MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

Siruseri IT park, OMR, Chennai - 603103

			LESSON PI	LAN					
		Department	of Mechanic	cal Eng	gineerin	g			
Name of	ne of the Subject DESIGN OF TRANSMISSION SYSTEMS Name of the handling Faculty D. SAKTHIVEL								
Su	bject Code	ME8651		Yea	ar / Sem I	II/ VI			
	Acad Year	2021-2022			Batch 2	2019-20	023		
		(Course Obje	ctive	-				
_	nowledge or sion compor	n the principles and procedure for the nents	design of Mech	nanical pov	wer				
		ndard procedure available for Design	of Transmissio	n of Mech	anical				
To learn to	o use standa	ard data and catalogues(Use of P S G	Design Data Bo	ook permit	ted)				
			Course Outo	come					
CO1 apply	y the conce	pts of design to belts, chains and rope	drives.						
CO2 apply	y the conce	pts of design to spur, helical gears.							
CO3 apply	y the conce	pts of design to worm and bevel gears							
CO4 apply	y the conce	pts of design to gear boxes.							
CO5 apply	y the conce	pts of design to cams, brakes and clute	ches						
	_		Lesson Pla	n					
Sl. No.		Topic(s)	T / R*	Periods Required	Mode Teaching PPT / NP MOOC	(BB / TEL /	Blooms Level (L1-L6)	со	PO
			UNIT I						
1	Design of	Flat belts and pulleys	T1	3	BB	3	L3	CO1	PO1, PO2,PO3
2	Selection of	of V belts and pulleys	T1	2	PP	Г	L2	CO1	PO1, PO2,PO3
3	Selection of	of hoisting wireropes and pulleys	T1	2	BB	3	L2	CO1	PO1, PO2,PO3
4	Design of	Transmission chains and Sprockets	T1	3	BB	3	L3	CO1	PO1,

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Assignment given to the students

Evaluation method

* assignments are evaluated by online screening through viva voice,marks were given based on the students answer to the question.

UNIT II											
5	Gear Terminology, Speed ratios and number of teeth	T1	2	NPTEL	L1	CO2	PO1, PO10				
6	Force analysis Tooth stresses Dynamic effects	T 1	1	ВВ	L3	CO2	PO2, PO10				
7	Fatigue strength Factor of safety Gear materials	T1	1	ВВ	L3	CO2	PO1, PO10				
8	Design of straight tooth spur based on strength and wear considerations	T1	2	PPT	L3	CO2	PO3, PO10				
9	Design of helical gears based on strength and wear considerations	T1	2	ВВ	L3	CO2	PO3, PO10				
10	Pressure angle in the normal and transverse plane Equivalent number of teeth forces for	T 1	2	ВВ	L2	CO2	PO2, PO10				

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Assignment given to the students

Evaluation method

* assignments are evaluated by online screening through viva voice,marks were given based on the students answer to the question.

UNIT III											
11	Straight bevel gear: Tooth terminology	T1	1	ВВ	L1	CO3	PO1, PO2				
12	Tooth forces and stresses, equivalent number of teeth	Т1	1	BB	L3	CO3	PO1, PO2				
13	Estimating the dimensions of pair of straight bevel gears	T1	1	BB	L3	CO3	PO1, PO2,PO3				
14	Worm Gear: Merits and demerits terminology	T1	1	PPT	L1	CO3	PO1, PO2				
15	Thermal capacity, materials forces and stresses, efficiency	T1	1	BB	L2	CO3	PO1, PO2,PO3				
16	Estimating the size of the worm gear pair	T1	1	BB	L3	CO3	PO1, PO2,PO3				
17	Cross helical, Terminology helix angles	T1	2	BB	L2	CO3	PO1, PO2				
18	Estimating the size of the pair of cross helical gears	T1	2	BB	L2	CO3	PO1, PO2,PO3				

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any *Case studies given to the students

Evaluation method: Evalution of Case studies report.

	UNIT IV											
19	Geometric progression - Standard step ratio	T 1	1	BB	L1	CO4	PO1, PO2					
20	Ray diagram, kinematics layout	T1	2	ВВ	L2	CO4	PO1, PO2					
21	Design of slidingmesh gear box	T1	2	PPT	L3	CO4	PO1, PO2,PO3					
22	Design of multi speed gear box for machine tool applications	T1	2	BB	L3	CO4	PO1, PO2,PO3					

23	Constant meshgear box - Speed reducer unit	T1	2	BB	L3	CO4	PO1, PO2,PO3
24	Variable speed gear box	T1	1	BB	L3	CO4	PO1, PO2
45	Fluid Couplings, Torque Converters for automotive applications	T1	2	BB	L2	CO4	PO1, PO2

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * Quiz given to the students

Evaluation method

* Quiz are evaluated by online.

