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UNIT-I- MATRICES  

PART-A 

1. Define eigen values and eigen vectors of a matrix. 
Soln: 

 Let A be a square matrix of order n. Let I be the unit matrix of order n. Let  be any 
scalar. If there exist a non- zero column vector X such that , then  is an eigen 
value of A and X is an eigen vector corresponding to . 
 
 

2. What is characteristic equation of a matrix? 
Soln: 
           Let A be a square matrix of order n and let I be the unit matrix of order n. Then for any 
scalar , we can find a matrix (A - I) of order n. The equation  is called the 

characteristic equation. This is a polynomial equation of degree n. The roots of this equation 
are the eigen values of A. 
 
 

3. Define trace of a square matrix. 

Soln: The trace of a square matrix A is defined as the sum of principal diagonal     

         elements of the matrix A. 

 

4. State any three properties of eigen values.
Sol: 
           Any three properties of eigen values are as follows 

a. The eigen values of A and are the same. 
b. The sum of the eigen values of the matrix A is equal to the trace of  the matrix A 
c. The product of the eigen values is the determinant value of the matrix. 

 
 

5. Find the eigen values of  if the two eigen values of the matrix 

            A =   are equal to 1 each

           Sol:                  Sum of the  eigen values  = Sum of the diagonal elements  

            =2 + 3 + 2 = 7 
Sum of two given eigen values  = 1 + 1 = 2 

 The third eigen value = 7  2 = 5
       The eigen values of A are 1,1,5

 The eigen values of  are . 
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6. If the sum of two eigen values and trace of a 3 X 3 matrix A are equal,find . 

          Soln: 

      Let the eigen values be 1, 2, 3.

       It is given that 1 2  =  1 2 3 . 

So,  we have 3 = 0. 

 = 1 2 3 = 0. 
 
 

7. The product of two eigen values of  the matrix 

A =  is 16. Find the third eigen value. 

 Soln: We know that the product of all the eigen values = the value of the determinant of the     
given matrix. 

                                       =  =32 

            But it is given that the product of two eigen values = 16. 

                  The third eigen value = 32/16 = 2.                       

8.  Find the sum and product  of  the eigen values of the matrix 

  A =     

Soln:  

       We know that the sum of the eigen values = the sum of the principal diagonal 
elements = 2 + 2+ 2 = 6. 
Also we know that the product of the eigen values = the value of the determinant of the 
matrix =   6. 

9. Find  the constants a and b such that the matrix  has 3 and -2 as its  eigen   

values. 

           Soln:        Let A = .  

The sum of the eigen values =a+b,  



 
 
 a+b= 3+(-2)=1 (1)  
The  product of eigen values is  the determinant of the matrix,  
so   ab-4 = 3(-2) = -6. 
 
ab = -6 + 4 = -2 

ab = -2 ------------(2) 
Now solving  the equations (1) and (2), we get the values of a and b 

 a = 1-b 
Substituting this in (2),we get (1  b)b = -2 

b - b2 = -2. 
(b + 1) (b -2) = 0. 

 b = -1 and b = 2. 
Now substituting b = 2 in (1), we get a + b= 1. That is a + 2 = 1 

 a = 1  2 = -1. 
a = -1 and b = 2. 

 
10.   If 2 and 3 are the eigen values of the matrix 

    A =  

  find the eigen values of and A3. 

  Soln: 

     Let 1, 2 and 3  be the eigen values of A. Then 1+ 2+ 3 = 7. 
            1=2 and 2 = 3 3 = 7  5 = 2  
      3 = 2. 

. The eigen values of  are 1/2, 1/2 and 1/3 and the eigen values of A3 are 23, 23 and 
33. 

 
11.  If two of the eigen values of a 3 3 matrix, whose determinant equals 4 are -1 and 2,  

find the third eigen value. 
Soln: 
      Let 1, 2 and 3 be the eigen values . Then 1 2 3 = 4  
     That is,-1 2 3 = 4. 
     3  = -2. 

12.  If the matrix A is ,  find the eigen values of A2. 

Soln: 
Since the given matrix is a triangular matrix its diagonal elements are its eigen values, 

     Hence  the eigen values of A are -1,-3 and 2.  
  eigen values of A2 are 12, (-3)2, 22. 

