MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

Siruseri IT park, OMR, Chennai - 603103

LESSON PLAN										
Department of Mechanical Engineering										
Name of the Subject	HEAT AND MASS TRANSFER	Name of the handling Faculty	MUHAMMAD IRFAN A A							
Subject Code	ME8693	Year / Sem	III / VI							
Acad Year	2021-2022	Batch	2019-2023							

Course Objective

To understand the mechanisms of heat transfer under steady and transient conditions.

To understand the concepts of heat transfer through extended surfaces.

To learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass transfer.

Course Outcome

CO1: Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems

CO2: Apply free and forced convective heat transfer correlations to internal flows through/over various surface configurations and solve

CO3: Apply free and forced convective heat transfer correlations to external flows through/over various surface configurations and solve problemsExplain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems

CO4: Explain basic laws for Radiation and apply these principles to radiative heat transfer between different types of surfaces to solve problems

CO5: Apply diffusive and convective mass transfer equations and correlations to solve problems for different applications

Lesson Plan

		T / R*		Mode of Teaching		СО	РО
Sl. No.	Topic(s)	Book	Periods Required	(BB / PPT / NPTEL / MOOC / etc)	Blooms Level (L1-L6)		
UNIT I	- CONDUCTION						
1	General Differential equation of Heat Conduction	T2	2	BB	L2	1	PO1 & PO2
2	Cartesian and Polar Coordinates	T2	1	BB	L2	1	PO1 & PO2
3	One Dimensional Steady State Heat Conduction	T2	1	BB	L2	1	PO1 & PO2
4	plane and Composite Systems	T2	2	BB	L2	1	PO1 & PO2
5	Conduction with Internal Heat Generation	T2	1	BB	L2	1	PO1 & PO2
6	Extended Surfaces	T2	2	BB	L2	1	PO1 & PO2
7	Unsteady Heat Conduction	T1	2	BB	L2	1	PO1 & PO2
8	Lumped Analysis	T1	1	BB	L3	1	PO1 & PO2
9	Semi Infinite and Infinite Solids	T2	1	BB	L3	1	PO1 & PO2
10	Use of Heisler's charts.	T2	2	BB	L3	1	PO1 & PO2

Suggest	red Activity: Tutorial						
Evaluat	tion method: Internal Assesment Test						
UNIT	II - CONVECTION						
11	Free and Forced Convection	T2	3	BB	L2	2	PO1 & PO2
12	Hydrodynamic and Thermal Boundary Layer.	T2	3	ВВ	L2	2	PO1 & PO2
13	Free and Forced Convection during external flow over Plates	T1	3	BB	L3	3	PO2 &
14	Free and Forced Convection during external flow over Cylinders	T1	3	BB	L3	3	PO2, PO2 &
15	Internal flow through tubes	T1	3	BB	L3	2	PO1, PO2 &
Suggest	red Activity: Assignment		<u> </u>			1	DO3
Evaluat	tion method: Internal Assesment Test (MCQ)						
UNIT	III - PHASE CHANGE HEAT TRANSI	FER AND	HEAT EX	XCHANGERS			
16	Nusselt's theory of condensation	T2	2	BB	L2	3	PO1 & PO2
17	Regimes of Pool boiling and Flow boiling	T2	2	BB	L2	3	PO1 & PO2
18	Correlations in boiling and condensation	T2	2	ВВ	L2	3	PO1 & PO2
19	Heat Exchanger Types	T2	2	ВВ	L2	3	PO1 & PO2
20	Overall Heat Transfer Coefficient	T1	2	ВВ	L2	3	PO1 & PO2
21	Fouling Factors	T2	2	BB	L2	3	PO1 & PO2
22	Analysis – LMTD method - NTU method.	T1	3	ВВ	L3	3	PO2 &
Suggest	red Activity: Case Study				l.		DO2
Evaluat	tion method: Internal Assesment Test (MCQ)						
UNIT	IV - RADIATION						
23	Black Body Radiation	T2	2	ВВ	L2	4	PO1 & PO2
24	Grey body radiation	T2	2	BB	L2	4	PO1 & PO2
25	Shape Factor	T2	2	ВВ	L2	4	PO1 &
26	Electrical Analogy	T2	3	BB	L3	4	PO2 PO1, PO2 &
27	Radiation Shields	T2	3	BB	L3	4	PO2 &
28	Radiation through gases.	T2	3	BB	L3	4	PO1, PO2 &
Suggest	red Activity: Assignment	ı	1		<u> </u>	1	DO2
Evaluat	tion method: Internal Assesment Test (MCQ)						
UNIT	V - MASS TRANSFER						
29	Basic Concepts	R5	2	BB	L2	5	PO1

