MA3151-MATRICES AND CALCULUS

NOTES OF LESSON

UNIT I MATRICES 9+3
Eigen values and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigen values and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications : Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS $9+3$

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III FUNCTIONS OF SEVERAL VARIABLES $9+3$

Partial differentiation - Homogeneous functions and Euler's theorem - Total derivative - Change of variables - Jacobians - Partial differentiation of implicit functions - Taylor's series for functions of two variables - Applications : Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT IV INTEGRAL CALCULUS 9+3

Definite and Indefinite integrals - Substitution rule - Techniques of Integration : Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications : Hydrostatic force and pressure, moments and centres of mass.

UNIT V MULTIPLE INTEGRALS
 $9+3$

Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves - Triple integrals - Volume of solids - Change of variables in double and triple integrals - Applications : Moments and centres of mass, moment of inertia.

TEXT BOOKS : 1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016. 2. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018. 3. James Stewart, "Calculus : Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II \& IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), $2.8,3.1$ to $3.6,3.11,4.1,4.3,5.1$ (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1-7.4 and 7.8].

REFERENCES : 1. Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016 2. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009. 3. Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 5th Edition, 2016. 4. Narayanan. S. and Manicavachagom Pillai. T. K.,"Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009. 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016. 6. Srimantha Pal and Bhunia. S.C, " Engineering Mathematics " Oxford University Press, 2015. 7. Thomas. G. B., Hass. J, and Weir. M.D, " Thomas Calculus ", 14th Edition, Pearson India, 2018

MOHAMED SATHAK A.J. COLLEGE OF ENGINEEERING
 Siruseri IT Park, Chennai -603103

 UNIT-I- MATRICES

 UNIT-I- MATRICES}

PART-A

1. Define eigen values and eigen vectors of a matrix.

Soln:
Let A be a square matrix of order n . Let I be the unit matrix of order n . Let λ be any scalar. If there exist a non- zero column vector X such that $A X=\lambda X$, then λ is an eigen value of A and X is an eigen vector corresponding to λ.

2. What is characteristic equation of a matrix? Soln:

Let A be a square matrix of order n and let I be the unit matrix of order n . Then for any scalar λ, we can find a matrix ($\mathrm{A}-\lambda \mathrm{I}$) of order n . The equation $|A-\lambda I|=0$ is called the characteristic equation. This is a polynomial equation of degree n. The roots of this equation are the eigen values of A .

3. Define trace of a square matrix.

Soln: The trace of a square matrix A is defined as the sum of principal diagonal elements of the matrix A .

4. State any three properties of eigen values.

Sol:

Any three properties of eigen values are as follows
a. The eigen values of A and A^{T} are the same.
b. The sum of the eigen values of the matrix A is equal to the trace of the matrix A
c. The product of the eigen values is the determinant value of the matrix.
5. Find the eigen values of A^{-1} if the two eigen values of the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right) \text { are equal to } \mathbf{1} \text { each }
$$

Sol: \quad Sum of the eigen values $=$ Sum of the diagonal elements

$$
=2+3+2=7
$$

Sum of two given eigen values $=1+1=2$
\therefore The third eigen value $=7-2=5$
The eigen values of A are $1,1,5$
\therefore The eigen values of A^{-1} are $1,1, \frac{1}{5}$.
6. If the sum of two eigen values and trace of a 3×3 matrix A are equal,find $|A|$.

Soln:
Let the eigen values be $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
It is given that $\lambda_{1}+\lambda_{2}=\lambda_{1}+\lambda_{2}+\lambda_{3}$.
So, we have $\lambda_{3}=0$.
$|A|=\lambda_{1} \lambda_{2} \lambda_{3}=0$.
7. The product of two eigen values of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right) \text { is } \mathbf{1 6} . \text { Find the third eigen value. }
$$

Soln: We know that the product of all the eigen values $=$ the value of the determinant of the given matrix.

$$
|A|=\left|\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right|=32
$$

But it is given that the product of two eigen values $=16$.
\therefore The third eigen value $=32 / 16=2$.
8. Find the sum and product of the eigen values of the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

Soln:

We know that the sum of the eigen values $=$ the sum of the principal diagonal elements $=2+2+2=6$.
Also we know that the product of the eigen values $=$ the value of the determinant of the matrix $=6$.
9. Find the constants a and \mathbf{b} such that the matrix $\left(\begin{array}{ll}a & 4 \\ 1 & b\end{array}\right)$ has $\mathbf{3}$ and $\mathbf{- 2}$ as its eigen values.

Soln: Let $\mathrm{A}=\left(\begin{array}{ll}a & 4 \\ 1 & b\end{array}\right)$.
The sum of the eigen values $=a+b$,
$a+b=3+(-2)=1$
The product of eigen values is the determinant of the matrix,
so $a b-4=3(-2)=-6$.
$a b=-6+4=-2$
$\therefore \mathrm{ab}=-2$ \qquad
Now solving the equations (1) and (2), we get the values of a and b
$\therefore \mathrm{a}=1-\mathrm{b}$
Substituting this in (2), we get $(1-b) b=-2$
$\Rightarrow \mathrm{b}-\mathrm{b}^{2}=-2$.
$\Rightarrow(\mathrm{b}+1)(\mathrm{b}-2)=0$.
$\therefore \mathrm{b}=-1$ and $\mathrm{b}=2$.
Now substituting $b=2$ in (1), we get $a+b=1$. That is $a+2=1$
$\Rightarrow \mathrm{a}=1-2=-1$.
$\therefore \mathrm{a}=-1$ and $\mathrm{b}=2$.

10. If 2 and 3 are the eigen values of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 10 & 5 \\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right)
$$

find the eigen values of A^{-1} and $\mathrm{A}^{\mathbf{3}}$.

Soln:

Let λ_{1}, λ_{2} and λ_{3} be the eigen values of A . Then $\lambda_{1}+\lambda_{2}+\lambda_{3}=7$.
$\because \quad \lambda_{1}=2$ and $\lambda_{2}=3 \Rightarrow \lambda_{3}=7-5=2$
$\therefore \lambda_{3}=2$.
The eigen values of A^{-1} are $1 / 2,1 / 2$ and $1 / 3$ and the eigen values of A^{3} are $2^{3}, 2^{3}$ and 3^{3}.
11. If two of the eigen values of a $3^{\times} 3$ matrix, whose determinant equals 4 are -1 and 2 , find the third eigen value.

Soln:

Let λ_{1}, λ_{2} and λ_{3} be the eigen values. Then $\lambda_{1} \lambda_{2} \lambda_{3}=4$
That is, $-1 \times 2 \times \lambda_{3}=4$.
$\therefore \lambda_{3}=-2$.
12. If the matrix A is $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2\end{array}\right)$, find the eigen values of A^{2}.

Soln:
Since the given matrix is a triangular matrix its diagonal elements are its eigen values, Hence the eigen values of A are $-1,-3$ and 2 . the eigen values of A^{2} are $1^{2},(-3)^{2}, 2^{2}$.

That is, $1,4,9$.
13. Find the eigen values of $3 A^{3}+5 A^{2}-6 A+2 I$ if the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 3 & 2 \\
0 & 0 & -2
\end{array}\right)
$$

Soln:
Since the given matrix is a triangular matrix its diagonal elements are its eigen values, the eigen values of A are 1,3,-2.
So the eigen values of A^{3} are $1,27,-8$.
Eigen values of A^{2} are 1,9,4.
Eigen values of A are 1,3,-2.
Eigen values of I are 1,1,1
\therefore The eigen values of $3 A^{3}+5 A^{2}-6 A+2 I$
First eigen value $=3(1)^{3}+5(1)^{2}-6(1)+2(1)=4$.
Second eigen value $=3(27)+5(9)-6(3)+2(1)=110$.
Third eigen value $=3(-8)+5(4)-6(-2)+2(1)=10$.
\therefore The required eigen values are $4,110,10$.
14. If two eigen values of $\mathbf{A}=\left(\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right)$ are equal and they are double the third, then find the eigen values of A^{2} and $2 A^{-1}$.

Soln:

By the given condition, the eigen values of A can be taken as $2 \lambda, 2 \lambda, \lambda$
We know that the sum of the eigen values $=$ the sum of the principal diagonal

$$
\begin{aligned}
\therefore & 2 \lambda+2 \lambda+\lambda=4+3-2 \\
& \Rightarrow \lambda=1
\end{aligned}
$$

The required eigen values are $2,2,1$.
\therefore The eigen values of A^{2} are $4,4,1$ and the eigen values of $2 \mathrm{~A}^{-1}$ are $2(1 / 2), 2(1 / 2)$ and 2(1/1).
i.e., $1,1,2$.

15. State Cayley - Hamilton theorem.

Soln:

Every square matrix satisfies its own characteristic equation.
16. State any two uses of Cayley-Hamilton theorem.

Sol:
Cayley-Hamilton theorem can be used to find
(i). the inverse of the given matrix and
(ii). the higher powers of the given matrix.
17. If A is an orthogonal matrix, then show that A^{-1} is also orthogonal.

Sol:

For an orthogonal matrix, transpose will be the inverse.
$\therefore \mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$ \qquad

Let $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}=\mathrm{B}$
Then $B^{T}=\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{T}=B^{-1}$ using (2)
$\therefore \mathrm{B}^{\mathrm{T}}=\mathrm{B}^{-1}$
\Rightarrow The matrix B is orthogonal.
i.e., A^{-1} is also orthogonal.
18. Show that $\mathbf{A}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.

Sol:
Given $\mathrm{A}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ and $\therefore \mathrm{A}^{\mathrm{T}}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
Now $\mathrm{AA}^{\mathrm{T}}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\mathrm{I}$
Since $A A^{T}=I, A$ is orthogonal.
19. If \mathbf{A} is an orthogonal matrix , then prove that $|A|= \pm 1$.

Sol:
We know that, for an orthogonal matrix $\mathrm{A}, \mathrm{AA}^{\mathrm{T}}=\mathrm{I}$
$\therefore|A|\left|A^{T}\right|=1$
$\therefore|A|^{2}=1$.
$\therefore|A|= \pm 1$.

20. Define quadratic form.

Sol:
A homogeneous polynomial of second degree in any number of variables is called a quadratic form.

Example:-

$$
\mathrm{x}_{1}^{2}+5 \mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{x}_{2}^{2} \text { is a quadratic form in two variables } \mathrm{x}_{1} \text { and } \mathrm{x}_{2} .
$$

21. Write the matrix of the quadratic form $2 x_{1}{ }^{2}-2 x_{2}{ }^{2}+4 x_{3}{ }^{2}+2 x_{1} x_{2}-6 x_{1} x_{3}+6 x_{2} x_{3}$.

Sol: Matrix of QF is $\mathrm{A}=\left(\begin{array}{ccc}\operatorname{coef}\left(x_{1}^{2}\right) & \frac{1}{2} \operatorname{coef}\left(x_{1} x_{2}\right) & \frac{1}{2} \operatorname{coef}\left(x_{1} x_{3}\right) \\ \frac{1}{2} \operatorname{coef}\left(x_{2} x_{1}\right) & \operatorname{coef}\left(x_{2}^{2}\right) & \frac{1}{2} \operatorname{coef}\left(x_{2} x_{3}\right) \\ \frac{1}{2} \operatorname{coef}\left(x_{3} x_{1}\right) & \frac{1}{2} \operatorname{coef}\left(x_{3} x_{2}\right) & \operatorname{coef}\left(x_{3}^{2}\right)\end{array}\right)$
Hence the matrix of the quadratic form is $\left(\begin{array}{ccc}2 & 1 & -3 \\ 1 & -2 & 3 \\ -3 & 3 & 4\end{array}\right)$.
22. Write the quadratic form corresponding to the given matrix $\left(\begin{array}{lll}1 & 2 & 5 \\ 2 & 4 & 6 \\ 5 & 6 & 3\end{array}\right)$.

Sol:
The quadratic form to the matrix is $x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}+$ $4 \mathrm{x}_{1} \mathrm{X}_{2}+10 \mathrm{x}_{1} \mathrm{x}_{3}+12 \mathrm{x}_{2} \mathrm{x}_{3}$.
23. Determine the nature of the quadratic form $x^{2}+2 y^{2}+3 z^{2}+2 x y-2 x z+2 y z$.

