MOHAMED SATHAK A.J. COLLEGE OF ENGINEERING

Third Semester Department of MECH and Civil MA3351-Transforms and Partial Differential Equation

SUB CODE: MA3351

(Regulation 2021)

Time: Unit-I-Question Bank

Maximum Marks:100

PARTA(10X2 = 20marks)

Attend All Question

- 1. From the partial differential equation $(x-a)^2 + (x-b)^2 + Z^2 = 1$
- 2. solve the PDE pq = x.
- 3. $(D^2 3DD' + D'^2)Z = 0$
- 4. Find particular integral of the equation $(D^2 3DD'^2 + 2D'^2) = e^{x-y}$
- 5. solve: $(D D')^2 = 0$.
- 6. Eliminating a and b from $Z = (2x^2 + a)(3y b)$ from the PDE
- 7. Solve $\frac{\partial^2 z}{\partial x^2} = \sin y$
- 8. Find the complete integral P(1+q)=qz
- 9. Solve p + q = x y.
- 10.solve p + q = sinx + siny.
- 11. solve pq = xy
- 12.find the complete integral $\frac{z}{pq} = \frac{x}{q} + \frac{y}{pq} + \sqrt{pq}$

$$PARTB(5X16 = 80)$$

- 13. From the PDE by eliminating the arbitrary function from Z = f(y+x) + xg(y+x)
- 14. Form the PDE by eliminating the arbitrary function f and g from $z = x f(\frac{y}{x}) + y g(x)$.
- 14. Solve $Z = px + qy + p^2q^2$
- 16.(i) Solve $Z = px + qy + \sqrt{1 + q^2 + p^2}$
- (ii). solve $Z = px + qy + p^2q^2$
- 17. (i). solve $pz qz = z^2 + (x+y)^2$
- (ii). solve $y^2p qxy = x(z 2y)^2$
- 18. solve: $(x^2 yz)p + (y^2 xy)q$
- 19. (i). Solve $(D^2 + 3DD' 4D')z = cos(2x + y) + xy$
- (ii). Solve $(D^2 + 3DD' 4D')z = cos(x + 2y) + e^{2x+y}$

Prepared By

Verified By

Approved By

MOHAMED SATHAK A.J. COLLEGE OF **ENGINEERING**

Third Semester Department of Mech and Civil MA3351-Transforms and Partial Differential

SUBCODE: **MA3351**

Equation

(Regulation 2021)(SUB CODE MA3351) UNIT-II-Question Bank

Maximum Marks:100

Time:

PARTA-(10X2 = 20marks)

Attend All Question

- 1. Discuss the converges of the Fourier series.
- 2. write down the Dirichlet condition for Fourier series.
- 3. If f(x) is an odd function of x in $(0,\ell)$ what are the a_0 and a_n .
- 4. Find the b_n of $f(x) = \int x \sin x dx$.
- 5. If $f(x) = \frac{1}{2(\pi x)}$, find the Fourier series of a_0 in the interval $(0, 2\pi)$.
- 6. Find the Complex of Fourier series for f(x) in (c, c + x).
- 7. If $f(x) = e^{ax}$, find the Fourier series of b_n in the interval $(0, \pi)$.
- 8. Find the R.M.S values of $f(x) = x^2$ in -1 < x < 1.
- 9. what is known as harmonic analysis.
- 10. state parseval's theorem on Fourier series.
- 11. Find the value of a_0 for $f(x) = x^2 + 1$ the 0 < x < 1
- 12. Find the Fourier sine series f(x) = x in $(0, \pi)$

$$PARTB(5X16 = 80)$$

- 13. Find the Fourier series for f(x) = |x| when $\pi < x < \pi$ hence deduced the sum of the series $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
- 14. Find the Fourier series of $f(x) = x^2 + x$ in the interval (π, π) 15. find the cosine series of $f(x) = x \sin x$ x in $(0, \pi)$ and hence the find the value of $1 + \frac{2}{1.3} \frac{2}{3.5} + \frac{2}$
- 16. Compute first two harmonic of Fourier series for f(x) from the table

X	0	$\frac{\pi}{3}$	$2\frac{\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	0 0.8	0.6	0.4	0.7	0.9	1.1	0.8