That is, 1, 4, 9. 
 



 

13.  Find the eigen values of 3A3 + 5A2 6A + 2I if the matrix  

                        A = . 

Soln: 
Since the given matrix is a triangular matrix its diagonal elements are its eigen values, 
the eigen values of A are 1,3,-2.
So the eigen values of A3 are 1,27,-8. 
Eigen values of A2 are 1,9,4. 
Eigen values of A are 1,3,-2. 
Eigen values of I are 1,1,1 

The eigen values of 3A3 + 5A2 6A + 2I 
First eigen value = 3(1)3 + 5(1)2 6(1) + 2(1) = 4. 
Second eigen value = 3(27) + 5(9)  6(3) + 2(1) = 110. 
Third eigen value = 3(-8) + 5(4) 6(-2) + 2(1) = 10. 

The required eigen values are 4, 110, 10. 
 

14.  If two eigen values of A = are equal and they are double the third, 

then find the eigen values of A2 and 2A-1.
 
Soln: 
      By the given condition, the eigen values of A can be taken as  
 We know that the sum of the eigen values = the sum of the principal diagonal 

       
The required eigen values are 2,2,1. 

The eigen values of A2 are 4,4,1 and the eigen values of 2A-1 are 2(1/2) ,2(1/2) and 
2(1/1). 

i.e., 1, 1, 2.  
 

15.  State Cayley  Hamilton theorem.
Soln: 
      Every square matrix satisfies its own characteristic equation.  
 

16. State any two uses of Cayley-Hamilton theorem. 
Sol: 
      Cayley-Hamilton theorem can be used to find  
(i). the inverse of the given matrix and 
(ii). the higher powers of the given matrix. 

 
17.  If A is an orthogonal matrix, then show that A-1  is also orthogonal. 

Sol: 
      For an orthogonal matrix,  transpose will be the inverse. 
  AT  = A-1 --------------(1) 



Let AT  = A-1 = B ---------(2) 
 
Then BT = 1 = (A-1)T  = B-1 using (2)

 BT =  B-1 

 The matrix B is orthogonal. 
i.e., A-1 is also orthogonal. 
 

18.  Show that A =  is orthogonal. 

Sol:  

      Given A =   and AT =  

 

Now AAT = =  = I 

Since AAT = I, A is orthogonal. 
 

19. If A is an orthogonal matrix ,then prove that  = 1. 
Sol: 
      We know that , for an orthogonal  matrix A, AAT = I 

   = 1 
2 = 1. 

  = 1. 
 

20.  Define quadratic form.  

Sol: 
      A homogeneous polynomial of second degree in any number of variables is called a 
quadratic form. 
 
Example:- 
                x1

2  + 5x1x2 + 2x2
2  is a quadratic form in two variables x1 and x2. 

 
21.  Write the matrix of the quadratic form 2x1

2 - 2x2
2 + 4x3

2 + 2x1x2 - 6x1x3 + 6x2 x3.
     

 

Sol:         Matrix of QF is A=  

Hence the matrix of the quadratic form is . 



22.  Write the quadratic form corresponding to the given matrix . 

Sol:  
     The quadratic form to the matrix is x1

2 + 4x2
2 + 3x3

2   +  

4x1 x2 +10 x1x3 +12x2 x3.
   

 
 

23.  Determine the nature of the quadratic form x2 + 2y2 + 3z2 + 2xy -2xz + 2yz. 
Sol:

 
    The matrix of the quadratic form is 

 

D1=  =1;  D2 =  = 1. 

D3 = 
= -2,   D1 and D2 are positive. But D3 is negative.

 
 

The quadratic form is indefinite.
 

24.  A is a singular matrix of order 3. Two of its eigen values are 2 and 3. Find the third 
eigen value. 

Sol: 

       Since A is singular,  = 0. product of the eigen values = 0. Let  be the third 
eigen value. Then (2)(3)( ) = 0. 
i.e.,  6  = 0.       = 0. 

      25. If the matrix of the quadratic form  3x2 + 3y2 +2axy  has eigen values 2 and 4, find the 

value of a. 

            Sol: 

                    The matrix of the quadratic form is A = .  

                        The product of the eigen values =  
. 

