MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

	LESS	ON PLAN	
	Department of M	echanical Engineering	
Name of the Subject	Dynamics of Machinery	Name of the handling Faculty	Dr. A. Saravanan
Subject Code	ME8594	Year / Sem	3rd / 5th
Acad Year	2022-2023	Batch	2020-2024
	Cours	e Objective	
understand the undesiral understand the effect of	tion relationship in components subject ble effects of unbalances resulting from Dynamics of undesirable vibrations and is in mechanisms used for speed control	prescribed motions in mech d its significance on engineer	anism.

Course Outcome

- CO1: Calculate static and dynamic forces of mechanisms. Analyze dynamic forces of slider crank mechanism and design of flywheel
- CO2: Calculate the balancing masses and their locations of reciprocating and rotating masses.
- CO3: Compute the frequency of free vibration
- CO4: Compute the frequency of forced vibration and damping coefficient.

CO5: Calculate the speed and lift of the governor and estimate the gyroscopic effect on automobiles, ships and airplanes and Analyze stabilization of sea vehicles, aircrafts and automobile vehicles.

		Lesson P	lan				
		T / R* Perio		Nioue of Teaching			
Sl. No.	Topic(s)	Book	ds Requi red	(RR / PPT /	Blooms Level (L1-L6)	CO	PO
UNIT	I-FORCE ANALYSIS						
1	Dynamic force analysis	R3	1	BB/PPT	L3	CO1	PO1,PO2,PO3
2	Inertia force and Inertia torque	R3	1	BB/PPT	L3	CO1	PO1,PO2,PO3
3	D Alembert's principle	R3	1	BB/PPT	L3	CO1	PO1,PO2,PO3
4	Dynamic Analysis in reciprocating engines	R3	1	BB/PPT	L4	CO1	PO1,PO2,PO3,PO4
5	Gas forces – Inertia effect of connecting rod	R3	1	BB/PPT	L3	CO1	PO1,PO2,PO3
6	Bearing loads	R3	1	BB/PPT	L2	CO1	PO1,PO2,PO3
7	Crank shaft torque	R3	1	BB/PPT	L2	CO1	PO1,PO2,PO3
8	Turning moment diagrams	R3	1	BB/PPT	L2	CO1	PO1,PO2,PO3
9	Fly Wheels	R3	1	BB/PPT	L2	CO1	PO1,PO2,PO3,PO4
10	Flywheels of punching presses	R3	1	BB/PPT	L4	CO1	PO1,PO2,PO3,PO4

			1			I	1						
11	Dynamics of Cam- follower mechanism.	Т3	1	BB/PPT	L4	CO1	PO1,PO2,PO3						
12	Tutorials	T3, R3	2	Open Book	L4	CO1	PO1,PO2,PO3,PO4 ,PO5.PO7,PO12						
Sugges	Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Assignment given to the students												
Evalua	tion method * assignment	ents are eval	luated	by online scr	eening throug	gh viva voi	ce,marks were						
UNIT	II-BALANCING												
13	Static balancing	R3	1	BB/PPT	L2	CO2	PO1,PO2,PO3						
14	dynamic balancing	R3	1	BB/PPT	L2	CO2	PO1,PO2,PO3						
15	Balancing of rotating masses	R3	1	BB/PPT	L4	CO2	PO1,PO2,PO3						
16	Balancing a single cylinder engine	R3	1	BB/PPT	L4	CO2	PO1,PO2,PO3						
17	Balancing of Multi-cylinder inline	R3	1	BB/PPT	L4	CO2	PO1,PO2,PO3						
18	Balancing of V-engines	R3	1	BB/PPT	L4	CO2	PO1,PO2,PO3						
19	Partial balancing in engines	R3	1	BB/PPT	L4	CO2	PO1,PO2,PO3						
20	Partial balancing in engines	R3	1	BB/PPT	L4	CO2	PO1,PO2,PO3						
21	Balancing of linkages	R3	1	BB/PPT	L3	CO2	PO1,PO2,PO3						
22	Balancing machines	R3	1	BB/PPT	L2	CO2	PO1,PO2,PO3						
23	Field balancing of discs and rotors.	Т3	1	BB/PPT	L2	CO2	PO1,PO2,PO3						
24	Tutorials	T3, R3	2	Open Book	L5	CO2	PO1,PO2,PO3						
Sugges	ted Activity: Assignment / Case Studies / Tuorial			jects / Model n to the stude		thers Plani	ned if any						
Evalua	tion method	* Q	uiz ar	e evaluated b	y online.								
UNIT	III-FREE VIBRATION												
25	Basic features of vibratory systems	R3	1	BB/PPT	L1	СОЗ	PO1,PO2,PO3						
26	Degrees of freedom – single degree of freedom –	R3	1	BB/PPT	L2	CO3	PO1,PO2,PO3						
27	Free vibration– Equations of motion	R3	1	BB/PPT	L3	CO3	PO1,PO2,PO3						
28	Natural frequency of free undamped vibn	R3	1	BB/PPT	L4	СОЗ	PO1,PO2,PO3						
29	Types of Damping	R3	1	BB/PPT	L2	CO3	PO1,PO2,PO3						
30	Natural frequency of free undamped vibn	R3	1	BB/PPT	L4	CO3	PO1,PO2,PO3						
31	Damped vibration	R3	1	BB/PPT	L4	CO3	PO1,PO2,PO3						
32	Torsional vibration	R3	1	BB/PPT	L2	CO3	PO1,PO2,PO3						
33	Torsional vibration of shaft – Critical speeds of shafts –	R3	1	BB/PPT	L4	CO3	PO1,PO2,PO3						