Sol:
The matrix of the quadratic form is $\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right)$
$D_{1}=|1|=1 ; \quad D_{2}=\left|\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right|=1$.
$D_{3}=\left|\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right|=-2, \quad D_{1}$ and $D 2$ are positive. But D_{3} is negative.
\therefore The quadratic form is indefinite.
24. A is a singular matrix of order 3. Two of its eigen values are 2 and 3. Find the third eigen value.

Sol:
Since A is singular, $|A|=0 . \therefore$ product of the eigen values $=0$. Let λ be the third eigen value. Then $(2)(3)(\lambda)=0$.
i.e., $6 \lambda=0 . \quad \Rightarrow \quad \lambda=0$.
25. If the matrix of the quadratic form $3 x^{2}+3 y^{2}+2 a x y$ has eigen values 2 and 4 , find the value of a.

Sol:

The matrix of the quadratic form is $\mathrm{A}=\left(\begin{array}{ll}3 & a \\ a & 3\end{array}\right)$.
The product of the eigen values $=|A|$.

$$
\begin{gathered}
(2)(4)=9-\mathrm{a}^{2} \\
\text { i.e., } \mathrm{a}^{2}=1 . \quad \therefore \mathrm{a}= \pm 1 .
\end{gathered}
$$

Siruseri IT Park, Chennai-603103

UNIT-I-MATRICES

1. Find all the eigen values and eigen vectors of the matrix $\boldsymbol{A}=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right)$

Solution : Given $\mathbf{A}=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right)$

The characteristic equation of the matrix is

$$
\begin{aligned}
& \begin{array}{l}
\lambda^{3}-(\text { sum of principal diagonal elements of } A) \lambda^{2} \\
\quad+(\text { sum of minors of principal diagonal elements }) \lambda-|A|=0 \\
\\
\lambda^{3}-\lambda^{2}(2+1+1)+\lambda(-3+1+1)-[2(-3)-1(-1)-1(-1)]=0 \\
\lambda^{3}-4
\end{array} \lambda^{2}-\lambda+4=0 \text {, which is the characteristic equation. }
\end{aligned}
$$

1	1	-4	-1	4
0	1	-3	-4	
1	-3	-4	0	

$\lambda=1$ is a root.
The other roots are $\lambda^{2}-3 \lambda-4=0$
$\Rightarrow(\lambda-4)(\lambda+1)=0$
$\Rightarrow \lambda=4,-1$
Hence $\boldsymbol{\lambda}=\mathbf{1 , 4 , - 4}$.
The eigen vectors of the matrix A is given by $(A-\lambda I) X=0$

$$
\begin{align*}
& \text { i.e. }\left(\begin{array}{ccc}
2-\lambda & 1 & -1 \\
1 & 1-\lambda & -2 \\
-1 & -2 & 1-\lambda
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0 \\
& \left.\begin{array}{r}
(2-\lambda) \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0 \\
\mathrm{x}_{1}+(1-\lambda) \mathrm{x}_{2}-2 \mathrm{x}_{3}=0 \\
-\mathrm{x}_{1}-2 \mathrm{x}_{2}+(1-\lambda) \mathrm{x}_{3}=0
\end{array}\right\} \quad \ldots . . . \tag{1}
\end{align*}
$$

When $\lambda=1$, equation (1) becomes
$\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0$
$\mathrm{x}_{1}+0 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
$-x_{1}-2 x_{2}+0 x_{3}=0$
Take first and second equation,
$\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0$
$\mathrm{x}_{1}+0 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
$\Rightarrow \frac{x_{1}}{-2+0}=\frac{-x_{2}}{-2+1}=\frac{x_{3}}{0-1}$
$\Rightarrow \quad \frac{x_{1}}{-2}=\frac{x_{2}}{1}=\frac{x_{3}}{-1}$
$\therefore \mathbf{x}_{1}=\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right)$
When $\lambda=-1$, equation (1) becomes
$3 x_{1}+x_{2}-x_{3}=0$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
$\Rightarrow \frac{x_{1}}{-2+2}=\frac{-x_{2}}{-6+1}=\frac{x_{3}}{6-1}$
$\Rightarrow \quad \frac{x_{1}}{0}=\frac{x_{2}}{1}=\frac{x_{3}}{1}$
$\therefore \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$

When $\lambda=4$, equation (1) becomes
$-2 x_{1}+x_{2}-x_{3}=0$
$\mathrm{x}_{1}-3 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
$\Rightarrow \frac{x_{1}}{-2-3}=\frac{-x_{2}}{4+1}=\frac{x_{3}}{6-1}$
$\Rightarrow \frac{x_{1}}{-1}=\frac{x_{2}}{-1}=\frac{x_{3}}{1}$
$\therefore \mathbf{x}_{3}=\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$
Hence the required Eigen vectors are $\mathbf{x}_{1}=\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \& \mathbf{x}_{3}=\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$
2. Find all the eigen values and eigen vectors of $\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$

Solution : Given $\mathrm{A}=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$
The characteristic equation of the matrix is
$\lambda^{3}-\lambda^{2}(2+3+2)+\lambda(4+3+4)-[2(4)-2(1)+1(-1)]=0$
$\lambda^{3}-7 \lambda^{2}+11 \lambda-5=0$, which is the characteristic equation.

$\lambda=1$ is a root.
The other roots are $\lambda^{2}-6 \lambda+5=0$
$\Rightarrow(\lambda-1)(\lambda-5)=0$
$\Rightarrow \lambda=1,5$
Hence $\lambda=1,1,5$.
The eigen vectors of the matrix A is given by $(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0$
i.e. $\left(\begin{array}{ccc}2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
(2- $\lambda) \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=0$
$\mathrm{x}_{1}+(3-\lambda) \mathrm{x}_{2}+\mathrm{x}_{3}=0$
$x_{1}+2 x_{2}+(2-\lambda) x_{3}=0$
When $\lambda=1$, equation (1) becomes
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=0$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=0$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=0$
Here all the equations are same.
Put $\mathrm{x}_{3}=0$, we get $x_{1}+2 x_{2}=0$
$x_{1}=-2 x_{2}$
Now Put $x_{2}=1$
Then we have $x_{1}=-2$
$\therefore \mathbf{X}_{\mathbf{1}}=\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$
For $\lambda=1$, put $x_{2}=0$, we get
$\mathrm{x}_{1}+\mathrm{x}_{3}=0$
$\mathrm{x}_{1}=-\mathrm{x}_{3}$
Now Put $x_{3}=1$
Then we have $x_{1}=-1$

$$
\therefore \mathbf{X}_{\mathbf{2}}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

When $\lambda=5$, equation(1) becomes
$-3 x_{1}+2 x_{2}+x_{3}=0$
$\mathrm{x}_{1}-2 \mathrm{x}_{2}+\mathrm{x}_{3}=0$ (taking first and second equation)
$\Rightarrow \frac{x_{1}}{2+2}=\frac{-x_{2}}{-3-1}=\frac{x_{3}}{6-2}$
$\Rightarrow \quad \frac{x_{1}}{4}=\frac{x_{2}}{4}=\frac{x_{3}}{4} \quad \therefore \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
Hence the required Eigen vectors are $\mathbf{x}_{1}=\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right) \& \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

3 .Find the eigen values and eigen vectors of $\left(\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$
Solution : The characteristic equation of matrix A is

$$
\begin{aligned}
& \lambda^{3}-\lambda^{2}(1+2-1)+\lambda(-3-1+3)-[1(-3)-1(1)-2(-1)]=0 \\
& \lambda^{3}-2 \lambda^{2}-\lambda+2=0
\end{aligned}
$$

2 | 1 | -2 | -1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | -2 |
| 1 | 0 | -1 | 0 |

$\lambda=2$ is a root.
The other roots are
$\lambda^{2}-1=0$
$(\lambda-1)(\lambda+1)=0$
$\lambda=1,-1$
Hence $\boldsymbol{\lambda} \mathbf{= 2 , 1 , - 1}$
The eigen vectors of matrix A is given by

$$
\left.\begin{array}{l}
(A-\lambda I) X=0 \\
(1-\lambda) x_{1}+x_{2}-2 x_{3}=0 \tag{1}\\
-x_{1}+(2-\lambda) x_{2}+x_{3}=0 \\
0 x_{1}+x_{2}+(-1-\lambda) x_{3}=0
\end{array}\right\}
$$

When $\lambda=1$,Equation (1) becomes

$$
\begin{aligned}
& 0 x_{1}+x_{2}-2 x_{3}=0 \\
& -x_{1}+x_{2}+x_{3}=0 \\
& \Rightarrow \frac{x_{1}}{1+2}=\frac{-x_{2}}{0-2}=\frac{x_{3}}{0+1} \quad \Rightarrow \frac{x_{1}}{3}=\frac{x_{2}}{2}=\frac{x_{3}}{1}
\end{aligned}
$$

$\therefore X_{1}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
When $\lambda=-1$,Equation (1) becomes
$\mathrm{x}_{2}=0$
$2 x_{1}-2 x_{3}=0$
$\mathrm{x}_{1}=\mathrm{X}_{3}$
$X_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
When $\lambda=2$,
Equation (1) becomes
$-\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
$-\mathrm{x}_{1}+0 \mathrm{x}_{2}+\mathrm{x}_{3}=0$ (taking first and second equation)
$\Rightarrow \frac{x_{1}}{1-0}=\frac{-x_{2}}{-1-2}=\frac{x_{3}}{0-1}$
$\Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{3}=\frac{x_{3}}{1}$
$\therefore X_{3}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$
4.. Find all the eigen values and eigen vectors of $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$

Solution : Given $\mathrm{A}=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
Since the given matrix is a triangular matrix its diagonal elements are its eigen values,

$$
\lambda=2,2,2 .
$$

To find the eigen vectors :
The eigen vectors of the matrix A is given by $(A-\lambda I) X=0$
i.e.

$$
\left.\begin{array}{c}
(2-\lambda) x_{1}+x_{2}+0 x_{3}=0 \tag{1}\\
0 x_{1}+(2-\lambda) x_{2}+x_{3}=0 \\
0 x_{1}+0 x_{2}+(2-\lambda) x_{3}=0
\end{array}\right\}
$$

When $\lambda=2$, (1) becomes

$$
\begin{gathered}
0 \mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{x}_{3}=0 \\
0 \mathrm{x}_{1}+0 \mathrm{x}_{2}+\mathrm{x}_{3}=0 \\
0 \mathrm{x}_{1}+0 \mathrm{x}_{2}+0 \mathrm{x}_{3}=0
\end{gathered}
$$

Taking the second and third equations and applying cross rule method,

$$
\begin{aligned}
& \Rightarrow \frac{x_{1}}{1-0}=\frac{-x_{2}}{0-0}=\frac{x_{3}}{0-0} \\
& \Rightarrow \quad \frac{x_{1}}{1}=\frac{x_{2}}{0}=\frac{x_{3}}{0} \\
& \therefore \mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

The second and the third eigen vectors are also the same as x_{1}.
These three eigen vectors are linearly dependent.