30	Diffusion Mass Transfer			R	5	2	В	В	L2	2	5	PO1	
31	Fick's La	w of Diffusion		R	5	2	В	В	L2	2	5	PO1	
32	Steady sta	ate Molecular Diffusion		R	5	2	В	В	L2	2	5	PO1 & PO2	
33	Convecti	ve Mass Transfer		R	5	2	В	В	L2	2	5	PO1 & PO2	
34	Momentu	ım		R	5	1	В	В	L	2	5	PO1 &	
35	Heat and	Mass Transfer Analogy		R	5	2	В	В	L3	3	5	PO2 PO1 &	
36		ve Mass Transfer Correlations		R	5	2	В	В	L3	3	5	PO2 PO1 &	
	 -d Activity	: Tutorial										PO2	
			~ ·										
Evaluati	on method	d: Internal Assesment Test (MC	CQ)										
Content	Beyond th	ne Syllabus Planned											
1	Boilers &	z Mountings											
				Te	xt Bo	oks							
1	Holman,	J.P., "Heat and Mass Transfer",	Tata Mc	Graw F	Hill, 20	000							
2	Yunus A.	Cengel, "Heat Transfer A Practi	cal App	roach",	, Tata l	McGraw H	ill, 5th Edi	tion 2015					
				Refer	ence	Books							
1	Frank P.	Incropera and David P. Dewitt, "	Fundam	entals o	of Hea	t and Mass	Transfer",	John Wile	y & Sons	s, 1998.			
2	Kothanda	araman, C.P., "Fundamentals of F	Heat and	Mass	Γransf	er", New A	ge Internat	ional, New	Delhi, 1	998.			
3	Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 2002												
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.												
5	R.C. Sacl	ndeva, "Fundamentals of Enginee	ering He	at & M	ass tra	nsfer", Nev	w Age Inte	national P	ublishers	, 2009			
			Web	site / l	URL	Referenc	es						
1	https://n	ptel.ac.in/courses/112/101/11	210109	7/									
				Bloc	oms I	Level							
Level 1	(L1) : Re	emembering	Lower	d		Level	4 (L4) : A	nalysing			Higher	Project s /	
Level 2	(L2) : Ur	nderstanding	Order	Hour		Level 5 (L5): Evaluating Order						Mini	
Level 3	(L3) : A _I	pplying	Think			Level 6 (L6): Creating					Thinking	Project	
		Mapping syllabus with B	Lina loom's	Taxo	nom							S	
Uni	it No	Unit Name		L1	L2	L3	L4	L5	L6	LOT	НОТ	Total	
Ur	nit 1	CONDUCTION		0	7	3	0	0	0	10	0	10	
Ur	Unit 2 CONVECTION			0	2	3	0	0	0	5	0	5	
Ur	Unit 3 PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS			0	6	1	0	0	0	7	0	7	
Ur	Unit 4 RADIATION			0	3	3	0	0	0	6	0	6	
Unit 5 MASS TRANSFER					6	2	0	0	0	8	0	8	
		Total	0	24	12	0	0	0	36	0	36		
		Total Percentage	0	66.7	33.3333	0	0	0	100	0	100		
				CO P	O Ma	pping							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	2	3											2	1
CO2	2	3	2										2	1
CO3	2	3	2										2	1
CO4	1	3	2										2	1
CO5	2	3											2	1
Avg	1.8	3	2										2	1
					Justific	ation f	or CO	-PO mapp	ping					
CO1	PO1: Con	ntains Eng	ineering kn	owledge, P	O2: Pro	blem a	nalysis	,						
CO2	PO1: Con	ntains Eng	ineering kn	owledge, P	O2: Pro	blem a	nalysis	, PO3: Co	ntains solu	tion for cor	nplex eng	gineerii	ng ptoblem	ıs
CO3	PO1: Con	ntains Eng	ineering kn	owledge, P	O2: Pro	blem a	nalysis	, PO3: Co	ntains solu	tion for cor	nplex eng	gineerii	ng ptoblem	ıs
CO4	PO1: Con	ntains Eng	ineering kn	owledge, P	O2: Pro	blem a	nalysis	, PO3: Co	ntains solu	tion for cor	nplex eng	gineerii	ng ptoblem	ıs
CO5	PO1: Con	ntains Eng	ineering kn	owledge, P	O2: Pro	blem a	nalysis	,						
	3		High level		2	2]	Moderate	level	1			Low leve	el
Name &	Sign of	Faculty In	charge : N	IUHAMN	IAD IR	FAN A	4 A							
Name &	Sign of	Subject Ex	kpert : N	IUHAMM	IAD IR	FAN A	A A							
Head of	Head of the Department : Dr.S.PRASATH													

Format No :231