34	Two and three rotor torsional systems	R3	1	BB/PPT	L4	CO3	PO1,PO2,PO3
35	Two and three rotor torsional systems	Т3	1	BB/PPT	L4	CO3	PO1,PO2,PO3
36	Tutorials/case study in MATLAB	T3, R3	2	Open Book	L5	CO3	PO1,PO2,PO3

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any *Case studies given to the students

Evaluation method: Evalution of Case studies report.

UNIT IV-FORCED VIBRATION

37	Equation of motion for forced vibration	R3	1	BB/PPT	L2	CO4	PO1,PO2,PO3
38	Response of one degree freedom systems to periodic forcing	R3	1	BB/PPT	L2	CO4	PO1,PO2,PO3
39	Response of one degree freedom systems to periodic forcing	R3	1	BB/PPT	L2	CO4	PO1,PO2,PO3
40	Harmonic disturbances	R3	1	BB/PPT	L2	CO4	PO1,PO2,PO3
41	Disturbance caused by unbalance	R3	1	BB/PPT	L3	CO4	PO1,PO2,PO3
42	Support motion	R3	1	BB/PPT	L3	CO4	PO1,PO2,PO3
43	Displacement –transmissibility	R3	1	BB/PPT	L3	CO4	PO1,PO2,PO3
44	Force-transmissibility	R3	1	BB/PPT	L3	CO4	PO1,PO2,PO3
45	Vibration isolation	R3	1	BB/PPT	L3	CO4	PO1,PO2,PO3
46	Vibration isolation	R3	1	BB/PPT	L3	CO4	PO1,PO2,PO3
47	vibration measurement.	Т3	1	BB/PPT	L4	CO4	PO1,PO2,PO3
48	Tutorial/ case study in MATLAB	T3, R3	2	Open Book	L5	CO4	PO1,PO2,PO3

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any

Evaluation method

UNIT V-MECHANISM FOR CONTROL

49	Governors Introduction	R3	1	BB/PPT	L2	CO5	PO1,PO2,PO3
50	Types – Centrifugal governors	R3	1	BB/PPT	L2	CO5	PO1,PO2,PO3
51	Gravity controlled governors	R3	1	BB/PPT	L2	CO5	PO1,PO2,PO3
52	spring controlled centrifugal governors	R3	1	BB/PPT	L2	CO5	PO1,PO2,PO3
53	Characteristics, Effect of friction	R3	1	BB/PPT	L2	CO5	PO1,PO2,PO3
54	Controlling force curves.	R3	1	BB/PPT	L4	CO5	PO1,PO2,PO3
55	Gyroscopes	R3	1	BB/PPT	L2	CO5	PO1,PO2,PO3