 (2)(4) = 9  a2 

a = 1. 
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1. Find all the eigen values and eigen vectors of the matrix A =  

 Solution : Given A =  

The characteristic equation of the matrix is 

 

3  2(2+1+1) + (-3+1+1) [2(-3)-1(-1)-1(-1)] = 0 
3-4 2- +4 = 0 , which is the characteristic equation. 

   
  1 1 -4 -1 4 
    

0 1 -3 -4 
     

1 -3 -4 0 
 

 = 1 is a root. 
The other roots are    2-3  -4=0 

 (  -4)(  +1) =0  
 = 4 , -1 

Hence -4.
The eigen vectors of the matrix A is given by (A- I)X = 0

i.e.  = 0

 (2- x1 + x2 - x3 = 0 
  x1 + (1- x2  2x3 = 0             
 -x1 - 2x2  + (1- )x3 = 0                   
 
When  = 1 , equation (1) becomes  
x1+x2-x3 = 0 
x1+0x2-2x3 = 0 
-x1-2x2+0x3 = 0 
 Take first and second equation, 
x1+x2-x3 = 0 
x1+0x2-2x3 = 0 

 =  =  

     =  =  

x1 =  

 When  = -1 , equation (1) becomes 
3x1+x2-x3 = 0 
x1+2x2-2x3 = 0 

  =  =  

     =  =  
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 x2=  

When  = 4 , equation (1) becomes 
-2x1+x2-x3 = 0 
x1-3x2-2x3 = 0 

  =  =  

     =  =  

 x3=  

Hence the required Eigen vectors are     x1 = , x2= & x3=  

 
 

2. Find all the eigen values and eigen vectors of  

Solution : Given A =  

The characteristic equation of the matrix is 
3  2(2+3+2) + (4+3+4) [2(4)-2(1)+1(-1)] = 0 

3-7 2+11 -5 = 0 , which is the characteristic equation.

1 1 -7 11 -5

0 1 -6 5 

1 -6 5 0
 

 = 1 is a root. 
The other roots are 2-6 +5=0 

 (  -1)(  -5) =0  
 = 1 ,5 

 
The eigen vectors of the matrix A is given by (A- I)X = 0 

i.e.   = 0

 (2- x1 +2x2+x3 = 0 
  x1+(3- x2+x3 
 x1+2x2+(2- )x3 = 0                   
 
When  = 1 , equation (1) becomes 
x1+2 x2 +x3 = 0 
x1+2x2+x3 = 0 
x1 +2x2+x3 = 0 
Here all the equations are same. 
Put x3 = 0 , we get x1 + 2 x2 = 0 
 x1 = -2x2 

Now Put x2 = 1 
Then we have x1 =-2 



X1 =  

For  = 1 , put x2 = 0 ,we get 
x1+x3 = 0 
x1= -x3 
 Now Put x3 = 1 
Then we have x1 = -1 
 

X2 = 

1

0

1

 

When  = 5 , equation(1) becomes 
-3x1+2 x2 +x3 = 0 
x1-2x2+x3 = 0 (taking first and second equation) 
 

  =  =  

     =  =        x3= 

Hence the required Eigen vectors are x1 = , x2 = & x3=  

 
 

3   .Find the eigen values and eigen vectors of  

Solution : The characteristic equation of matrix A is 

022

0)]1(2)1(1)3(1[)313()121(
23

23

  2 1 -2 -1 2 
   0  2   0 -2 
    
   1  0 -1   0  

 
The other roots are 

1,1

0)1)(1(

012

   

Hence -1 
 The eigen vectors of matrix A is given by 

   

ecomes  

1 2 3

1 2 3

3 31 2 1 2

0 2 0

0

   
1 2 0 2 0 1 3 2 1

x x x

x x x

x xx x x x

 



 

-1 ,Equation (1) becomes  
x2=0 
2x1-2x3 = 0 
x1 =x3 

 

 
Equation (1) becomes  
-x1+x2-2x3=0 
-x1+0x2+x3=0(taking first and second equation)

 

4.. Find all the eigen values and eigen vectors of  

 

Solution : Given A = 

200

120

012

 

Since the given matrix is a triangular matrix its diagonal elements are its eigen values,

To find the eigen vectors :
The eigen vectors of the matrix A is given by (A- I)X = 0

 i.e.   
 (2- x1 +x2+0x3 = 0 

   0x1+(2- x2+x3 
 0 x1+0x2+(2- )x3 = 0                   
 
 When  = 2 , (1) becomes  
  
 0x1 +x2+0x3 = 0 
  0x1+0x2+x3 = 0             
 0 x1+0x2+0x3 = 0              
 
Taking the second and third equations and applying cross rule method ,  
       

  =  =  

     =
0

2x
 =  

 x1=  

The second and the third eigen vectors are also the same as  x1. 