5. Find the eigen values of A and hence find A^{n} (n is a positive integer)

given that $\boldsymbol{A}=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$
Solution : Given $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$
The characteristic equation of the matrix is
$\lambda^{2}-\lambda(1+3)+(3-8)=0$
$\Rightarrow \lambda^{2}-4 \lambda-5=0$
$\Rightarrow(\lambda-5)(\lambda+1)=0$
$\Rightarrow \lambda=-1,5$
Which are the eigen values of A.
When λ^{n} is divided by $\lambda^{2}-4 \lambda-5$, let the Quotient be $\mathrm{Q}(\lambda)$ and the remainder be $(\mathrm{a} \lambda+\mathrm{b})$.
Then by division algorithm $\lambda^{\mathrm{n}}=\left(\lambda^{2}-4 \lambda-5\right) \mathrm{Q}(\lambda)+(\mathrm{a} \lambda+\mathrm{b})$
Put $\lambda=-1$ in (1), we get $-\mathrm{a}+\mathrm{b}=(-1)^{\mathrm{n}}$
Put $\lambda=5$ in (1), we get $5 \mathrm{a}+\mathrm{b}=5^{\mathrm{n}}$
(3) $-(2) \Rightarrow 6 \mathrm{a}=5^{\mathrm{n}}-(-1)^{\mathrm{n}}$

$$
\Rightarrow \quad \mathrm{a}=\frac{5^{n}-(-1)^{n}}{6}
$$

(2) $\mathrm{x} 5+(3) \Rightarrow 6 \mathrm{~b}=5(-1)^{\mathrm{n}}+5^{\mathrm{n}}$

$$
\Rightarrow \quad \mathrm{b}=\frac{5(-1)^{n}+5^{n}}{6}
$$

Replacing λ by the matrix A in (1), we have
$\mathrm{A}^{\mathrm{n}}=\left(\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}\right) \mathrm{Q}(\mathrm{A})+(\mathrm{aA}+\mathrm{bI})$
$=0 \mathrm{Q}(\mathrm{A})+\mathrm{aA}+\mathrm{bI}$ (using Cayley Hamilton theorem)
$=\mathrm{aA}+\mathrm{b}$ I
(i.e). $\mathrm{A}^{\mathrm{n}}=\left(\frac{5^{n}-(-1)^{n}}{6}\right)\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)+\left(\frac{5(-1)^{n}+5^{n}}{6}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
7. If $-1,1,4$ are the eigen values of a matrix A of order 3 and $(0,1,1)^{T},(2,-1,1)^{T},(1,1,-1)^{T}$ are the corresponding eigen vectors, determine the matrix A.

Solution: Modal matrix $=\left(\begin{array}{ccc}0 & 2 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right)$
Here the Eigen vectors $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are pair wise orthogonal.
Normalized modal matrix $\mathrm{P}=\left(\begin{array}{ccc}0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}\end{array}\right)$
By orthogonal transformation, $D=P^{T} A P$
Hence $A=P D P^{T}$

$$
\begin{aligned}
=\left(\begin{array}{lll}
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{4}{\sqrt{3}} & \frac{4}{\sqrt{3}} & \frac{-4}{\sqrt{3}}
\end{array}\right) \\
\boldsymbol{A}=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 1
\end{array}\right)
\end{aligned}
$$

8. Verify that the matrix $A=\left(\begin{array}{ccc}2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$ satisfies its own characteristic equation and hence find A^{4}.

Solution :The characteristic equation of matrix A is
$\lambda^{3}-\lambda^{2}(2+2+2)+\lambda(3+2+3)-[2(3)+1(-1)+2(-1)]=0$
$\lambda^{3}-6 \lambda^{2}+8 \lambda-3=0$, which is the characteristic equation.
By Cayley - Hamilton theorem, we have to prove

$$
\begin{aligned}
& \mathrm{A}^{3}-6 \mathrm{~A}^{2}+8 \mathrm{~A}-3=0 \\
& \mathrm{~A}^{2}=\mathrm{A} \times \mathrm{A}=\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right) \\
& \mathrm{A}^{3}=\mathrm{A}^{2} \times \mathrm{A}=\left(\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
29 & -28 & 38 \\
-22 & 23 & -28 \\
22 & -22 & 29
\end{array}\right) \\
& \mathrm{A}^{3}-6 \mathrm{~A}^{2}+8 \mathrm{~A}-3 \mathrm{I}=\left(\begin{array}{ccc}
29 & -28 & 38 \\
-22 & 23 & -28 \\
22 & -22 & 29
\end{array}\right)-6\left(\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right) \\
&=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=0
\end{aligned}
$$

Hence Cayley - Hamilton theorem is verified.
To find A^{4}
We have $\mathrm{A}^{3}-6 \mathrm{~A}^{2}+8 \mathrm{~A}-3 \mathrm{I}=0$

$$
\begin{aligned}
\mathrm{A}^{3} & =6 \mathrm{~A}^{2}-8 \mathrm{~A}+3 \mathrm{I} \\
\mathrm{~A}^{4} & =6 \mathrm{~A}^{3}-8 \mathrm{~A}^{2}+3 \mathrm{~A} \\
& =6\left(\begin{array}{ccc}
29 & -28 & 38 \\
-22 & 23 & -28 \\
22 & -22 & 29
\end{array}\right)-8\left(\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right)+3\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right) \\
\mathbf{A}^{4} & =\left(\begin{array}{ccc}
124 & -123 & 162 \\
-95 & 96 & -123 \\
95 & -95 & 124
\end{array}\right)
\end{aligned}
$$

9. Verify Cayley - Hamilton theorem for the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)$ and hence find the inverse of \boldsymbol{A}.

Solution : The characteristic equation of matrix A is
$\lambda^{3}-\lambda^{2}(1+4+6)+\lambda(-1-3+0)-[1(-1)-2(-3)+3(-2)]=0$
$\lambda^{3}-11 \lambda^{2}-4 \lambda+1=0$, which is the characteristic equation.
By Cayley - Hamilton theorem, we have to prove

$$
\mathrm{A}^{3}-11 \mathrm{~A}^{2}-4 \mathrm{~A}+1=0
$$

$$
\mathrm{A}^{2}=\mathrm{A} \times . \mathrm{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)=\left(\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right)
$$

$$
A^{3}=A^{2} \times A=\left(\begin{array}{ccc}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
157 & 283 & 353 \\
283 & 510 & 636 \\
353 & 636 & 793
\end{array}\right)
$$

$$
\begin{aligned}
A^{3}-11 A^{2}-4 \mathrm{~A}+\mathrm{I} & =\left(\begin{array}{lll}
157 & 283 & 353 \\
283 & 510 & 636 \\
353 & 636 & 793
\end{array}\right)-11\left(\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right)-4\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hence the theorem is verified.
To find A^{-1}
We have $A^{3}-11 A^{2}-4 A+I=0$

$$
\begin{aligned}
& \mathrm{I}=-\mathrm{A}^{3}+11 \mathrm{~A}^{2}+4 \mathrm{~A} \\
& \mathrm{~A}^{-1}=-\mathrm{A}^{2}-11 \mathrm{~A}+4 \mathrm{I} \\
& =-\left(\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right)-11\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)+4\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \mathbf{A}^{-1}=\left(\begin{array}{ccc}
1 & -3 & 2 \\
-3 & 3 & -1 \\
2 & -1 & 0
\end{array}\right)
\end{aligned}
$$

10. If $\boldsymbol{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ then show that $A^{\boldsymbol{n}}=\boldsymbol{A}^{\boldsymbol{n}-2}+\boldsymbol{A}^{2}-$ I for $n \geq 3$ using

Cayley-Hamilton theorem .

Solution : The characteristic equation of matrix A is
$\lambda^{3}-\lambda^{2}(1+0+0)+\lambda(-1+0+0)-[1(-1)-0+0]=0$
$\lambda^{3}-\lambda^{2}-\lambda+1=0$
By Cayley - Hamilton theorem, we have
$\mathbf{A}^{3}-\mathbf{A}^{2}-\mathbf{A}+\mathbf{I}=\mathbf{0}$
$\mathrm{A}^{3}-\mathrm{A}^{2}=\mathrm{A}-\mathrm{I}$
Pre multiplying both sides successively by A, we get
$\mathrm{A}^{3}-\mathrm{A}^{2}=\mathrm{A}-\mathrm{I}$
$\mathrm{A}^{4}-\mathrm{A}^{3}=\mathrm{A}^{2}-\mathrm{A}$
$A^{5}-A^{4}=A^{3}-I^{2}$
$A^{6}-A^{5}=A^{4}-A^{3}$
$A^{n-1}-A^{n-2}=A^{n-3}-A^{n-4}$
$\mathrm{A}^{\mathrm{n}}-\mathrm{A}^{\mathrm{n}-1}=\mathrm{A}^{\mathrm{n}-2}-\mathrm{A}^{\mathrm{n}-3}$
Adding all these equations, we get
$A^{n}-A^{2}=A^{n-2}-I$
$\mathrm{A}^{\mathrm{n}}=\mathrm{A}^{2}+\mathrm{A}^{\mathrm{n}-2}-\mathrm{I}, \mathrm{n} \geq 3$

11. Using Cayley- Hamilton theorem, evaluate the matrix

$$
A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}-8 A^{2}+2 A-I \text { if } A=\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right)
$$

Solution : The characteristic equation of matrix A is

$$
\begin{aligned}
& \lambda^{3}-\lambda^{2}(2+1+2)+\lambda(2+3+2)-[2(2)-1(0)+1(-1)]=0 \\
& \lambda^{3}-5 \lambda^{2}+7 \lambda-3=0 \\
& \text { we have to prove } \\
& \mathrm{A}^{3}-5 \mathrm{~A}^{2}+7 \mathrm{~A}-3 \mathrm{I}=0
\end{aligned}
$$

$$
A^{2}=A \times A=\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right)
$$

$$
A^{3}=A^{2} \times A=\left(\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
14 & 13 & 13 \\
0 & 1 & 0 \\
13 & 13 & 14
\end{array}\right)
$$

$$
\begin{aligned}
\mathrm{A}^{3}-5 \mathrm{~A}^{2}+7 \mathrm{~A}-3 \mathrm{I} & =\left(\begin{array}{ccc}
14 & 13 & 13 \\
0 & 1 & 0 \\
13 & 13 & 14
\end{array}\right)-5\left(\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right)+7\left(\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right)-3\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=0
\end{aligned}
$$

Hence the theorem is verified.

$$
\begin{aligned}
\mathrm{A}^{8}-5 \mathrm{~A}^{7} & +7 \mathrm{~A}^{6}-3 \mathrm{~A}^{5}+\mathrm{A}^{4}-5 \mathrm{~A}^{3}-8 \mathrm{~A}^{2}+2 \mathrm{~A}-\mathrm{I} \\
& =\mathrm{A}^{5}\left(\mathrm{~A}^{3}-5 \mathrm{~A}^{2}+7 \mathrm{~A}-3 \mathrm{I}\right)+\mathrm{A}\left(\mathrm{~A}^{3}-5 \mathrm{~A}^{2}+7 \mathrm{~A}-3 \mathrm{I}\right)-15 \mathrm{~A}^{2}+5 \mathrm{~A}-\mathrm{I} \\
& =\mathrm{A}^{5}(0)+\mathrm{A}(0)-15 \mathrm{~A}^{2}+5 \mathrm{~A}-\mathrm{I} \\
& =-15 \mathrm{~A}^{2}+5 \mathrm{~A}-\mathrm{I} \\
& =-15\left(\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right)+5\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-66 & -55 & -55 \\
0 & -11 & 0 \\
-55 & -55 & -66
\end{array}\right)
\end{aligned}
$$

12. Diagonalise the matrix $A=\left(\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right)$ by means of an orthogonal transformation.

