MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

Siruseri IT park, OMR, Chennai - 603103

	LESSON PLAN									
	Department of Mechanical Engineering									
Name of the Subject	Design of Machine Elements	Name of the handling	D. Sakthivel							
Subject Code	ME8593	Year / Sem	III / V							
Acad Year	Acad Year 2022-2023 Batch 2020-2024									
	Course Objective									

To familiarize the various steps involved in the Design Process

To understand the principles involved in evaluating the shape and dimensions of a component

to satisfy functional and strength requirements.

To learn to use standard practices and standard data

To learn to use catalogues and standard machine components

Course Outcome

CO1: Explain the influence of steady and variable stresses in machine component design.

CO2: Apply the concepts of design to shafts, keys and couplings.

CO3: Apply the concepts of design to temporary and permanent joints.

CO4: Apply the concepts of design to energy absorbing members, connecting rod and crank shaft.

CO5: Apply the concepts of design to bearings.

course summery

		T / R*	Periods	Mode of	DI T I						
Sl. No.	Topic(s)	Book	Requir ed	Teaching (BB / PPT / NPTEL / MOOC / etc.)	Blooms Level (L1-L6)	CO	PO				
	UNIT I-STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS										
1	Introduction to the design process factors influencing machine design selection of materials	T1	1	PPT	L1	CO1	PO1				
2	Preferred numbers, fits and tolerances	T1	1	PPT	L2	CO1	PO1				
3	Direct, Bending and torsional stress equations Impact and shock loading	Т1	1	PPT	L2	CO1	PO1, PO2, PO10				
4	Calculation of principle stresses for various load combinations, eccentric loading	T1	1	ВВ	L3	CO1	PO1, PO2, PO10				
5	Curved beams – crane hook and 'C' frame	Т1	2	ВВ	L3	CO1	PO1, PO2, PO10				
6	Factor of safety - theories of failure	T1	1	PPT	L2	CO1	PO1				
7	Design based on strength and stiffness stress concentration	T1	1	ВВ	L3	CO1	PO1, PO2, PO3				
8	Design for variable loading.	T1	1	ВВ	L3	CO1	PO1, PO2, PO3				

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Tuorial given to the students

Evaluation method

* Tuorial are evaluated marks were given based on the students answer to the question.

	UNIT II-SHAFTS AND COUPLINGS											
9	Design of solid shafts based on strength	T1	2	PPT	L3	CO2	PO3, PO10					
10	Design of solid shafts Based on rigidity and critical speed	Т2	1	BB	L3	CO2	PO3, PO11					
11	Design of hollow shafts based on strength,Based on rigidity and critical speed	T1	1	ВВ	L3	CO2	PO3, PO10					
12	Design of Keys, keyways, splines	T1	2	PPT	L3	CO2	PO3, PO10					
13	Design of Rigid couplings	T1	2	PPT	L3	CO2	PO3, PO10					
14	Design of Flexible couplings	T2	1	BB	L3	CO2	PO3, PO11					

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Assignment given to the students

Evaluation method

* assignments are evaluated and marks were given based on the students answer to the question.

	UNIT III-TEMPORARY AND PERMANENT JOINTS												
15	Threaded fastners	T1	1	PPT	L1	CO3	PO1, PO10						
16	Bolted joints including eccentric loading	T1	2	BB	L2	CO3	PO2, PO10						
17	Knuckle joints	T1	1	BB	L3	CO3	PO3,PO10						
18	Cotter joints	T1	1	BB	L3	CO3	PO3,PO10						
19	Welded joints	T1	2	BB	L3	CO3	PO3,PO10						
20	Riveted joints for structures	T1	1	PPT	L3	CO3	PO3,PO10						
21	Theory of bonded joints	T1	1	PPT	L1	CO3	PO3,PO10						

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Quiz counduct to the students

Evaluation method

* Quiz Counducted and marks are given to team members based on the students answer to the question.

	UNIT IV-ENERGY STORING ELI	EMENTS A	ND EN	NGINE COM	PONENTS		
22	Various types of springs	T1	2	PPT	L1	CO4	PO1,

23	Optimization of helical springs	T1	2	BB	L3	CO4	PO3, PO10
24	Rubber springs	T1	1	PPT	L2	CO4	PO3, PO10
25	Flywheels considering stresses in rims and arms for engines and punching machine	T1	2	ВВ	L3	CO4	PO3, PO10
26	Connecting Rods and crank shafts	T1	2	BB	L3	CO4	PO3,PO2, PO10

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Assignment given to the students

Evaluation method

* assignments are evaluated marks were given based on the students answer to the question.