	T						1		1					
56	Gyroscop	c forces and torques		R	.3	1	1 BB/PPT]	L2	CO5	PO1,PO2,PO3		
57	1 '	c stabilization		R	.3	1	BB/	PPT]	L2	CO5	PO1,PO2,PO3		
58	Gyroscopi and airpla	c effects in ships nes		R	.3	1	BB/PPT]	L4	CO5	PO1,PO2,PO3		
59	Gyroscop	ic effects in Automobiles		Т	`3	1	BB/PPT]	L 4	CO5	PO1,PO2,PO3		
60 Tutorials T3, R3 2 Open Book										L5	CO5	PO1,PO2,PO3		
Suggest	ted Activity	y: Assignment / Case Studies / Tu	orials	/ Qui			jects / en to t			oped/ot	hers Plann			
Evalua	tion metho	d			* M	ICQ m	narks v	vere gi	ven ba	sed on	the student	ts answer to the		
Conten	t Beyond t	he Syllabus Planned												
1														
2														
				Te	xt Boo	oks								
1	1. F. B. Sa	nyyad, "Dynamics of Machinery", M	/IcMill	an Pu	blisher	s India	ı Ltd., '	Гесh-М	ſax Ed	ucationa	al resources	, 2011.		
2	2. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.													
3	3. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4th Edition, Oxford University Press.													
			F	Refer	ence l	Books	1							
1	1. Cleghor	rn. W. L, "Mechanisms of Machines	s", Oxf	ford U	Jnivers	ity Pre	ess, 201	4						
2	2. Ghosh.	A and Mallick, A.K., "Theory of M	Iechani	isms a	and Ma	chines	s", 3rd	Edition	Affili	ated Eas	st-West Pvt.	Ltd., New Delhi, 20		
3	3. Khurmi	, R.S.,"Theory of Machines", 14th I	Edition	n, S C	hand P	ublica	tions, 2	2005.						
		V	Websi	ite / U	J RL 1	Refer	ences							
1		ptel.ac.in/courses/112/104/112												
2		ww.btechguru.com/engineering					_	_						
3	https://o	cw.mit.edu/courses/aeronautic	s-and				<u>-07-dy</u>	namic	s-fall-	<u>2009/l∈</u>	ecture-not	es/MIT16_07F09_		
I aval 1	1 (I 1) . D	L'	owe .	Blo(oms L		4) . 4-]						
	` '		r	d			4) : Aı 5) : E-	•			Higher	Projects / Mini		
	$\frac{2 (L2) : U}{3 (L3) : A}$		raer	Hour			5) : Ev 6) : Cı				Order Thinking	Projects		
Level		T		Eva					<u> </u>					
		ing syllabus with Bloom's	Taxo		T T		I		1.6	LOT	ПОТ	T-4-1		
	nit No Init 1	Unit Name		L1 8	L2	L3	L4 4	L5	L6	LOT 23	HOT 5	Total 28		
	Jnit 2	FORCE ANALYSIS		6	6	8	7		0	20	8	28		
		BALANCING		_				1		17	8			
	Jnit 3	FREE VIBRATION		5	4	8	7	1	0			25		
	Jnit 4	FORCED VIBRATION		11	11	8	2	1	0	30	3	33		
	Unit 5 MECHANISM FOR CONTROL 9 9 4 4 1 0 22 5 27										27			

Total						39	39	34	24	5	0	112	29	141
Total Percentage					27.7	27.7	24.1	17	3.55	0	79.43	20.5674	100	
	CO PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO1	PSO2
CO1	3	3	2										2	1
CO2	3	3	2										2	1
CO3	3	3	2										2	1
CO4	3	3	2										2	1
CO5	3	3	2										2	1
Avg	3	3	2										2	1
				•	Justific	ation f	or CO	-PO m	appin	g				
CO1	Engineeri	ing Knowl	edge is ver	y much red	quired,	probl	em an	alysis i	is also	needeo	d, desig	gn and o	developme	nt is also introduced
CO2	Engineeri	ing Knowl	edge is ver	y much red	quired,	probl	em an	alysis i	is also	needeo	d, desiş	gn and o	developme	nt is also introduced
CO3	Engineeri	ing Knowl	edge is ver	y much red	quired,	probl	em an	alysis i	is also	needeo	l, desig	gn and o	developme	nt is also introduced
CO4	Engineeri	ing Knowl	edge is ver	y much red	quired,	probl	em an	alysis i	is also	needeo	l, desig	gn and o	developme	nt is also introduced
CO5	Engineeri	ing Knowle	edge is ver	y much red	quired,	probl	em an	alysis i	is also	needeo	l, desig	gn and o	developme	nt is also introduced
	3		High level		2	2	Mod	lerate	level		1		Low	v level
		-	_	_			•	•	•				-	
Name &	& Sign of	Faculty In	charge : D	r. A.Sarav	vanan,	Asso.	Profes	ssor						
Name &	Name & Sign of Subject Expert :													
Head o	Head of the Department :													

Format No:231