These three eigen vectors are linearly dependent.
 
 
 
 



5. Find the eigen values of A and hence find An (n is a positive integer) 

given that A =    

Solution : Given A =    

The characteristic equation of the matrix is 
 

 2  (1+3) +(3-8) = 0 
2 -4  -5 = 0 

 (   5) (  + 1) = 0 
-1 , 5 

Which are the eigen values of A. 
 When n is divided by 2 -4  -5 , let the Quotient be Q( )  and the remainder be (a  +b). 
Then by division algorithm  n = ( 2-4 -5)Q( ) + (a   
Put  = -1 in (1) , we get a+b =(-1)n  
Put  = 5 in (1) , we get 5a + b = 5n   
(3)  (2)  6a = 5n  (-1)n 

                       a =  

(2) x 5 +(3)  6b = 5(-1)n +5n 

                  b =  

Replacing  by the matrix A in (1) , we have 
An = (A2 -4A -5I ) Q (A) + (aA +bI ) 
     =  0 Q(A) + aA +bI (using Cayley Hamilton theorem ) 
     = aA +b I 

(i.e). An = 
34

21
 +  

 

7. If -1 , 1 , 4 are the eigen values of a matrix A of order 3 and (0,1,1)T , (2 ,-1,1)T , (1,1,-1)T are the 
corresponding eigen vectors , determine the matrix A. 

Solution: Modal matrix = 

  
Here the Eigen vectors X1 , X2 , X3 are pair wise orthogonal. 

Normalized modal matrix P =   

By orthogonal transformation , D = PT A P
 
Hence A = PD PT 

    =  

400

010

001

     =  

            A =  

 
 



8. Verify that the matrix A =  satisfies its own characteristic equation and hence find 

A4. 
Solution :The characteristic equation of matrix A is 

3  2(2+2+2) + (3+2+3) [2(3)+1(-1)+2(-1)] = 0
3-6 2+8 -3 = 0 , which is the characteristic equation. 

By Cayley  Hamilton theorem , we have to prove 
 A3-6A2+8 A-3 = 0 

A2 =  A .A =  =  

 

A3 = A2  A =  =  

A3-6A2+8 A-3 I =   - 6   

                                                               +8 -  3  

                           =        = 0 

Hence Cayley  Hamilton theorem is verified.
To find A4

We have A3-6A2+8 A-3 I = 0
A3 = 6A2-8 A+3 I
A4=6A3-8 A2+3 A

= 6 -8 +3

                    A4     =  

 

9. Verify  Cayley  Hamilton theorem for the matrix  and hence find the inverse of A. 

Solution :  The characteristic equation of matrix A is 
3  2(1+4+6) + (-1-3+0) [1(-1)-2(-3)+3(-2)] = 0 
3-11 2-4 +1 = 0 , which is the characteristic equation. 

By Cayley  Hamilton theorem , we have to prove 
 A3-11A2-4 A+1 = 0 

A2 =  A .A =    =  

 

A3 = A2 A = 

653

542

321

=  

 



       A3-11A2-4 A+I =  -11  -4  +       

                              =   

Hence the theorem is verified. 
To find A-1 

  We have A3-11A2-4 A+I = 0 
                I = - A3+11A2+4 A 
               A-1 = -A2-11A+4 I 

                           = - -11 +4    

                         A-1    =   

10. If  A =   then show that An = An-2 + A2   

       Cayley  Hamilton theorem . 
 