Solution : The characteristic equation of matrix A is

$$
\lambda^{3}-\lambda^{2}(6+3+3)+\lambda(8+14+14)-[6(8)+2(-4)+2(-4)]=0
$$

$$
\lambda^{3}-12 \lambda^{2}+36 \lambda-32=0
$$

2 \begin{tabular}{c}

1
0

1

-12 \& 36 \& -32

2 \& -10 \& 16 \& 0
\end{tabular}

$\lambda=2$ is a root
the other roots are $\lambda^{2}-10 \lambda+16=0$

$$
\begin{aligned}
& (\lambda-2)(\lambda-8)=0 \\
& \Rightarrow \lambda=2,8
\end{aligned}
$$

Hence $\lambda=2,2,8$
The eigen vectors of matrix A is given by
$(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0$

$$
\text { (i.e.) } \begin{aligned}
& \left(\begin{array}{ccc}
6-\lambda & -2 & 2 \\
-2 & 3-\lambda & -1 \\
2 & -1 & 3-\lambda
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0 \\
& (6-\lambda) x_{1}-2 x_{2}+2 x_{3}=0 \\
& -2 x_{1}+(3-\lambda) x_{2}-x_{3}=0 \\
& 2 x_{1}-x_{2}+(3-\lambda) x_{3}=0
\end{aligned}
$$

When $\lambda=8$, equation(1) becomes

$$
\begin{aligned}
& -2 x_{1}-2 x_{2}+2 x_{3}=0 \\
& -2 x_{1}-5 x_{2}-x_{3}=0 \\
& \Rightarrow \frac{x_{1}}{2+10}=\frac{-x_{2}}{2+4}=\frac{x_{3}}{10-4} \Rightarrow \frac{x_{1}}{12}=\frac{-x_{2}}{6}=\frac{x_{3}}{6}
\end{aligned}
$$

$\Rightarrow \frac{x_{1}}{2}=\frac{x_{2}}{-1}=\frac{x_{3}}{1} \quad \therefore X_{1}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$

When $\lambda=2$, equation (1) becomes

$$
\begin{aligned}
& 4 x_{1}-2 x_{2}+2 x_{3}=0 \\
& -2 x_{1}+x_{2}-x_{3}=0 \\
& 2 x_{1}-x_{2}+x_{3}=0
\end{aligned}
$$

Here all the equations are same.
Put $x_{3}=0$, we get
$2 x_{1}-x_{2}=0$
$2 x_{1}=x_{2}$
$\frac{x_{1}}{1}=\frac{x_{2}}{2}$
$\therefore X_{2}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$
Let $\mathrm{X} 3=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be third eigen vector.

$$
\begin{aligned}
& X_{1}^{T} X_{3}=0 \Rightarrow 2 a-b+c=0 \\
& X_{2}^{T} X_{3}=0 \Rightarrow a+2 b+0 c=0
\end{aligned}
$$

Then $\quad \Rightarrow \frac{a}{0-2}=\frac{-b}{0-1}=\frac{c}{4+1} \quad$ Hence

$$
\frac{a}{-2}=\frac{b}{1}=\frac{c}{5}
$$

$$
\therefore X_{3}=\left(\begin{array}{c}
-2 \\
1 \\
5
\end{array}\right)
$$

Hence the modal matrix is $=\left(\begin{array}{ccc}2 & 1 & -2 \\ -1 & 2 & 1 \\ 1 & 0 & 5\end{array}\right)$
Here $\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=0$
So $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are pairwise orthogonal.
The Normalised modal matrix is

$$
\begin{aligned}
P & =\left(\begin{array}{lll}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{30}} \\
\frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\
\frac{1}{\sqrt{6}} & 0 & \frac{5}{\sqrt{30}}
\end{array}\right) \\
D=P^{T} A P & =\left(\begin{array}{lll}
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0 \\
\frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} & \frac{5}{\sqrt{30}}
\end{array}\right)\left(\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right)\left(\begin{array}{lll}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{30}} \\
\frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\
\frac{1}{\sqrt{6}} & 0 & \frac{5}{\sqrt{30}}
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{lll}
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0 \\
\frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} & \frac{5}{\sqrt{30}}
\end{array}\right)\left(\begin{array}{lll}
\frac{16}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{-4}{\sqrt{30}} \\
\frac{-8}{\sqrt{6}} & \frac{4}{\sqrt{5}} & \frac{2}{\sqrt{30}} \\
\frac{8}{\sqrt{6}} & 0 & \frac{10}{\sqrt{30}}
\end{array}\right)=\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

13. Reduce the Quadratic form $3 x_{1}{ }^{2}+2 x_{2}{ }^{2}+3 x_{3}{ }^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}$ to the canonical form through orthogonal transformation and find its nature.

Solution : Quadratic form is $\mathrm{X}^{\mathrm{T}} \mathrm{AX}$
The matrix A of Q.F. is $A=\left(\begin{array}{ccc}3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right)$
The characteristic equation of matrix A is

$$
\begin{aligned}
& \lambda^{3}-\lambda^{2}(3+2+3)+\lambda(5+9+5)-[3(5)+1(-3)+0]=0 \\
& \lambda^{3}-8 \lambda^{2}+19 \lambda-12=0
\end{aligned}
$$

$\lambda=1$ is a root.

$$
\lambda^{2}-7 \lambda+12=0
$$

The other roots are $(\lambda-3)(\lambda-4)=0$

$$
\lambda=3,4
$$

Hence $\boldsymbol{\lambda}=\mathbf{1 , 3 , 4}$
The eigen vectors of matrix A is given by
$(A-\lambda I) X=0$
$\left(\begin{array}{ccc}3-\lambda & -1 & 0 \\ -1 & 2-\lambda & -1 \\ 0 & -1 & 3-\lambda\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
$\left.\begin{array}{l}3-\lambda) x_{1}-x_{2}+0 x_{3}=0 \\ -x_{1}+(2-\lambda) x_{2}-x_{3}=0 \\ 0 x_{1}-x_{2}+(3-\lambda) x_{3}=0\end{array}\right\}$
When $\lambda=1$,Equation (1) becomes

$$
2 x_{1}-x_{2}+0 x_{3}=0
$$

$$
-x_{1}+x_{2}-x_{3}=0
$$

$\Rightarrow \frac{x_{1}}{1-0}=\frac{-x_{2}}{-2-0}=\frac{x_{3}}{2-1}$
$\Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{2}=\frac{x_{3}}{1}$
$\therefore X_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
When $\lambda=3$,Equation (1) becomes

$$
\begin{aligned}
& 0 x_{1}-x_{2}+0 x_{3}=0 \\
& -x_{1}-x_{2}-x_{3}=0 \\
\Rightarrow & \frac{x_{1}}{1-0}=\frac{-x_{2}}{0-0}=\frac{x_{3}}{0-1} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{0}=\frac{x_{3}}{-1} \quad \therefore X_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

When $\lambda=4$, Equation (1) becomes

$$
\begin{aligned}
& -x_{1}-x_{2}+0 x_{3}=0 \\
& -x_{1}-2 x_{2}-x_{3}=0 \\
& \Rightarrow \frac{x_{1}}{1-0}=\frac{-x_{2}}{1-0}=\frac{x_{3}}{2-1} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{-1}=\frac{x_{3}}{1} \quad \therefore X_{1}=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
\end{aligned}
$$

$$
\text { Hence the modal matrix is }=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & -1 \\
1 & -1 & 1
\end{array}\right)
$$

Here $\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=0$.
So X_{1}, X_{2}, X_{3} are pairwise orthogonal.
The normalized modal matrix is

$$
\begin{aligned}
& P=\left(\begin{array}{lll}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
\end{array}\right) \\
& P^{T} A P=\left(\begin{array}{lll}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

Consider the orthogonal transformation $\mathrm{X}=\mathrm{PY}$
Substitute (2) in (1) we get
$(P Y)^{\mathrm{T}} \mathrm{A}(\mathrm{PY})=\mathrm{Y}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{APY}$

$$
\begin{gathered}
=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
=y_{1}{ }^{2}+3{y_{2}}^{2}+4{y_{3}}^{2}
\end{gathered}
$$

Which is the canonical form
Rank $=$ No. of terms in the canonical form $=3$
Index $=$ No. of positive square terms in the canonical form $=3$
Signature $=($ No. of positive square terms $)-($ No. of negative square terms $)=3$
Nature $=$ positive definite.
14. Reduce the Quadratic form $x^{2}+y^{2}+z^{2}+4 x y+4 y z+4 z x$ into sum of squares form by an orthogonal transformation hence find the rank, index, signature and nature of Q.F.

Solution : Quadratic form is $\mathrm{X}^{\mathrm{T}} \mathrm{AX}$
The matrix A of Q.F. is $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$
The characteristic equation of matrix A is

$$
\begin{aligned}
& \lambda^{3}-\lambda^{2}(1+1+1)+\lambda(-3-3-3)-[1(-3)-2(-2)+2(2)]=0 \\
& \lambda^{3}-3 \lambda^{2}-9 \lambda-5=0 \\
& -1 \begin{array}{rrrr}
1 & -3 & -9 & -5 \\
0 & -1 & 4 & 5
\end{array} \\
& \lambda=-1 \text { is a root. }
\end{aligned}
$$

$\lambda^{2}-4 \lambda-5=0$
The other roots are $(\lambda+1)(\lambda-5)=0$

$$
\lambda=-1,5
$$

Hence $\boldsymbol{\lambda}=\mathbf{5}, \mathbf{- 1}, \mathbf{- 1}$
The eigen vectors of matrix A is given by
$(A-\lambda I) X=0$
$\left.\begin{array}{l}\left(\begin{array}{ccc}2-\lambda & 2 & 2 \\ 2 & 1-\lambda & 2 \\ 2 & 2 & 1-\lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0 \\ (1-\lambda) x_{1}+2 x_{2}+2 x_{3}=0 \\ 2 x_{1}+(1-\lambda) x_{2}+2 x_{3}=0 \\ 2 x_{1}+2 x_{2}+(1-\lambda) x_{3}=0\end{array}\right\}, ~ \$$
When $\lambda=5$,Equation (1) becomes

$$
-4 x_{1}+2 x_{2}+2 x_{3}=0
$$

$$
2 x_{1}-4 x_{2}+2 x_{3}=0
$$

$$
\Rightarrow \frac{x_{1}}{4+8}=\frac{-x_{2}}{-8-4}=\frac{x_{3}}{16-4}
$$

$$
\Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{1}=\frac{x_{3}}{1}
$$

$$
\therefore X_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

When $\lambda=-1$,Equation (1) becomes

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}+2 x_{3}=0 \\
& 2 x_{1}+2 x_{2}+2 x_{3}=0 \\
& 2 x_{1}+2 x_{2}+2 x_{3}=0
\end{aligned}
$$

Hencealltheequationsaresame

$$
\text { Putx }_{3}=0
$$

$$
2 x_{1}+2 x_{2}=0 \Rightarrow 2 x_{1}=-2 x_{2}
$$

$$
\frac{x_{1}}{-2}=\frac{x_{2}}{2} \Rightarrow \frac{x_{1}}{-1}=\frac{x_{2}}{1}
$$

$$
\therefore X_{2}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

$$
\text { Let } \mathrm{X}_{3}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text { be third eigen vector. }
$$

$$
X_{1}^{T} X_{3}=0 \Rightarrow a+b+c=0
$$

$$
X_{2}^{T} X_{3}=0 \Rightarrow-a+b+0 c=0
$$

$$
\text { Then } \Rightarrow \frac{a}{0-1}=\frac{-b}{0+1}=\frac{c}{1+1}
$$

$$
\frac{a}{-1}=\frac{b}{-1}=\frac{c}{2}
$$

$$
\therefore X_{3}=\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)
$$

Hence the modal matrix is $=\left(\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 0 & 2\end{array}\right)$
Here $\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=0$.
So $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are pairwise orthogonal.

The normalized modal matrix is

$$
\begin{aligned}
& P=\left(\begin{array}{lll}
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right) \\
& P^{T} A P=\left(\begin{array}{lll}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Consider the orthogonal transformation $\mathrm{X}=\mathrm{PY}$
Substitute (2) in (1) we get
$(P Y)^{\mathrm{T}} \mathrm{A}(\mathrm{PY})=\mathrm{Y}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{APY}$

$$
\begin{aligned}
= & {\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right.} \\
& =5 y_{1}{ }^{2}-y_{2}{ }^{2}-y_{3}{ }^{2}
\end{aligned}
$$

Which is the canonical form
Rank $=$ No. of terms in the canonical form $=3$
Index $=$ No. of positive square terms in the canonical form $=1$
Signature $=($ No. of positive square terms $)-($ No. of negative square terms $)=1-2=-1$
Nature $=$ indefinite .
15.Reduce the Quadratic form $2 x_{1}{ }^{2}+6 x_{2}{ }^{2}+2 x_{3}{ }^{2}+8 x_{1} x_{3}$ to the canonical form through orthogonal transformation.
Solution : Quadratic form is $\mathrm{X}^{\mathrm{T}} \mathrm{AX}$
The matrix A of Q.F. is $\mathrm{A}=\left(\begin{array}{lll}2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2\end{array}\right)$
The characteristic equation of matrix A is

$$
\begin{aligned}
& \lambda^{3}-\lambda^{2}(2+6+2)+\lambda(12-12+12)-[2(12)-0+4(-24)]=0 \\
& \lambda^{3}-10 \lambda^{2}+12 \lambda+72=0 \\
& -2 \begin{array}{cccc}
1 \\
0 & -10 & 12 & 72 \\
-24 & -72
\end{array} \\
& \begin{array}{llll}
1 & -12 & 36 & 0
\end{array}
\end{aligned}
$$

$\lambda=-2$ is a root.

