MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

Siruseri IT park, OMR, Chennai - 603103

Name of the Subject Power Plant Engineering Name of the handling Faculty ME 8792 Year / Sem	Irs. Yamini. S IV/VII 2019-23 nance	
Name of the Subject Power Plant Engineering Name of the handling Faculty Subject Code ME 8792 Year / Sem Acad Year 2022-23 Batch Course Objective	IV/VII 2019-23	
Name of the Subject Power Plant Engineering handling Faculty Subject Code ME 8792 Year / Sem Acad Year 2022-23 Batch Course Objective	IV/VII 2019-23	
Acad Year 2022-23 Batch Course Objective	2019-23	
Course Objective		
٠	nance	
Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and mainte	nance	
Course Outcome		
CO1-Explain the layout, construction and working of the components inside a thermal power plant.		
CO2-Explain the layout, construction and working of the components inside a diesel, gas And combined cycle power	r plants.	
CO3-Explain the layout, construction and working of the components inside nuclear power plants.		
CO4-Explain the layout, construction and working of the components inside renewable energy power plants.		
CO5-Explain the applications of power plants while extend their knowledge to power plant economics and environm	nental hazards	and
estimate the costs of electrical energy production.		
Lesson Plan		
Mode of		$\overline{}$
Sl. No. Topic(s) T/R* Periods Required Periods Required POOC / etc) Blooms L (L1-Lo	CO	РО
UNIT I COAL BASED THERMAL POWER PLANTS		
1 Rankine cycle - improvisations T1 1 PPT L1,L2,L3	3,L4 CO1	PO1, PO2, PO3, PO6
2 Layout of modern coal power plant, Super Critical Boilers T1 2 PPT L1	CO1	DO1 DO2
FBC Boilers, Turbines, Condensers, Steam & Heat T1 1 PPT/NPTEL L1,L2	2 CO1	PO1, PO7, PO6
4 Subsystems of thermal power plants T1 2 PPT L1	CO1	PO7, PO3, PO6
Fuel and ash handling, Draught system, Feed water treatment. T1 2 PPT L1,L2	2 CO1	PO1 PO2
6 Binary Cycles and Cogeneration systems T1 1 PPT L1,L2	2 CO1	PO1, PO2, PO7, PO6
Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Pla	nned if any	107,100
*Assignments given Evaluation method		
* Answers are evaluated through answer sheets		
UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS		
7 Otto Cycle T1 1 PPT L1,L2,L3	3,L4 CO2	PO1, PO2, PO3, PO6

8	Diesel Cycle	T1	1	PPT	L1,L2,L3,L4	CO2	PO1, PO2, PO3, PO6
9	Dual & Brayton Cycle	T1	1	PPT	L1,L2,L3,L4	CO2	PO1, PO2, PO3, PO6
10	Analysis & Optimization	T1	2	2 PPT L3		CO2	PO1, PO2, PO3, PO6
11	Components of Diesel Turbine power plants.	T1	1	PPT	L1	CO2	PO1, PO2
12	Components of Gas Turbine power plants.	T1	1	PPT	L1	CO2	PO1, PO2
13	Combined Cycle Power Plants.	T1	1	PPT	L1,L2	CO2	PO1, PO2
14	Integrated Gasifier based Combined Cycle systems	T1	1	PPT	L1,L2	CO2	PO6, PO7

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any *Assignments given

Evaluation method

* Answers are evaluated through answer sheets

UNIT III NUCLEAR POWER PLANTS

15	Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants	T1	1	PPT	L1,L2	CO3	PO1, PO2, PO6, PO7
16	Working of Nuclear	T1	2	PPT	L1,L2,L3	CO3	PO1,PO2
17	Reactors : Boiling Water Reactor (BWR)	T1 1 PPT L1,L2		L1,L2	CO3	PO3, PO6, PO7	
18	Pressurized Water Reactor (PWR), CANada Deuterium-	T1	1	PPT	L1,L2	СОЗ	PO3, PO6, PO7
19	Uranium reactor (CANDU), Breeder	T1	1	PPT	L1,L2	CO3	PO3, PO6, PO7
20	Gas Cooled and Liquid Metal Cooled Reactors	T1	1	PPT	L1,L2	СОЗ	PO3, PO6, PO7
21	Safety measures for Nuclear Power plants	T1	2	PPT	L1,L2	СОЗ	PO3, PO6, PO7

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any *Assignments given

Evaluation method

* Answers are evaluated through answer sheets

UNIT IV POWER FROM RENEWABLE ENERGY

22	Hydro Electric Power Plants	R2	2	PPT	L1,L2	CO4	PO1,PO2,PO3 ,PO4,PO5
23	Classification	R2	1	PPT	L1,L2	CO4	PO1,PO2
24	Typical Layout and associated components including Turbines	R2	1	PPT	L1	CO4	PO1,PO2
25	Principle, Construction and working of Wind	R2	1 PPT		L1,L2	CO4	PO1,PO2,PO3 ,PO4,PO5
26	Principle, Construction and working of Tidal	R2	1	PPT	L1,L2	CO4	PO1,PO2,PO3 ,PO4,PO5
27	Solar Photo Voltaic (SPV),	R2	1	PPT	L1	CO4	PO1,PO2,PO3 ,PO4,PO5
28	SolarThermal, Geo Thermal	R2	1	PPT	L1,L2	CO4	PO1,PO2,PO3 ,PO4,PO5
29	Biogas and Fuel Cell power systems	R2	1	PPT	L1,L2	CO4	PO1,PO2,PO3 ,PO4,PO5