17. The constant term and the first three harmonic of Fourier series for y = f(x) using the following table

X	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{\pi}{6}$
У	10	12	15	20	17	11

18. The following gives the vibration of periodic current over a period

X	0	$\frac{T}{6}$	$\frac{T}{3}$	$\frac{T}{2}$	$\frac{2T}{3}$	$\frac{5T}{6}$	Т
у	1.98	1.30	1.Ŏ6	1.30	-0.88	-0.5	1.98

Prepared By

Verified By

Approved By

MOHAMED SATHAK A.J. COLLEGE OF ENGINEERING

Third Semester Department of Mech/Civil MA3351-Transforms and Partial Differential Equation

SUBCODE: MA3351

(Regulation 2021)(SUB CODE MA3351) unit-III-Question Bank

Maximum Marks:100

Time:

PARTA-(10X2 = 20marks)

Attend All Question

- 1. List of all possible solution of one dimensional wave equation.
- 2. Find the steady steady state temperature distributions a rod of length 10cm whose ends x = 0 and x = 10 are kept at $20 \cdot C$ and $50 \cdot C$ respectively.
- 3.A road 30 cm long has its end A and B kept at $20^{\circ}C$ and $80^{\circ}C$ until steady conditions prevail. Determine at steady state
- 4. Write all possible solution of one dimensional Heat equation..
- 5. Classification the following $u_{xx} + (1-x)u_{xy} 2u_{yy} = 0$.
- 6. Classification the following $4u_{xx} + 4u_{xy} + 2u_x u_y = 0$.
- 7. write the most suitable solution of one-dimensional wave equation state reason .
- 8. In the diffusion equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what is α^2 for.
- 9. Write all solution of Laplace's equation in Cartesian form.
- 10. write the boundary condition and initial condition for solving the vibration of string, if the string is subjected to initial displacement f(x) and initial velocity g(x).
- 11. Classify the following $3u_{xx} + 2u_{xy} + 5u_{yy} + xu_y = 0$
- 12. Classify the following $3u_{xx} + 4u_{xy} + 3u_{yy} 2u_x = 0$

PARTB(5X16 = 80)

- 11. A string stretched and fastened to two points at a distance ℓ apart Motion is started by displacement the string in the form $y = 50(\ell x x^2)$ from which it released at time t = 0. Fin the displacement at any point on the string at a distance x from one end at time t
- 12. A tightly stretched string with end point x=0 and $x=\ell$ is initially in a position given by $y(x,0)=y_0sin^3(\frac{\pi x}{\ell})$. If it is released from rest from this position, find the displacement y at any time and at time any distance from the end x=0 13.A tightly stretched string of length L has its end its fixed at x=0 and x=L is initially in the position given by $y(x,0)=Asin^3(\frac{\pi x}{\ell})+Bsin^3(\frac{\pi x}{\ell})$. It is released from rest from this position to vibrate transversely. Find the displacement function y(x,t)
- 14. A string of length 2ℓ is tightly stretched and fixed at its ends at the point (0,0) and $(2\ell, 0)$ of the xy-plane. its made to vibrate transversely in the xy plane by giving to each of its point a transverse velocity v in the xy-plane where V is given by $v = kx0 \le x < \ell : K(2\ell x), \ell < x < 2\ell$. Find the expression for the transverse displacement of the string at any time t 15. A tightly stretched with fixed and end point x = 0 and $x = \ell$ is initially at rest in its equilibrium position. If it is set vibrating by giving each of its points $y = \lambda(\ell x x^2)$ find y(x, t)
- 16. An uniformly long plate is bounded by two parallel edges x = 0 and $x = \ell$ and an end at right angles to them. the breath of edge y = 0 is ℓ and is maintained at temperature f(x). Find the

steady state temperature at any point of the plate

- 15 (i)Discuss the solution of one dimensional heat equation
- (i)Discuss the solution of the Laplace equation in two dimensional heat equation

Prepared By

Verified By

Approved By

MOHAMED SATHAK A.J. COLLEGE OF **ENGINEERING**

Third Semester Department of Mech/Civil MA3351-Transforms and Partial Differential