Solution : The characteristic equation of matrix A is 
3  2(1+0+0) + (-1+0+0) [1(-1)-0+0] = 0
3- 2- +1 = 0  

By Cayley Hamilton theorem , we have 
A3-A2- A+I = 0 
A3-A2= A-I
Pre multiplying both sides successively by A , we get
 A3-A2= A-I  
A4-A3= A2-A
A5-A4= A3-IA2

A6-A5= A4-A3  
 

An-1-An-2= An-3-An-4  
An-An-1= An-2-An-3 
Adding all these equations , we get  
An-A2= An-2-I 
An =A2+An-2-I  ,  

 
11. Using Cayley- Hamilton theorem , evaluate the matrix  

 A8  5 A7 +7A6-3A5+A4-5A3-8A2+2A I if A =  

Solution : The characteristic equation of matrix A is 
3  2(2+1+2) + (2+3+2) [2(2)-1(0)+1(-1)] = 0 
3- 2 -3 = 0 

we have to prove   
A3-5A2+7 A-3I = 0 

A2 =  A A = =  

 

A3 = A2  A =

544

010

445

  =  

 



       A3-5A2+7 A-3I =  -5    +7   -3       

                              =  = 0 

Hence the theorem is verified. 
 
A8  5 A7 +7A6-3A5+A4-5A3-8A2+2A I  
                  =  A5(A3-5A2+7 A-3I) +A(A3-5A2+7 A-3I)-15A2+5A-I 
                  = A5(0)+A(0)-15A2+5A I 
                  =  -15A2+5A I 

                         = -15  +5 -  

 

                    =  

 

12.  Diagonalise the matrix A = by means of an orthogonal transformation. 

   Solution : The characteristic equation of matrix A is 
3  2(6+3+3) +  [6(8)+2(-4)+2(-4)] = 0 
3 -12 2+36 -32 = 0

2 1 -12 36 -32
0 2 -20 32

1 -10 16 0

2-10  

-2)( -8 )= 0 

 

 

The eigen vectors of matrix A is given by 

(A-  

           (i.e.)  

 
  

 



        

  
 2, equation (1) becomes 

  

 Here all the equations are same. 
 Put x3 =0 , we get  

  

Let X3 =  be third eigen vector. 

Then Hence

 

  Hence the modal matrix is =  

 Here X1
TX2 = X2

TX3 = X3
T X1 = 0 

 So X1 , X2, X3 are pairwise orthogonal.
 The Normalised modal matrix is  

     

    



  

 

13. Reduce the Quadratic form  to the canonical form through  

orthogonal transformation and find its nature.
 
 Solution : Quadratic form is XTAX 

 The matrix A of Q.F. is A = 

The characteristic equation of matrix A is 

  

 
 

   1 1 -8 19 -12
   0 1 -7 12 
    
   1  -7 12   0  
  

 The other roots are   

 Hence  
The eigen vectors of matrix A is given by 

   

 (1) becomes  

 

1

2

1
121

120201

0

002

1

321

321

321

321

X

xxx

xxx

xxx

xxx

 

  

   

          

  
 
 



   

  

 Hence the modal matrix is =  

 Here X1
TX2 = X2

TX3 = X3
TX1 = 0 . 

  So X1 , X2 , X3 are pairwise orthogonal.
 The normalized modal matrix is  

  

Consider the orthogonal transformation X = PY
Substitute (2) in (1) we get 
(PY)T A (PY) = YTPT APY

                       =  

                          Which is the canonical form 
Rank = No. of terms in the canonical form = 3
Index = No. of positive square terms in the canonical form = 3 
Signature = (No. of positive square terms)  (No. of negative square terms) = 3 
Nature = positive definite. 

 
14. Reduce the Quadratic form x2+y2+z2+4xy+4yz+4zx into sum of squares form by an orthogonal 

transformation  hence find the rank , index , signature and nature of Q. F. 
 

Solution :  Quadratic form is XTAX 

The matrix A of Q.F. is A =  

The characteristic equation of matrix A is 

  

 
   -1 1 -3 -9 -5 
   0 -1 4  5 
    
   1  -4 -5   0  

-1 is a root. 



The other roots are    

Hence -1 , -1 
 The eigen vectors of matrix A is given by  

   

  

  

 -1,Equation (1) becomes 

 Let X3 =  be third eigen vector. 

 Then  

 Hence the modal matrix is =  

  
Here X1

TX2 = X2
TX3 = X3

TX1 = 0 . 
So X1 , X2 , X3 are pairwise orthogonal. 