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any *Assignments given

	ion methoders are evalu	l ated through answer sheets										
UNIT '	V ENER	GY, ECONOMIC AND EN	NVIRONN	MENT	CAL I	SSUES	OF PC	WEF	R PLAN	rs d	RIVES	
30	Power ta	riff types,		Т	1	2	PI	PT	L1,L2,L3	3,L4	CO5	PO3, PO6, PO7
31	Load dist	tribution parameters, load curve		Т	1	1	PI	PT	L1,L2,	L3	CO5	PO3, PO6, PO7
32	Comparis	son of site selection criteria		Т	1	1	PI	PT	L1,L2	2	CO5	PO3, PO6, PO7
33	relative n	nerits & demerits		Т	1	1	PI	PT	L1		CO5	PO1, PO2
34	Capital &	d Operating Cost of different power	er plants	Т	1	2	PI	PT	L1		CO5	PO3, PO6, PO7
35		control technologies including W Options for Coal and Nuclear Pov		Т	1	2	PI	PT	L1,L2	2	CO5	PO1, PO2, PO3
00		: Assignment / Case Studies / Tu		iz / Miı	ni Pro	jects / Mo	del Dev	eloped/	others Pla	nned	l if any	1
	ion method											
		ated through answer sheets										
		e Syllabus Planned										
1	Powerpla	ant instrumentation and control										
. <u> </u>			T	Text Bo	ooks							
1	T1. Powe	er Plant Engineering, PK Nag, Tat				ıs						
			Dof	erence	Pool	7.6						
1	R1. Powe	er Plant Technology, M.M. El-Wa					Compan	v Ltd				
2		ewable energy, Godfrey Boyle, Ox				8		<i>y</i> =				
3	R3. Stand	dard Handbook of Power Plant En	gineering, T	homas	C. Elli	ott, Kao C	hen and,	McGra	aw – Hill.			
	•		Website /	/ URL	Refe	rences						
1	https://np	otel.ac.in/courses/112/107/112107/	291									
			Bl	ooms]	Level							
Level 1	(L1) : Re	membering	Lower			l 4 (L4) :	Analys	sing			Higher	Projects
Level 2	(L2): Un	derstanding	Order	Hour Exa Level 5 (L5): Evaluating							Order	Mini
Level 3	(L3) : Ap	plying	Thinking	ms	T 1600 0 "						Thinking	Projects
]	Mapping syllabus with Bl	loom's Ta	xono	my I	OT and	НОТ	ı	1			
Un		L1	L2	L3	L4	L5	L6	LOT	НОТ	Total		
U	Jnit 1	COAL BASED THERMAL POWER PLANTS		6	4	1	1	0	0	11	1	12
Unit 2		DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS			5	4	3	0	0	16	3	19
U	Jnit 3	NUCLEAR POWER PLANTS		7	7	1	0	0	0	15	0	15
U	J nit 4	POWER FROM RENEWABLE ENERG	GY	8	6	0	0	0	0	14	0	14
U	Jnit 5	POWER FROM RENEWABLE ENERG	GY	6	4	2	1	0	0	12	1	13

		To	otal			34	26	8	5	0	0	68	5	73
		Total Pe	ercentag	e		46.58	36	10.9589	6.849	0	0	93	6.84932	100
					CO	PO Ma	apping	3	ı				•	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	2	2	2			2	2							
CO2	2	2	2			3	2						1	
CO3	1	1	2			3	3							
CO4	3	3	3			3	3							1
CO5	3	2	2			2	2							
Avg	3	2	2			3	2						1	1
					Justification	for C	O-PO	mapping	•					
CO1	PO1: Applying the knowledge of maths / science agreed moderatly PO2: Identifying and formulating the complex engineering problems agreed moderatly PO3: Getting solutions for complex engineering problems agreed moderatly PO6: Applying the knowledge to the society in safe and healthy way agreed moderatly PO7: Understanding of engineering solutions and demonstrating that for sustainable agreed moderatly PO1: Applying the knowledge of maths / science agreed moderatly PO2: Identifying and formulating the complex engineering problems agreed moderatly													
CO2	PO3: Getting solutions for complex engineering problems agreed moderatly PO6: Applying the knowledge to the society in safe and healthy way agreed strongly PO7: Understanding of engineering solutions and demonstrating that for sustainable agreed moderatly PO1: Applying the knowledge of maths / science agreed lowerely PO2: Identifying and formulating the complex engineering problems agreed lowerely PO3: Getting solutions for complex engineering problems agreed moderatly													
CO4	PO6: Applying the knowledge to the society in safe and healthy way agreed strongly PO7: Understanding of engineering solutions and demonstrating that for sustainable agreed strongly PO1: Applying the knowledge of maths / science agreed strongly PO2: Identifying and formulating the complex engineering problems agreed strongly PO3: Getting solutions for complex engineering problems agreed strongly PO6: Applying the knowledge to the society in safe and healthy way agreed strongly PO7: Understanding of engineering solutions and demonstrating that for sustainable agreed strongly													
CO5	PO1: Applying the knowledge of maths / science agreed strongly PO2: Identifying and formulating the complex engineering problems agreed moderatly PO3: Getting solutions for complex engineering problems agreed moderatly PO6: Applying the knowledge to the society in safe and healthy way agreed moderatly PO7: Understanding of engineering solutions and demonstrating that for sustainable agreed moderatly													
3	3		High level	_ 	2		N	Ioderate l	evel		1		Low lev	vel
												•		
Name &	Sign of Fa	culty Inch	narge : Mr	s.Yamini.	S									
Name &	Sign of Su	ıbject Exp	ert : Mi	r.Muhamn	ned Irfan.A	.A								
Head of t	the Depart	ment	:											