SUB CODE: **MA3351**

Equation

(Regulation 2021)(SUB CODE MA3351)

unit-IV- Question Bank

Maximum Marks:100

- Time: 1. State Inversion theorem for complex Fourier Transformation.
- 2. Write the Fourier transform of f(x-a).
- 3. Find the Fourier cosine transformation of e^{-2x} , x > 0.
- 4. Define Fourier sine and cosine Transform of f(x).
- 5. Write down the parseval's identity For Fourier Transform.
- 6. Sate modulation theorem for Fourier Transform.
- 7. State the Fourier Transform of derivatives of function.
- 8. State Convolution theorem on Fourier Transform.
- 9. Prove that $F[e^{iax}] = F(s+a)$, where F[f(x)] = F(s).
- 10. state parseval's theorem on Fourier series.
- 11. State Fourier integral theorem
- 12. write the Parseval's identity for Fourier transform.

PARTB

- 13. Derived the parsevals identity for Fourier Transforms.
- 14 State and prove Convolution theorem in Fourier transform.
- 15. Show that $e^{\frac{-x^2}{2}}$ is self-reciprocal under Fourier transform.
- 16. Find the function if its sine transform is $\frac{e^{-ax}}{s}$. hence deduce $F_s^{-1}\left(\frac{1}{s}\right)$
- 17. Using Parsval's identity evaluate $\int_0^\infty \frac{x^2}{(x^2+a^2)} dx$
- 18. Find the Fourier cosine transform of $e^{a^2x^2}$. Hence show that the function is $e^{\frac{x^2}{2}}$ self reciprocal
- 19. Find the Fourier Cosine transform of e^{-ax} . Hence evaluate $\int_0^\infty \frac{x^2}{(x^2+a^2)(x^2+b^2)} dx$
- 18. Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)^2}$ using parseval's identity 19. Find the Fourier sine and cosine transforms of $f(x) = e^{-ax}$. Hence deduce the inverse formula.

Find the Fourier sine and cosine transforms of x^n . Hence deduce prove $\frac{1}{\sqrt{x}}$ is self reciprocal under Fourier sine and cosine,

MOHAMED SATHAK A.J. COLLEGE OF ENGINEERING

Third Semester Department of Mech/Civil MA3351-Transforms and Partial Differential Equation

SUBCODE: MA3351

(Regulation 2021)(SUB CODE MA3351)

Unit-V- Question Bank

Maximum Marks:100

- Time:
- 1. State the initial value theorem on Z transform.
- 2. Fine the Z transform of Cos^2t .
- 3. Derive the difference equation from $y_n = (A + Bn)(2)^n$.
- 4. Solve $y_{n+1} 2y_n = 0$ given y(0)=3.
- 5. State shifting theorem on Z transforms.
- 6. Find the Z transform of n^2 .
- 7. State convolution theorem on Z transforms.
- 8. State final value theorem on \mathbb{Z}_{3} transform.
- 9. Find Z transform of $\left(\frac{1}{n(n-1)}\right)^2$.
- 10. Find the Z transform of $\left(\frac{1}{n!}\right)$.
- 11. Find the Z transform of $Z\left[\frac{a^n}{n}\right]$
- 12. State the initial value theorem on Z transform.

PARTB

- 13. State and prove the second shifting theorem on Z transform.
- 14. State and the final value theorem on Z transform
- 15. Find the Z transformation of i. $\frac{1}{n(n+1)}$ (ii). $e^{-t}t^2$
- 16. Using partial fraction method. Find $Z^{-1} \left[\frac{Z^2}{(Z+2)(Z^2+4)} \right]$,
- (ii) Find $Z^{-1}\left[\frac{z^2-3z}{(Z+2)(Z-5)}\right]$ by residue method
- 17. Using convolution theorem, find the inverse Z transform of $\frac{8z^2}{(2z-1)(4z+1)}$
- 18. Using convolution theorem, find the inverse Z transform of $\frac{z^2}{(z-2)(z-3)}$
- 19. solve using Z transform $y_{n+2} 4y_{n+1} 10y_n$, given $y_0 = 2$ and $\hat{y_1} = 4$
- 20. solve using Z transform $y_{n+2} 6y_{n+1} 9y_n$, given $y_0 = 2$ and $y_1 = 0$