The normalized modal matrix is 

 
Consider the orthogonal transformation X = PY 
Substitute (2) in (1) we get  
(PY)T A (PY) = YTPT APY 

                       =  

                          Which is the canonical form  
Rank = No. of terms in the canonical form = 3 
Index = No. of positive square terms in the canonical form = 1
Signature = (No. of positive square terms)  (No. of negative square terms) = 1-2= -1 
Nature = indefinite.

15 .Reduce the Quadratic form to the canonical form through orthogonal 

transformation . 
Solution :  Quadratic form is XTAX 

The matrix A of Q.F. is A =  

The characteristic equation of matrix A is 

  

   -2 1 -10 12 72 
   0 -2 24 -72
    
   1  -12 36   0  

-2 is a root. 

The other roots are    

Hence -2, 6 , 6 
 The eigen vectors of matrix A is given by  
( ) 0A I X  

1 2 3

1 2 3

1 2 3

(2 ) 0 4 0

0 (6 ) 0 0

4 0 (2 ) 0

x x x

x x x

x x x

   

-2,Equation (1) becomes  



 

 

 

Let X3 =  be third eigen vector. 

Then  

 

Hence the modal matrix is =  

Here X1
TX2 = X2

TX3 = X3
TX1 = 0 . 

So X1 , X2 , X3 are pairwise orthogonal. 
The normalized modal matrix is  
 

 



Consider the orthogonal transformation X = PY 
Substitute (2) in (1) we get  
(PY)T A (PY) = YTPT APY 

                       =   

                          Which is the canonical form 
 

16. Reduce the Quadratic form 10  to the canonical form 

through orthogonal transformation .Find a set of values of x1 ,x2 , x3 which will make the form 
vanish. 

Solution : Quadratic form is XTAX 

The matrix A of Q.F. is A = 

The characteristic equation of matrix A is 

  

  
 The eigen vectors of matrix A is given by 

 

 

1) becomes  

1

1

1
111111

47102156

032

0527

2

321

321

321

321

X

xxx

xxx

xxx

xxx

 

 



 

Hence the modal matrix is = 

Here X1
TX2 = X2

TX3 = X3
TX1 = 0 . 

So X1 , X2 , X3 are pairwise orthogonal. 
The normalized modal matrix is  

 

Consider the orthogonal transformation X = PY
Substitute (2) in (1) we get 
(PY)T A (PY) = YTPT APY

                       =   

                          Which is the canonical form 
To find the set of non zero values of  x1 ,x2 , x3  which makes the QF zero  
 
From the orthogonal transformation X = PY we have 

31 2
1

31 2
2

31 2
3

3

42 3 14
5

                (*)
42 3 3

24

42 3 14

yy y
x

yy y
x

yy y
x

 

 Clearly canonical form reduces to zero when , using this in (*)  we have 

        

 let  then required non zero values  of  x1 ,x2 , x3    which makes the QF zero is 
 

 
 
 
 



17.  Reduce the Quadratic form x2+3y2+3z2-2yz to the canonical form through orthogonal 
transformation and. hence find the nature of Q. F. 
 
Solution :  Quadratic form is XTAX 

The matrix A of Q.F. is A =  

The characteristic equation of matrix A is   

 
       1 1 -7 14 -8 
   0 1 -6  8 
   1  -6 8   0  

 

The other roots are    

Hence  
 The eigen vectors of matrix A is given by  

   

 

0

0

1
001

000014

020

020

1

321

321

321

321

X

xxx

xxx

xxx

xxx

) becomes  
-x1+0x2+0x3=0 
0x1+x2-x3=0(taking first and second equation)

 

 
-3x1+0x2+0x3=0 
0x1-x2-x3=0(taking first and second equation)

 

 



Hence the modal matrix is =  

Here X1
TX2 = X2

TX3 = X3
TX1 = 0 . 

So X1 , X2 , X3 are pairwise orthogonal. 
The normalized modal matrix is  

 

 
Consider the orthogonal transformation X = PY 
Substitute (2) in (1) we get  
(PY)T A (PY) = YTPT APY 

                       =  

                          Which is the canonical form 
Since all the eigen values are positive , the nature of Q.F. is positive definite.
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