$$
\lambda^{2}-12 \lambda+36=0
$$

The other roots are $(\lambda-6)(\lambda-6)=0$

$$
\lambda=6,6
$$

Hence $\boldsymbol{\lambda}=\mathbf{- 2 , 6 , 6}$
The eigen vectors of matrix A is given by
$(A-\lambda I) X=0$
$(2-\lambda) x_{1}+0 x_{2}+4 x_{3}=0$
$\left.0 x_{1}+(6-\lambda) x_{2}+0 x_{3}=0\right\}$
$4 x_{1}+0 x_{2}+(2-\lambda) x_{3}=0$
When $\lambda=-2$,Equation (1) becomes
$4 x_{1}+0 x_{2}+4 x_{3}=0$
$0 x_{1}+8 x_{2}+0 x_{3}=0$
$\Rightarrow \frac{x_{1}}{0-32}=\frac{-x_{2}}{0-0}=\frac{x_{3}}{32-0} \Rightarrow \frac{x_{1}}{-32}=\frac{x_{2}}{0}=\frac{x_{3}}{32} \quad \therefore X_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$
When $\lambda=6$,Equation (1) becomes
$4 x_{1}+0 x_{2}+4 x_{3}=0$
$0 x_{1}+0 x_{2}+0 x_{3}=0$
$4 x_{1}+0 x_{2}-4 x_{3}=0$
Hencealltheequationsaresame
Putx ${ }_{3}=0$
$-4 x_{1}+0 x_{2}=0 \Rightarrow 4 x_{1}=0 x_{2}$
$\frac{x_{1}}{0}=\frac{x_{2}}{4} \Rightarrow \frac{x_{1}}{0}=\frac{x_{2}}{1}$
$\therefore X_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
Let $\mathrm{X}_{3}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be third eigen vector.

$$
X_{1}^{T} X_{3}=0 \Rightarrow-a+0 b+c=0
$$

$$
X_{2}{ }^{T} X_{3}=0 \Rightarrow 0 a+b+0 c=0
$$

$$
\text { Then } \Rightarrow \frac{a}{0-1}=\frac{-b}{0-0}=\frac{c}{-1-0}
$$

$$
\frac{a}{-1}=\frac{b}{0}=\frac{c}{-1}
$$

$$
\therefore X_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Hence the modal matrix is $=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$
Here $\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=0$.
So $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are pairwise orthogonal.
The normalized modal matrix is
$P=\left(\begin{array}{ccc}0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
$P^{T} A P=\left(\begin{array}{ccc}0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{ccc}2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2\end{array}\right)\left(\begin{array}{ccc}0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
$=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right)$

Consider the orthogonal transformation $\mathrm{X}=\mathrm{PY}$
Substitute (2) in (1) we get
$(P Y)^{\mathrm{T}} \mathrm{A}(\mathrm{PY})=\mathrm{Y}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{APY}$

$$
\begin{gathered}
=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
=-2{y_{1}}^{2}+6{y_{2}}^{2}+6 y_{3}^{2}
\end{gathered}
$$

Which is the canonical form
16. Reduce the Quadratic form $10 x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+6 x_{2} x_{3}-10 x_{3} x_{1}-4 x_{1} x_{2}$ to the canonical form through orthogonal transformation. Find a set of values of x_{1}, x_{2}, x_{3} which will make the form vanish.

Solution : Quadratic form is $\mathrm{X}^{\mathrm{T}} \mathrm{AX}$
The matrix A of Q.F. is $A=\left(\begin{array}{ccc}10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5\end{array}\right)$
The characteristic equation of matrix A is

$$
\begin{aligned}
& \lambda^{3}-\lambda^{2}(10+2+5)+\lambda(1+25+16)-[10(1)+2(5)-5(4)]=0 \\
& \lambda^{3}-17 \lambda^{2}+42 \lambda=0 \Rightarrow \lambda\left(\lambda^{2}-17 \lambda+42\right)=0 \\
& \lambda=0 \operatorname{or} \lambda^{2}-17 \lambda+42=0 \\
& \lambda=0 \operatorname{or}(\lambda-3)(\lambda-14)=0 \\
& \lambda=3,14
\end{aligned}
$$

Hence $\lambda=0,3,14$.
The eigen vectors of matrix A is given by

$$
\begin{align*}
& (A-\lambda I) X=0 \\
& \left(\begin{array}{ccc}
10-\lambda & -2 & -5 \\
-2 & 2-\lambda & 3 \\
-5 & 3 & 5-\lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0 \\
& (10-\lambda) x_{1}-2 x_{2}-5 x_{3}=0 \tag{1}\\
& \left.-2 x_{1}+(2-\lambda) x_{2}+3 x_{3}\right\}=0 \\
& -5 x_{1}+3 x_{2}+(5-\lambda) x_{3}=0
\end{align*}
$$

When $\lambda=0$, Equation (1) becomes
$10 x_{1}-2 x_{2}-5 x_{3}=0$
$-2 x_{1}+2 x_{2}+3 x_{3}=0$
$\Rightarrow \frac{x_{1}}{-6+10}=\frac{-x_{2}}{30-10}=\frac{x_{3}}{20-4}$
$\Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{-5}=\frac{x_{3}}{4}$
$\therefore X_{1}=\left(\begin{array}{c}1 \\ -5 \\ 4\end{array}\right)$
When $\lambda=3$,Equation (1) becomes
$7 x_{1}-2 x_{2}-5 x_{3}=0$
$-2 x_{1}-x_{2}+3 x_{3}=0$
$\Rightarrow \frac{x_{1}}{-6-5}=\frac{-x_{2}}{21-10}=\frac{x_{3}}{-7-4}$
$\Rightarrow \frac{x_{1}}{-11}=\frac{x_{2}}{-11}=\frac{x_{3}}{-11}$
$\therefore X_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
When $\lambda=14$, Equation (1) becomes
$-4 x_{1}-2 x_{2}-5 x_{3}=0$
$-2 x_{1}-12 x_{2}+5 x_{3}=0$
$\Rightarrow \frac{x_{1}}{-6-60}=\frac{-x_{2}}{-12-10}=\frac{x_{3}}{48-4} \Rightarrow \frac{x_{1}}{-66}=\frac{x_{2}}{22}=\frac{x_{3}}{44} \quad \therefore X_{3}=\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right)$
Hence the modal matrix is $=\left(\begin{array}{ccc}1 & 1 & -3 \\ -5 & 1 & 1 \\ 4 & 1 & 2\end{array}\right)$
Here $\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=0$.
So X_{1}, X_{2}, X_{3} are pairwise orthogonal.
The normalized modal matrix is

$$
\begin{aligned}
& P=\left(\begin{array}{lll}
\frac{1}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{-3}{\sqrt{14}} \\
\frac{-5}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} \\
\frac{4}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}}
\end{array}\right) \\
& \\
& P^{T} A P=\left(\begin{array}{lll}
\frac{1}{\sqrt{42}} & \frac{-5}{\sqrt{3}} & \frac{4}{\sqrt{14}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{-3}{\sqrt{14}} & \frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}}
\end{array}\right)\left(\begin{array}{ccc}
10 & -2 & -5 \\
-2 & 2 & 3 \\
-5 & 3 & 5
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{-3}{\sqrt{14}} \\
\frac{-5}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} \\
\frac{4}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}}
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 14
\end{array}\right)
\end{aligned}
$$

Consider the orthogonal transformation $\mathrm{X}=\mathrm{PY}$
Substitute (2) in (1) we get
$(P Y)^{\mathrm{T}} \mathrm{A}(\mathrm{PY})=\mathrm{Y}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{APY}$

$$
\begin{gathered}
=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 14
\end{array}\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right. \\
=0 y_{1}{ }^{2}+3 y_{2}{ }^{2}+14{y_{3}}^{2}
\end{gathered}
$$

Which is the canonical form
To find the set of non zero values of $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ which makes the QF zero
From the orthogonal transformation $\mathrm{X}=\mathrm{PY}$ we have
$x_{1}=\frac{y_{1}}{\sqrt{42}}+\frac{y_{2}}{\sqrt{3}}+\frac{-3 y_{3}}{\sqrt{14}}$
$x_{2}=\frac{-5 y_{1}}{\sqrt{42}}+\frac{y_{2}}{\sqrt{3}}+\frac{y_{3}}{\sqrt{3}}$
$x_{3}=\frac{4 y_{1}}{\sqrt{42}}+\frac{y_{2}}{\sqrt{3}}+\frac{2 y_{3}}{\sqrt{14}}$
Clearly canonical form reduces to zero when $y_{1}=y_{2}=0$, using this in $\left(^{*}\right)$ we have

$$
x_{1}=\frac{y_{1}}{\sqrt{42}}, x_{2}=\frac{-5 y_{1}}{\sqrt{42}}, x_{3}=\frac{4 y_{1}}{\sqrt{42}}
$$

let $y_{1}=\sqrt{42}$ then required non zero values of $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ which makes the QF zero is $x_{1}=1, x_{2}=-5, x_{3}=4$
17. Reduce the Quadratic form $x^{2}+3 y^{2}+3 z^{2}-2 y z$ to the canonical form through orthogonal transformation and. hence find the nature of $Q . F$.

Solution : Quadratic form is $\mathrm{X}^{\mathrm{T}} \mathrm{AX}$
The matrix A of Q.F. is $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right)$
The characteristic equation of matrix A is $\begin{aligned} & \lambda^{3}-\lambda^{2}(3+3+1)+\lambda(8+3+3)-[1(8)-0+0]=0 \\ & \lambda^{3}-7 \lambda^{2}+14 \lambda-8=0\end{aligned}$

1 | | | | |
| :---: | :---: | :---: | :---: |
| 1 | -7 | 14 | -8 |
| 0 | 1 | -6 | 8 |
| 1 | -6 | 8 | 0 |

$\lambda=1$ is a root.

$$
\lambda^{2}-6 \lambda+8=0
$$

The other roots are $(\lambda-4)(\lambda-2)=0$

$$
\lambda=2,4
$$

Hence $\boldsymbol{\lambda}=\mathbf{1 , 2 , 4}$
The eigen vectors of matrix A is given by
$(A-\lambda I) X=0$
$\left(\begin{array}{ccc}1-\lambda & 0 & 0 \\ 0 & 3-\lambda & -1 \\ 0 & -1 & 3-\lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
$\left.\begin{array}{l}(1-\lambda) x_{1}+0 x_{2}+0 x_{3}=0 \\ 0 x_{1}+(3-\lambda) x_{2}-x_{3}=0 \\ 0 x_{1}-x_{2}+(3-\lambda) x_{3}=0\end{array}\right\}$
When $\lambda=1$, Equation (1) becomes
$0 x_{1}+2 x_{2}-x_{3}=0$
$0 x_{1}-x_{2}+2 x_{3}=0$
$\Rightarrow \frac{x_{1}}{4-1}=\frac{-x_{2}}{0-0}=\frac{x_{3}}{0-0}$
$\Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{0}=\frac{x_{3}}{0}$
$\therefore X_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
When $\lambda=2$,Equation (1) becomes
$-\mathrm{x}_{1}+0 \mathrm{x}_{2}+0 \mathrm{x}_{3}=0$
$0 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0$ (taking first and second equation)
$\Rightarrow \frac{x_{1}}{0-0}=\frac{-x_{2}}{1-0}=\frac{x_{3}}{-1-0}$
$\Rightarrow \frac{x_{1}}{0}=\frac{-x_{2}}{1}=\frac{x_{3}}{1}$
$\therefore X_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
When $\lambda=4$,Equation (1) becomes
$-3 x_{1}+0 x_{2}+0 x_{3}=0$
$0 \mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}=0$ (taking first and second equation)
$\Rightarrow \frac{x_{1}}{0-0}=\frac{-x_{2}}{3-0}=\frac{x_{3}}{3-0} \Rightarrow \frac{x_{1}}{0}=\frac{-x_{2}}{-3}=\frac{x_{3}}{3} \quad \therefore X_{3}=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$

Hence the modal matrix is $=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right)$
Here $\mathrm{X}_{1}{ }^{\mathrm{T}} \mathrm{X}_{2}=\mathrm{X}_{2}{ }^{\mathrm{T}} \mathrm{X}_{3}=\mathrm{X}_{3}{ }^{\mathrm{T}} \mathrm{X}_{1}=0$.
So $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are pairwise orthogonal.
The normalized modal matrix is
$P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
$P^{T} A P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right)$
Consider the orthogonal transformation $\mathrm{X}=\mathrm{PY}$
Substitute (2) in (1) we get
$(P Y)^{\mathrm{T}} \mathrm{A}(\mathrm{PY})=\mathrm{Y}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{APY}$

$$
\begin{aligned}
= & {\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right.} \\
& =y_{1}^{2}+2 y_{2}^{2}+4 y_{3}^{2}
\end{aligned}
$$

Which is the canonical form
Since all the eigen values are positive, the nature of Q.F. is positive definite.

