are evaluated marks were given based on the students answer to the question.

UNIT V GAS MIXTURES AND THERMODYNAMIC RELATIONS

	Citi V GA	S MILL CILL	omid iii	IN TOD I I WINTE	CICELLITIONS		
1 39	Properties of Ideal gas, real gas,Equations of state for ideal and real gases	R1,T1	1	BB/PPT	L1	5	PO1, PO2,P11
39	vander Waal's relation - Reduced properties -	R1,T2	1	BB/PPT	L2	5	PO1, PO2, PO6
1 40	Compressibility factor - Principle of Corresponding states	R2,T2	2	BB/PPT	L2	5	PO1, PO2, PO9
41	Generalized Compressibility Chart.	T2,R3	2	BB/PPT	L3	5	PO1, PO2,PO3,PO4
42	Maxwell relations - TdS Equations	T1,T2	1	BB/PPT	L2	5	PO1, PO2, P12
43	heat capacities relations - Energy equation	R5,T2	1	BB/PPT	L3	5	PO1, PO2,P11
44	Joule- Thomson experiment	T2,R3	1	BB/PPT	L3	5	PO1, PSO1,PSO2
45	Clausius-Clapeyron equation	T1	1	BB/PPT	L3	5	PO1, PO2, PSO3

Suggest	ed Activity	: Assign	ment / C	ase Stud	lies / Tuorials/	Quiz / N	1ini Proj	ects / Model D	eveloped/o	others Pla	nned if a	ny: * Sei	minar give	n to the students
Evaluat Present	tion method	I										*]	Marks wer	re given based on the students
Conten	t Beyond th	e Syllab	us Plann	ed										
1	atkinson c	ycle, leno	oir cycle											
2	Water tub	e boilers	•											
								Text Boo	ks					
1	Nag.P.K., '	'Enginee	ring Ther	modynar	nics", 6th Edition	ı, Tata N	IcGraw I	Hill (2017), Nev	v Delhi.					
2	Natarajan,	E., "Eng	ineering	Thermod	lynamics: Fundar	nentals a	nd Appli	cations", 2nd E	dition (201	4), Anuras	gam Public	ations, Ch	nennai.	
								Reference B	ooks					
1	Cengel, Y	and M. l	Boles, Tl	hermody	namics - An En	gineerin	g Appro	ach, Tata McC	Graw Hill,9	Oth Editio	n, 2019.			
2	Chattopad	hyay, P,	"Engine	eering Tl	hermodynamics ³	", 2nd E	dition O	xford Universi	ty Press, 2	2016.				
3	Rathakrisl	hnan, E.,	, "Funda	mentals	of Engineering	Thermo	dynamic	s", 2nd Edition	n, Prentice	Hall of I	ndia Pvt.	Ltd, 2006		
4	Claus Bor	gnakke a	nd Rich	ard E. S	onntag, "Funda	mentals	of Theri	nodynamics",	10th Editi	on, Wiley	Eastern,	2019.		
5	Venkatesh	. A, "Ba	sic Engir	neering 1	Thermodynamic	s", Univ	ersities l	Press (India) L	imited, 20	07	12			
						Š	Wel	osite / URL F	Reference	s	R			
1	https://np	tel.ac.in	/course	s/112/1	05/112105123/	- 1								
3						- 4	3				S			
3							<u> </u>	Blooms Le	evel					
Level 1	(L1) : Re	membe	ring			Fixed	Level 4	(L4) : Analys			4		TT: 1	
Level 2	el 2 (L2): Understanding						Level 5	(L5) : Evalua	ating	GE			Higher Order	Projects / Mini Projects
Level 3	3 (L3) : Ap	plying			Thinking	Exams	Level 6	(L6) : Creati	ng				Thinking	
		Ma	pping	syllab	us with Bloo	m's Ta	xonon	v LOT and	нот	1				
Un	it No			nit Nan		L1	L2	L3	L4	L5	L6	LOT	НОТ	Total
U	nit 1	BASICS	s, zero	TH AN	D FIRST LAW	1	2	3				6	0	6
U	nit 2	SEC	OND LA	W AND	ENTROPY		2	4				6	0	6
U	nit 3	1		ABILIT	Y AND OF II LAW		2	3				5	0	5
U	nit 4	P		RTIES O BSTANC	F PURE ES	1	2	4				7	0	7
U	nit 5		GAS MI	IXTURE			2	4				6	0	6
		1	Γotal			2	10	18	0	0	0	30	0	30
		Total I	Percen	tage		6.67	33.33	60	0	0	0	100	0	100
								CO PO Map	ping					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO08	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								2		
CO2	3	3	2	1								2		
СОЗ	3	3	2	1					1		1	2	3	3
CO4	3	3	2	1		1			2		1	2	3	2
CO5	3	3	2	1		1			2		1	2	3	2
Avg	3	3	2	1		1			1.67		1	2	3	2.33
							Justifi	cation for CO-	PO mappi	ing				

CO1	PO1: Basic engineering knowledge is required PO2: Problem analysis is required and PO3: Design of complex engineering is done											
CO2	PO1: Basic engineering knowledge is required PO2: Problem analysis is required and PO3: Design of complex engineering is done											
CO3	PO1: Basic engineering knowledge is required PO2: Problem analysis is required and PO3: Design of complex engineering is done											
CO4	PO1: Basic eng	gineering knowledge is	s required PO2: Prob	em analysis is required								
CO5	PO1: Basic eng	gineering knowledge is	s required PO2: Prob	em analysis is required and P	O3: Design of complex eng	gineering is done						
	3	High level	2	Moderate level	1	Low level						
*Kindly	y sign with date	:	5		2/(E							
Name &	Name & Sign of Faculty Incharge :K.Sunil Kumar											
Name &	& Sign of Subje	ct Expert : Mr. Vign	eshwaran V									
Head o	lead of the Department : Dr. Shunmugasundaram M											

Format No :TLP 12 Rev.No.: 01

Estd - 2001

Rev. Date: 04.01.21