	UNIT V-BEARINGS												
28	Sliding contact bearing	T1	2	BB	L3	CO5	PO3, PO10						
29	Rolling contact bearings	olling contact bearings T1 2 BB L3		CO5	PO3,PO10								
30	Hydrodynamic journal bearings	T1	2	BB	L3	CO5	PO3,PO10						
31	Sommerfeld Number,	T1	1	PPT	L3	CO5	PO2,PO10						
32	Raimondi and Boyd graphs	T1	1	PPT	L2	CO5	PO2,PO10						
33	Selection of Rolling Contact bearings	T1	1	PPT	L2	CO5	PO1, PO3,PO10						

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Assignment given to the students

Evaluation method

* assignments are evaluated marks were given based on the students answer to the question.

Content Beyond the Syllabus Planned

1 Design philosophy and Fundamentals of machine design

Text Books

- 1 Bhandari V, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.
- 2 Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design" 9th Edition, Tata M

Reference Books

- 1 Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo. (Schaum's Outline), 2010
- 2 Ansel Ugural, "Mechanical Design An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
- 3 P.C. Gope, "Machine Design Fundamental and Application", PHI learning private ltd, New Delhi, 2012.
- 4 R.B. Patel, "Design of Machine Elements", MacMillan Publishers India P Ltd., Tech-Max Educational resources, 2011.
- Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley,2005
- 6 Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2015.

Website / URL References

1 https://nptel.ac.in/courses/112/105/112105124

					Ble	ooms Le	evel							
Level 1 (L1): Remembering					Lower	Fixed	Leve	l 4 (L4)	: Anal	ysing			Higher	Projects /
Level 2 (L2) : Understanding				Order	Hour	Leve	15 (L5)	: Evalu	uating			Order Thinki	Mini	
Level 3	$(L3):A_{I}$	pplying			Thinking	Exams	Leve	l 6 (L6)	: Crea	ting			ng	Projects
]	Mapping	syllabu	s with B	loom's Ta	xonom	y LO	T and 1	нот					
Un	it No		Unit	t Name		L1	L2	L3	L4	L5	L6	LOT	НОТ	Total
U	nit 1	Steady St Machine		l Variable	Stresses In	1	3	4	0	0	0	8	0	8
U:	nit 2	Shafts An	d Couplin	gs		0	0	6	0	0	0	6	0	6
U	nit 3	Tempora	ry And Pe	rmanent Jo	oints	2	1	4	0	0	0	7	0	7
U	nit 4	Energy St Compone	_	nents And	Engine	1	1	3	0	0	0	5	0	5
U	nit 5	Bearings				0	2	4	0	0	0	6	0	6
	Total					4	7	21	0	0	0	32	0	32
	Total Percentage					12.5	21.9	65.625	0	0	0	100	0	100
					CO	PO Map	ping							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1							1			3	
CO2	1	2	3							1			3	
CO3	1	2	3							1			3	
CO4	1	2	3							1			3	
CO5	1	2	3							1			3	
Avg	1	2	3							1			3	
					Justification	for CO	PO m	apping				•		
CO1	strain, du	ctile, brittling and ana	le properti lysis the e	es will hel xisting pro	he knowledg lp to solve st oblem, Low tion for prob	ressstain level ma	beha apped	viour of	materia	als. Mod	lrately 1	nappeo	l with P	O2:
CO2	and form	ulate the g	iven enginently the	neering proplem P	d Developme oblem, Low O10: clear in	level ma	apped	with F	O1: Ap	plying t	he kno	wledge	of engi	-
СОЗ	and form	ulate the g	iven enginently the	neering proplem P	d Developme oblem, Low O10: clear in	level ma	apped	with F	PO1: Ap	plying t	he kno	wledge	of engi	-

CO4	Strongly mapped with PO3: Design and Development of the identified problem, Moderately mapped with PO2:identify and formulate the given engineering problem, Low level mapped with PO1: Applying the knowledge of engineering fundamentals for identify the problem PO10: clear instruction can be given and received by using effective communication for solving problems.										
CO5	Strongly mapped with PO3: Design and Development of the identified problem, Moderately mapped with PO2:identify and formulate the given engineering problem, Low level mapped with PO1: Applying the knowledge of engineering fundamentals for identify the problem PO10: clear instruction can be given and received by using effective communication for solving problems.										
	3 High level 2 Moderate level 1 Low level										
-		Faculty Incharge : D SAKTHI Subject Expert :	VEL								

Format No:231