UNIT-II DIFFFRENTAL CALCULUS

A function of is a rule that assign to each element $f(x)=x^{3}, \frac{f(a+h)-f(a)}{h}$
 of $f(x)$ is the set of all read no's and range of $f(x)$ is also the set of all real numbers
3) Find the domain and range of $f(x)=x^{2}$
zen For the function $f(x)=x^{2}$, The domain of f i \mathbb{R} and The range is $[0, \infty]$
4) Find the domain of ate function $f(x)=\frac{1}{x^{2}-x}$

Soc ls Let $f(x)=\frac{1}{x^{2}-x}=\frac{1}{x(x-1)}, x \neq 0, x \neq 1, \quad, \quad, \quad, \quad$,
The domain of of is $(-\infty, 0) \cup(0,1) \cup(1, \infty)$ even or odd?
sole Given $\begin{aligned} f(x) & =x^{5}+x \\ f(x) & =(-x)^{5}-x=-x^{5}-x=-\left(x^{5}+x\right)=-f(x)\end{aligned}$
$f(-x)=(-x)^{5}-x=-x^{5}-x=-\left(x^{5}+x\right)=-f(x)$
$\Rightarrow f(x)$ is an odd.
6) Verify whether the given function $f(x)=1-x^{4}$ is an odd or ewe
sol Given $\begin{aligned} f(x) & =1-x^{4} \\ f(-x) & =1-(-x)^{2}=1-x^{4}=f(x)\end{aligned}$
$f(-x)=1-(-x)^{2}=1$
(x) is an even function.
7) Verify the given $f\left(n, f(x)=2 x-x^{2}\right.$ is at odd, even or neither even nor odd.

$$
\text { sell } \quad f(-x) \equiv 2(-x)-(-x)^{2}=-\left(2 x+x^{2}\right) \neq-f(x)(x) f(x)
$$

$f(x)$ is neither even nor odd.

$$
\begin{aligned}
& (x)=x^{3}, \quad \frac{f(a+h)-f(a)}{h} \\
& \begin{aligned}
\frac{f(a+h)-f(a)}{h} & =\frac{(a+h)^{3}-a^{3}}{h}=\frac{1}{h}\left[a^{2}+3 a^{2} h+3 a h^{2}+h^{3} f\right] \\
& \left.=\frac{1}{h} \int^{3} 3 a h+3 a h^{2}+h^{3}\right]
\end{aligned}
\end{aligned}
$$

a) find the domain of the for $f(x)=\frac{x+4}{x^{2}-9}$ sole Given $f(x)=\frac{x+4}{x^{2}+9}=\frac{x+4}{(x+3)(x-3)}, x \neq-3,3$ The for $f(x)$ is not defined at $x= \pm 3$
\therefore The domain of f is

$(-\infty, 3) \cup(-33) \cup(3 \infty)$
11) Determine the $\operatorname{limit}_{x \rightarrow 5}\left(2 x^{2}-3 x+4\right)$

Son $\begin{aligned} \lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right) & =2 \times 5^{2}-3 x 5+4 \\ & =2 \times 25-15+4\end{aligned}$

$$
=50-15+4
$$

$$
=39
$$

11) State Squeeze or sanduhich Theorem

$$
\text { If } f(x) \leq g(x) \leq h(x) \text { when } x \text { in near ' } a \text { ' and }
$$

$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=1$, then $\lim _{x \rightarrow c} g(x)=L$
12) Define a continuous function or Continuity of a function
A function b is continuous at a if
(a) $f(a)$ is defined
(b) $\lim _{x \rightarrow a} f(x)$ exists
(c) $\lim _{x \rightarrow a} f(x)=f(a)$
13) State intermediate value theorem

Suppose that f is continuous on the deed interval
$[a, b]$ and let N be any number blu $f(a) \& f(b)$, where
$f(a) \neq f(b)$. Then there exist no c in $[a, b]$ set $f(c)=N$
14) Show that the given $f n$ is continuous at $a=-1$ for $\cdot f(x)=\left(x+5 x^{3}\right)^{4}$
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)^{4}$
$=\left[-1+2(-1)^{3}\right]^{4}=(-1-2)^{4}$
$=(-3)^{4}=81 / 1$
By The defer of continuity f is continuous at $a=-1$
15) Find the points on the wove $y=x^{4}-6 r^{2}+4$ where The tangent line is horizontal
Solo Since the tangent line is horizontal
$\Rightarrow d y d x=0 \rightarrow$ (1)
Given $y=x^{4}-6 x^{2}+4$
$d y / d x=4 x^{3}-12 x$.
\therefore by (1) $4 x^{3}-12 x=0$

$$
4 x\left(x^{2}-3\right)=0
$$

$x=0$ (or) $x^{2}=3 \Rightarrow x= \pm \sqrt{3} / 1$.
when $x=0$,
$0, y=0-0+4$
$(0,4)$
when $x= \pm \sqrt{3}, y=(\pm \sqrt{3})^{4}-6(\pm \sqrt{3})^{2}+4$

$$
=9-18+4=-5
$$

$\therefore(\pm \sqrt{3}, 5)$ The paints are $(0,4)(\sqrt{3},-5)(-\sqrt{3}, \sqrt{5})$
16) The motion of a particle is given by $s=2 t^{3}-5 t^{2}+3 t+4$ find the acceleration and what is The acceleration after 2 seconds
Soon Given $s=2 t^{3}-5 t^{2}+3 t+4$
velocity $=v(t)=d s / d t-6 t^{2}-10 t+3$.
acceleration $n=a(t)=12 t-10$... $l_{2 \ldots} 2$..
17. Does the curve $y=x^{4}-2 x^{2}+2$ have any
horizontal tangents I SD whore?
Ans Given $y=x^{4}-2 x^{2}+2$

$$
d y d x=4 x^{3}-4 x
$$

Since horizontal tangents, $d y / d x=0$
$\Rightarrow 4 x^{3}-4 x=0$
$4 x\left(x^{2}-1\right)=0$
$\Rightarrow x=0, x^{2}-1=0$
$\Rightarrow x=0, x=1, x=-1$
when $x=0, y=0-0+2$
$\Rightarrow x=0, y=2 \quad(0,2)$
when $x=1, y=1-2+2=1$

$$
\Rightarrow x=1, \quad y=1 \quad(0,1)
$$

when $x=-1 \quad y=(-1)^{4}-2(1)^{7}+2=1-2+2=1$
$\Rightarrow x=-1, y=1 \quad(-1,1)$
The points are (0,2) (1,11$)(-1,1)$)
is) Find the derivative of $f(x)=\frac{1}{\sqrt[3]{x^{2}+x+1}}$ self Let $f(x)=\frac{1}{\sqrt[3]{x^{2}+x+1}}=\left(x^{2}+x+1\right)^{-1 / 3}$ $f(x)=\frac{-1}{3}\left(x^{2}+x+1\right)^{-1 / 3^{-1}} \cdot(=x+1)$

$$
=-\frac{1}{9}\left(x^{2}+x+1\right)^{-4 / 3} \cdot(2 x+1) /
$$

19. Find the differentiation of $f(x)=\sqrt{\log x}$

$$
\text { san } f(x)=\frac{1}{2}(\log x)^{1 /-1} \frac{d}{d x}(\log x)=\frac{1}{2}(\log x)^{-1 / 2} \cdot \frac{1}{x}=\frac{1}{2 \sqrt{\log x} \cdot 1 /}
$$

20) Differentiate $f(x)=\log _{10}(2+\sin x)$
gods Given $f(x)=\log _{10}(z+\sin x)$

$$
f^{\prime}(x)=\frac{1}{2+\sin x} \cos x
$$

21) State the extreme value theorem

If f is continuous on a chased interval $[a, b]$
Then of attains absolute m aximum value $f(x)$ and an absolute minimum value $f(d)$ at asomends c and $d c R[a, b]$
22) state Fermat's theorem

If of has a local maximum or minimum atc and if $f^{\prime}(c)$ exists then of $(c)=0$
23) What are the conditions for absolute maximum and minimum values.

Let c be a no l, in the domain A o the for t Than $f(c)$ is the
(i) absolute max value of on α if $f(c) \geq f(x) \quad \forall x$ in D
(ii) Absolute min value of f on θ if $f(c) \leqslant f(x)$
$\forall x u \operatorname{D} D$. An absolute max or min is called global $\max (o r) \min$. The max and \min values are called
extreme values q θ.
24) Define the critical number in Man $(o r)$ Min value Soln If of has a do cal man or min at c, Then c is a critical number of θ.
25) Explain the conditions for local maximum \& local minimum value
son Let of be furs (t) If d'changes the to - we then of has local maximum
(ii) If f'charges -we to the then of has
local minimum.

26 write down the steps of the first derivatulu test Sd) Suppose that c is a critical no o a continuous $f_{n} f$: (i) If f' changes from the to we at c, then of has a local maximum at c.
(ii) Io of'changes from - le to the at c, then of has 9 local minimum at c.
(iii) If f' does not changes sign at c, then of has no local maximum or minimum at c.
27) Write down the conditions for the concavity test Write don down the conditions for concave upward and downward in an interval
(i) If $f^{\prime}(x)<0 \quad \forall x$ in $工$, then the graph of f is Concave up ward on I.
(ii) If $f^{\prime \prime}(x)>0 \quad \forall x \in \pm$ Then the graph of f is concave down ward on I.
28. Define an inflexion point.

A point P on a curve $y=f(x)$ is called an inflexion point if of is continuous and the wave changes from concave upward to concave downward or from concave downward to concave upward at P.
29). Explain the second derivative test

Suppose $f^{\prime \prime}$ is continuous near C.
(i) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then f has a local minimum at C
(ii) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ then f has a local maximum at $c \%$.
30). If $f(1)=10 \quad f^{\prime}(x) \geq 2$ for $1 \leq x \leq 4$. how small can $f(4)$ possibly be.
Sols. By mean value the

$$
\begin{aligned}
& f(c)=\frac{\phi(b)-\phi(a)}{b-a} \quad \text { Here } b=4, a=1 \\
\Rightarrow & f(c)=\frac{f(4)-\phi^{\prime}(1)}{4-1} \Rightarrow \frac{f^{\prime}(4)-f(1)}{8} \geq 2 \\
\Rightarrow & \frac{f(4)-10}{3} \geq 2 \rightarrow f(4)-10 \geq 6
\end{aligned}
$$

$\Rightarrow f(4) \geq 16 \quad \therefore$ The min value 416 .
31) Find $d / d x\left[(\sin x)^{\cos x}\right]$

Solon

$$
\begin{aligned}
& \text { Find } d / d x \\
& d / d x\left[(\sin x)^{\cos x}\right]=d / d x\left[e^{\cos x \log \sin x}\right] \\
&=e^{\cos x \log \sin x}\left[\cos \cdot \frac{1}{\sin x} \cos x+\right. \\
&=(\sin x)^{\cos x}\left[\frac{\cos ^{2} x}{\sin x}-\sin x \log \sin x\right]_{1} .
\end{aligned}
$$

32) limit of a function.