UNIT V											
26	Cam Design, Types	T1	1	ВВ	L1	CO5	PO1				
27	Pressure angle and under cutting base circle	T1	1	ВВ	L1	CO5	PO1, PO2				
28	Determination forces and surfacestresses	T1	2	ВВ	L2	CO5	PO1, PO2				
29	Design of plate clutches	T1	2	BB	L3	CO5	PO1, PO2,PO3				
30	Axial clutches	T1	1	ВВ	L3	CO5	PO1				
31	Cone clutches	T1	1	ВВ	L3	CO5	PO1				
32	Internal expanding rim clutches	T1	1	ВВ	L3	CO5	PO1				
33	Electromagnetic clutches	T1	1	ВВ	L1	CO5	PO1				
34	Band and Block brakes	T1	1	ВВ	L2	CO5	PO1, PO2,PO3				
35	External shoe brakes, Internal expanding shoebrake	T1	1	ВВ	L2	CO5	PO1, PO2,PO3				

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any * MCQ given to the students

Evaluation method

* MCQ marks were given based on the students answer to the question.

Content Beyond the Syllabus Planned

- 1 Design of jigs and fixture
- 2

Text Books

- 1 Bhandari V, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.
- Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.
- 3

Reference Books

1 Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 20

2	Orthweir	ı W, "Macl	hine Comi	oonent I	Design".	Jaico I	Publishi	ng Co. 20	03.					
3	Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.													
4	Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005													
5	Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.□													
	<u>I</u>				Web	site / U	RL R	eferences	S					
1	https://nptel.ac.in/courses/112/106/112106137													
2														
3														
	(T.4) D				Τ		ms Le					1		
		nemberin			Lowe	Hour		4 (L4) : A					Higher Order	Projects /
		derstandir	ng		Order	Exam		5 (L5) : 1					Thinkin	Mini Projects
Level 3 ((L3) : Ap				Think		<u> </u>	6 (L6) : 0					g	
		ping syl			oom's				I		l _			
	it No		Unit Na			L1	L2	L3	L4	L5	L6	LOT	НОТ	Total
Ur	nit 1	DESIGN O				0	2	2	0	0	0	4	0	4
Ur	nit 2		ICAL GEA	RS		1	1	4	0	0	0	6	0	6
Ur	nit 3	BEVEL, W HELICAL		CROSS		2	3	3	0	0	0	8	0	8
Ur	Unit 4 GEAR BOXES				1	2	4	0	0	0	7	0	7	
Ur	nit 5	CAMS, CL	UTCHES A	AND BRA	AKES	3	3	4	0	0	0	10	0	10
		Tota	l			7	11	17	0	0	0	35	0	35
	To	otal Perc	entage			20	31.43	48.5714	0	0	0	100	0	100
						CO PO	Э Марр	ing						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	3										2	1
CO2	1	3	3										2	1
CO3	1	2	3										2	1
CO4	1	2	3										2	1
CO5	1	2	3										2	1
CO6														
Avg	1	2	3										2	1
					Justific	ation fo	or CO-l	 PO mappi	ng					•
CO1	engineer	e knowled ing probler s and desig	m s of ma	themati	es scienc	ce and o	enginee	ring fund	lamenta		-		-	-
CO2	engineer	e knowled ing probler s and desig	m s of ma	themati	cs is red	quired f	_	_			-		•	_

CO3	Apply the knowledge of mathematics science and engineering fundamentals is required (PO1), identify the given engineering problem s of mathematics is required for solving (PO2), Design solutions for complex engineering problems and design system componet (PO3)									
CO4	Apply the knowledge of mathematics science and engineering fundamentals is required (PO1), identify the given engineering problem s of mathematics is required for solving (PO2), Design solutions for complex engineering problems and design system componet (PO3)									
CO5	engineeri	e knowledge of mathematic ng problem s of mathematic and design system compon	cs is required f	0	-					
	3	High level	2	Moderate level	1	Low level				
Name & Sign of Faculty Incharge : D SAKTHIVEL										
Name &	Name & Sign of Subject Expert :									
Head of the Department :										

Format No :231