A function $f(x)$ said to have a limit ' l ' if $|f(x)-l|<\xi$ whenever $|x-a|<\delta$

$$
\text { ie } \lim _{x \rightarrow a} f(x)=1
$$

1. Guess the value of $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$

Son
Given $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$.
Here $f(x)=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{x-1}=x+1$
values of x below and above 1 .

x / below 1	$f(x)=x+1$			
0.9	1.9			
0.99	1.99			
0.999	1.999			
0.9999	1.999	\quad	$x /$ above 1	$f(x)=x+1$
:---:	:---:			
1.1	2.1			
1.01	2.01			
1.001	2.001			
1.0001	2.0001			

$\phi(x)$ tends to 2 as x tends to 1

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 1} f(x)=2 \\
& \Rightarrow \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
\end{aligned}
$$

2) Guess The value of $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
doln Given $\lim _{x \rightarrow 0} \frac{\sin x}{x}$, Here $f(x)=\frac{\sin x}{x}$.
Value of x below and above 0

From the table

(10)

Left hand limit of dix)
The left hand limit of $f(x)$ as x tends to L
is $\lim _{x \rightarrow a^{-}} f(x)=1 \quad$ Here a- means $x<a$ (-ne)
Infinite limits
Let. f be a function defined on both sides of a except possibly at ' a ' it self.
(i) Then $\lim _{x \rightarrow a} f(x)=\infty$ (ii) $\lim _{x \rightarrow a} f(x)=-\infty$
3) Find the value of $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if it exist. sole

As x dose to $0 x^{2}$ also becomes close to 0 but $1 / x^{2}$ becomes Very large.

x	$y=11 x^{2}$
± 1	1
± 0.5	4
± 0.2	25
± 0.1	100
± 0.9	10,000
± 0.001	$1,00,000$

Thus the value of $f(x)=1 / x^{2}$ dunot approach a numb hos
Lo $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ does not exist

$$
\Rightarrow \lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

4. Sketch the graph of the function $f(x)= \begin{cases}1+x, & , x-1 \\ x^{2} & -1 \leq x \leq 1\end{cases}$
and use it to determine the values of $\propto(2-x, x \geq 1$
for which $\lim _{x \rightarrow a} f(x)$ exists.
Sod. Given $f(x)=\left\{\begin{array}{l}1+x, x<-1 \\ x^{2}, \\ 2-x, \\ 2-x \geq 1\end{array}\right.$

From The graph $\lim _{n \rightarrow a} d(x)$ exist for all ' a ' except at $a=-1$ \Rightarrow right $\&$ left hand limits one different at $a=-1$
5) Find $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}$
$\begin{aligned} \frac{\text { dd }}{} \lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x} & =\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{x(x / 1)}=\lim _{x \rightarrow 1} \frac{x+2}{x}=\frac{1+2}{1} \\ & =z_{1 /}\end{aligned}$

$\lim _{x \rightarrow 0} x^{2}=0$ and $\lim _{x \rightarrow 0}-x^{2}=0$
$\begin{array}{rlrl}\text { By Square Theorem } & f(x) & =-x^{2} \quad g(x)=x^{2} \\ \lim _{x \rightarrow 0} x^{2} \sin 4 / x & =0 & h(x)=x^{2} \sin 1 / x .\end{array}$
in). Evaluate $\lim _{x \rightarrow \pi} \frac{1+\cos 2 x}{(1-2 x)^{2}} \cdot \tan (2016)$
$\lim _{x \rightarrow \pi / 2} \frac{1+\cos 2 x}{(\pi-2 x)^{2}}=\lim _{x \rightarrow \pi / 2} \frac{2 \cos ^{2} x}{(\pi-2 x)^{2}}=\lim _{x \rightarrow \pi / 2} \frac{2 \sin ^{2}(\pi / 2-x)}{2^{2}\left(\pi / 0^{-x}\right)^{2}}$
. $\lim _{x \rightarrow \pi / 2} \frac{1+\cos 2 x}{(\pi-2 x)^{2}}=\frac{1+\cos \pi}{(\pi-\pi)^{2}}=\frac{1-1}{0}=\frac{0}{0}$
$=\lim _{x \rightarrow \pi / 2} \frac{(\nexists)(\sin 2 x)}{2(\pi-2 x)(-2)}=\frac{\sin \pi}{\pi-\pi}=\frac{0}{0}$
$=\lim _{x \rightarrow \pi / 2} \frac{2 \cos 2 x}{2(2)}=\frac{\cos \pi}{-2}=\frac{-1}{-2}=1 / 2$.
6) If $f(x)=[x]$ is The greatest integer function find the limit if it exists. $\lim _{x \rightarrow 3^{+}}[x] \cdot \lim _{x \rightarrow 3^{-}}[x], \lim _{x \rightarrow-2}[x], \lim _{x \rightarrow-2 \cdot 4}[x]$
Soc Given $f(x)=[x]$, $[x]=n$ if $n \leqslant x<n+1$
$\lim _{x \rightarrow 3^{+}}[x]=\lim _{x \rightarrow 3^{+}} 3=3(1+3 \leq x<4,[x]=3) \leq$
$\lim _{x \rightarrow 3^{-}}[x]=\lim _{x \rightarrow 3^{-}} 2=2$ (If $2 \leqslant x<3,[x]=2$)

$$
\lim _{x \rightarrow 2^{-}}[x]=\lim _{x \rightarrow 2^{-}}(-3)=-3
$$

$$
\lim _{x \rightarrow 2^{+}}[x]=\lim _{x \rightarrow-2^{+}}(-2)=-2
$$

$$
\therefore \lim _{x \rightarrow-2^{-}}[x] \neq \lim _{x \rightarrow-2^{+}}[x]
$$

$$
\Rightarrow \lim _{x \rightarrow-2}[x] \text { does not exist }
$$

$$
\lim _{x \rightarrow-2 \cdot 4}[x] \neq \lim _{x \rightarrow-2 \cdot 4}(-3)=-3 / 1 .
$$

Continuity:-

$$
\begin{aligned}
& \text { A function of: Contimucue at a point ' } a \text { ' if } \operatorname{lex}_{x \rightarrow 0} \phi(n)=f(a) \\
& \text { [or] }
\end{aligned}
$$

$$
\text { (i) } f \text { is defined at a ie, } f(a) \text { exists }
$$

$$
\text { (ii) } \lim _{x \rightarrow a} f(x) \text { exist. ie, } \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)
$$

$$
\text { (iii) } \lim _{x \rightarrow a} f(x)=f(a)
$$

1) Find the domain where the function of is continuous. Also find the numbers at which the function t is dincontinucly where $f(x)=\left\{\begin{array}{ll}1+x^{2}, & x \leq 0 \\ 2-x, & 0<x \leq 2 \\ (x-2)^{2}, & x>2\end{array} \quad\right.$ / $/ 02016$
Son. Tofind $f\left(0^{-}\right)=f(0)=f\left(0^{+}\right)$

At $x=0$

$$
\begin{aligned}
& f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(1+x^{2}\right)=1+0=1 \rightarrow 0 \\
& f\left(0^{-}\right)=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(1+x^{2}\right)=1+0=1 \text { (2) } \\
& f\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(2-x)=2-0=2 \rightarrow \text { (3) }
\end{aligned}
$$

From (i) (2) \& (3)

$$
f\left(0^{-}\right)=f(0) \neq f\left(0^{+}\right)
$$

$\Rightarrow f$ is discontinuous at $x=0$
At $x=2:$ of $(2)=\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(2-x)=2-2=0 \rightarrow$ (1)

$$
\begin{aligned}
& f\left(2^{-}\right)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(2-x)=2-2=0 \\
& f\left(2^{+}\right)=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(x-2)^{2}=(2-2)^{2}=0
\end{aligned}
$$

From (1) (2) \& (3)

$$
f\left(2^{-}\right)=f(2)=f\left(2^{+}\right)
$$

\Rightarrow of is continuous at $x=2$
\therefore The domain of θ is $(-\infty, 0) \cup(0, \infty)$
2) Define the continuity of a function at any point x_{0} in the $\&-\delta$ notation If $t \rightarrow f(x)=5 x+6$ is a continuous function then find an interval around $x=1$
Such That $|f(x)-f(1)|<0.001$
Son: Def:- A function of is Said to be continuous at no if $\left|f(n)-f\left(n_{0}\right)\right|<\xi$ whenever $\left|x-n_{0}\right|<8$ \& , $\delta>0$
Given $f(x)$ is continuous.
ie $f(x)=5 x+6$ is continuous
and $|f(x)-f(1)|<0.001$ whenever $|x-1|<\delta$

$$
\begin{aligned}
f(n)-f(1) & =5 x+6-11 \quad \therefore f(1)=5+6=11 . \\
& =5 x-5 \\
& =5(x-1)
\end{aligned}
$$

when $x>1$:

$$
\begin{aligned}
& \mid f(x)-f(1)|=|5(x-1)|<0.0001 \\
& \Rightarrow 5|x-1|<0.001 \\
& \Rightarrow|x-1|<\frac{0.001}{5} \\
& \Rightarrow|x-1|<0.0002 \\
&(x-1)<0.0002 \rightarrow \text { (1) }
\end{aligned}
$$

when $x<1$

$$
\begin{array}{ll}
& |f(x)-f(1)|=|5(x-1)|<0.001 \\
\Rightarrow & -5(x-1)<0.001 \\
\Rightarrow & -(x-1)<0.0002 \\
\Rightarrow & -x-1>-0.0002
\end{array}
$$

from (1) \& (2)

$$
-0.002<x-1<0.0002
$$

Add ', $\Rightarrow 1-0.002<x<1+0.0002$

$$
\begin{gathered}
0.9998<x<1.0002 \\
\therefore x \in(0.9998,1.0002)
\end{gathered}
$$

\# show That of is continuous on $(-\infty, \infty)$

$$
\phi(x)= \begin{cases}\sin x, & x<\pi / 4 \\ \cos x, & x \geqslant \pi / 4\end{cases}
$$

Seln At $x=\pi / 4$:To prove $f(\pi / 4-)=f(\pi / 4)=f\left(\pi / h^{\dagger}\right)$

$$
\begin{equation*}
f(\pi / 4)=\lim _{x \rightarrow \pi / 4} f(x)=\lim _{x \rightarrow \pi / 4} \cos x=\cos \pi / 4=1 / \sqrt{2} \tag{1}
\end{equation*}
$$

$$
f(\pi / 4)=\lim _{x \rightarrow \pi / 4} f(x)=\lim _{x \rightarrow \pi / 4} \sin x=\sin \pi / 4=\frac{1}{\sqrt{2}} \rightarrow(2)
$$

$$
f(\pi / 4)=\lim _{x \rightarrow \pi / 4} f(x)=\lim _{x \rightarrow \pi / 4} \cos x=\cos \pi / 4=\frac{1}{\sqrt{2}} \rightarrow \text { (3) }
$$

From (1). (2) 8 (3) we get

$$
\begin{aligned}
& f(\pi / 4)=f(\pi / 4)=f\left(\pi^{+} / 4\right) \\
& \Rightarrow f \text { is continuous on }(-\infty, \infty) \\
& \Rightarrow f(x)=\left\{\begin{array}{ll}
\sin x, & x<\pi / 4 \\
\cos x & , x \geqslant \pi / 4
\end{array} \quad\right. \text { is continuous on }
\end{aligned}
$$

Hence the proof.
3. If $f(x)= \begin{cases}\frac{x^{2}-4,}{x-2}, & x<2 \\ a x^{2}-b x+3, & 2 x \leq x<3 \\ 2 x-a+b, & x \geqslant 3\end{cases}$
is continuous for all real x, find

$$
\text { the values of } a \& b \text {. }
$$

Sol:

$$
\stackrel{\frac{x^{2}-4}{x-2}=x+2}{\frac{1}{2} a x^{2}-b x+3} \frac{2 x-a+b}{2}+\infty
$$

At $x=2$:
$f(2)=\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}\left(a x^{2}-b x+3\right)=4 a-2 b+3 \rightarrow(1)$ $f\left(2^{-}\right)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x-2^{-}} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2^{-}}=x+2=4 \rightarrow 0$

$$
\text { (1) } \Rightarrow \quad 4 a-2 b+3=4
$$

$$
4 a-2 b=1 \rightarrow \text { (3) }
$$

At $x=3$:

$$
\text { Given } f\left(3^{-}\right)=f(3)=f\left(3^{+}\right) \rightarrow(A)
$$

$$
f(3)=\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}(2 x-a+b)=b-a+b \rightarrow \text { (4) }
$$

$$
f\left(3^{-}\right)=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(a x^{2}-b x+3\right)=9 a-3 b+3-\sqrt{5}
$$

$$
\text { (A) } \Rightarrow 6-a+b=9 a-3 b+3
$$

$$
10 a-4 b=3 \rightarrow 6
$$

Solving (3) \& (5), we get

$$
\begin{aligned}
& \text { (6) } \Rightarrow 10 a-4 b=3 \\
& \text { (3) } \times 2 \Rightarrow \omega^{8} \frac{a+4 b}{\left.\frac{(1+1}{}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 a=1 \\
& a=1 / 2
\end{aligned}
$$

Sub

$$
a=y_{2} \text { in (3). we get }
$$

$$
\begin{gathered}
4(1 / 2)-2 b=1 \\
2-2 b=1 \\
2 b=1 \\
b=1 / 2
\end{gathered}
$$

$$
\begin{aligned}
(A) \Rightarrow & 2 b=3 a-b \quad \therefore 0=(2) \\
& 3 a-3 b=0 \\
& \Rightarrow a=b \rightarrow \text { (3) }
\end{aligned}
$$

$$
\text { At } x=2 \text {. }
$$

$$
\text { Given: } f\left(2^{-}\right)=f(2)=f\left(2^{+}\right)
$$

$$
f(2)=\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}\left(x^{2}+3 a-b\right)=4+3 a-b \rightarrow \text { (4) }
$$

$$
f\left(2^{+}\right)=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(3 x-5)=6-5=1 \rightarrow(5
$$

$$
\text { (B) } \Rightarrow 4+3 a-b=1 \quad \because \text { (a) }=\text { (5) }
$$

$$
3 a-b=-3
$$

$$
3 a-a=-3 \quad b y \text { (3) }
$$

$$
2 a=-3
$$

$$
a=-3 / 2
$$

$$
\therefore b=-3 / 2
$$

Equation of tangent line is

$$
y-y_{1}=m\left(x-x_{1}\right) \text { where } m=\frac{d y}{d x}
$$

Equation of the normal is given by

$$
y-y_{1}=\frac{-1}{m}\left(x-x_{1}\right), \quad m=\frac{d y}{d x}
$$

$$
\begin{aligned}
& \text { Given } f \text { is continuous at every } x, \\
& \text { ie., } f\left(0^{-}\right)=f(0)=f\left(0^{+}\right) \longrightarrow \text { (A) } \\
& f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(a x+2 b)=0+2 b=2 b \rightarrow \text { (1) } \\
& f\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{3}+3 a-b\right)=3 a-b \rightarrow \text { (2) }
\end{aligned}
$$

Problems:

1. For the function $r^{2}=\cos \theta$. Find the slope of the tangent line at $\theta=\pi / 3$. Also find the points on the curve, where the tangent line is horizontal or vertical.
Sol:

$$
\begin{array}{rl|r}
2 \sqrt{\cos \theta} & \text { Given } \begin{aligned}
& r^{2}=\cos \theta \\
& r^{4}=\cos ^{2} \theta \\
& \Rightarrow 2 \cos ^{2} \theta-\sin ^{2} \theta=0 \\
& \Rightarrow 2 r^{4}-\left(1-r^{4}\right)=0
\end{aligned} & \begin{aligned}
\sin ^{2} \theta & =1-\cos ^{2} \theta \\
2 r^{4}-1+r^{4} & =0
\end{aligned} \\
& =1-r^{4}
\end{array}
$$

$$
r^{4}=1 / 3
$$

$$
\left.\begin{array}{rl}
\frac{d y}{d x} & =\frac{d y}{d \theta} / \frac{d x}{d \theta} \\
& =\frac{2 \cos ^{2} \theta-\sin ^{2} \theta}{\frac{2 \cos \theta}{}} / \frac{-3}{4} \sqrt{\cos \theta} \sin \theta \\
& =2 \cos ^{2} \theta-\sin ^{2} \theta \\
-3 \sqrt{\cos \theta} \sqrt{\cos \theta} \sin \theta
\end{array}\right] .
$$

$$
\begin{aligned}
& =\frac{\frac{2}{4}-\frac{1}{3}}{-3 / 2 \sqrt{3}}=\frac{6-4}{-3 / 2 \sqrt{3}}=\frac{21126}{3 / 2 \sqrt{3}}=\frac{2}{-12} \times \frac{2 \sqrt{3}}{3} \\
& \qquad m=\frac{1}{-3 \sqrt{3}} \\
& \text { The tangent line is horizontal. }
\end{aligned}
$$

case (i): The tangent line is horizontal.

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d \theta}=0 \\
& \frac{d y}{d \theta}=0 \Rightarrow \frac{2 \cos ^{2} \theta-\sin ^{2} \theta}{2 \sqrt{\cos \theta}}=0
\end{aligned}
$$

$$
3 r^{4}=1
$$

$$
=\frac{2 \cos ^{2} \theta-\sin ^{2} \theta}{2 \sqrt{\cos \theta}}
$$

Case (ii) The tangent line is vertical.

$$
\text { i... } \frac{d y}{d x}=\alpha \Rightarrow \frac{d y / d \theta}{d x / d \theta}=\alpha \quad \Rightarrow \frac{d x}{d \theta}=0
$$

$$
\begin{aligned}
\frac{d x}{d \theta}=0 \Rightarrow & \frac{-3}{2} \sqrt{\cos \theta} \sin \theta=0 \quad \sqrt{\cos \theta}=r \\
& \cos \theta=0 \quad \text { or } \quad \sin ^{2} \theta=0
\end{aligned}
$$

$$
r^{2}=0 \quad 1-r^{4}=0
$$

$$
\begin{array}{ll}
r=0 & r^{4}=1 \\
r=0 & r= \pm 1
\end{array}
$$

$$
\begin{aligned}
& \text { Given } \begin{aligned}
r^{2} & =\cos \theta \\
r & =\sqrt{\cos \theta}
\end{aligned}
\end{aligned}
$$

2. Find the equation of the tangent line to the curve at the given point $y=\sin (\sin x),(\pi, 0)$ Sol:

$$
\text { Given } \begin{aligned}
y & =\sin (\sin x) \\
\frac{d y}{d x} & =\cos (\sin x) \cos x \\
m=\left(\frac{d y}{d x}\right)_{(\pi, 0)} & =\cos (\sin \pi) \cos \pi \\
& =\cos (0) \cos \pi) \\
& =1(-1) \\
& =-1
\end{aligned}
$$

4. Find the domain at which the function $f(x)=|x|$ is continuous and differentiable. Sol.

$$
\text { Let } \begin{aligned}
f(x) & =|x| \\
f(x) & =\left\{\begin{aligned}
-x, & x<0 \\
x, & x>0
\end{aligned}\right.
\end{aligned}
$$

$$
\text { for } x>0 \quad f(x)=|x|=x
$$

$$
\begin{aligned}
f(x) & =|x|=x \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}|x+h|-|f(x)| \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1
\end{aligned}
$$

f is differentiable for any $x>0$.
for $x<0, f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
$=\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} . \quad \operatorname{In} x<0$
$=\lim _{h \rightarrow 0}\left(\frac{-x-h+x}{h}\right) \quad \begin{aligned} & |x+h|=-|x| \\ & |x|=-x\end{aligned}$
$=\lim _{h \rightarrow 0}-1$
$=-1$
for any $x<0$.

$$
m=\left(\frac{d y}{d x}\right)_{(1,2)}^{a x}=3(1)^{2}=3
$$

Eq: of tangent is $y-y_{1}=m\left(x-x_{1}\right)$

$$
y-2=3(x-1)
$$

$$
f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{+}}\left[\frac{h}{h}\right]=1
$$

Eq: of normal is $y-y_{1}=-1 / m\left(x-x_{1}\right) \quad 3 y-6=-x+1$
For $x=0 \quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{10+h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}=1$

$$
\begin{aligned}
& y-2=3 x-3 \\
& 3 x-y-1=0
\end{aligned}
$$

$$
f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0}-\left[\frac{h}{h}\right]=-1
$$

Hence $f^{\prime}\left(0^{-}\right) \neq f^{\prime}\left(0^{+}\right) \Rightarrow f^{\prime}(0)$ does not exists.
$\Rightarrow f$ is not differentiable at $x=0$.

Hence f is differentiable at all x except $x=0$ Rollo's theorem:

Let $f(x)$ be a real function defined in the closed interval $[a, b]$ such that
i) $f(a)=f(b)$
ii) f is continuous in the interval $[a, b]$.
ii) $f(x)$ is differentiable in the open interval (a, b). Then there is some point ' c ' in the open interval (a, b) such that $f^{\prime}(c)=0$.

1. Prove that the equation $x^{3}-15 x+c=0$ has at most one real root in the interval $[-2,2]$
Soln: Let $f(x)=x^{3}-15 x+c$ for $x \in[-2,2]$.

$$
f^{\prime}(x)=3 x^{2}-15
$$

clearly $f(x)$ is continuous and differentiable. Now: Suppose that f has two real roots a, b in $(-2,2)$ by Rolle's theorem, There exists a no: r in (a, b) s.t $f^{\prime}(r)=0$ ie $f^{\prime}(r)=3 r^{2}-15=0$

$$
\begin{aligned}
3\left(r^{2}-5\right) & =0 \\
r^{2}-5 & =0
\end{aligned} \quad \text { But }(a, b) \leq(-2,2)
$$

$$
\therefore r \in(-2,2) \quad \therefore|r|=2 \& r^{2}=4
$$

$$
f^{\prime}(x)=3 x^{2}-15=3(4)-15=-3<0
$$

which is a contradiction for $f^{\prime}(r)=0$ for $r \in(a, b) \leq(-2,2)$
2. State Rolle's theorem and using which prove that for every differentiable function ton R which has atleast 2 roots its derivative has atleast one root. Give a polynomial example to show the above result.
Sol': "First write the statement of Rolle's theorem Here". Given f is differentiable. $\Rightarrow f$ is continuous on R. Let x_{1}, and x_{2} be two roots of f.

$$
\therefore f\left(x_{1}\right)=f\left(x_{2}\right)=0, \quad x_{1}, x_{2} \in R
$$

By using Rolle's theorem, there exists a
$C \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}(c)=0$

$$
\Rightarrow f^{\prime} \text { has a root } C \text { in }\left(x_{1}, x_{2}\right) \text {. }
$$

Polynomial example:

$$
\text { Let } \begin{aligned}
f(x) & =(x-a)(x-b), a \cdot b \in R \\
f^{\prime}(x) & =(x-a) \cdot 1+(x-b) \cdot 1=2 x-(a+b) \\
f^{\prime}(x) & =0 \\
\Rightarrow 2 x-(a+b) & =0 \\
2 x & =a+b \\
x & =\frac{a+b}{2} .
\end{aligned}
$$

3. If c is a real constant, show that the equation $x^{3}-12 x+c=0$ cannot have two distinct roots in the interval $[0, t]$.

Sol:
Let $f(x)=x^{3}-12 x+c$
clearly $f(x)$ is continuous \& differentiable in
[0.4].

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-12 \\
f^{\prime}(x) & =0 \\
\Rightarrow \quad 3 x^{2}-12 & =0 \\
3\left(x^{2}-4\right) & =0 \\
x^{2}-4 & =0 \\
x^{2} & =4 \\
x & = \pm 2 .
\end{aligned}
$$

If $f(x)$ has two roots then $f^{\prime}(x)$ has atleast the root in $(0,4)$. But $f^{\prime}(x)$ has root 2 or -2 in which -2 lies outside [0.4].
4. Verify Rolle's theorem for $f(x)=3 x^{4}-4 x^{2}+5$ in $[-1,1]$.
Soln:
Let $f(x)=3 x^{4}-4 x^{2}+5$
clearly $f(x)$ is continuous and differentiable in $[-1,1]$.

Now $f(-1)=3-4+5=4$

$$
\begin{aligned}
& f(1)=3-4+5=4 \\
& f(-1)=f(1) \\
& f^{\prime}(x)=12 x^{3}-8 x \\
& f^{\prime}(x)=0 \\
& \Rightarrow 12 x^{3}-8 x=0 \\
& 4 x\left(3 x^{2}-2\right)=0 \\
& x=0 \quad \text { or } \quad 3 x^{2}-2=0 \\
& 3 x^{2}=2 \\
& x^{2}=2 / 3 \\
& x= \pm \sqrt{2 / 3} \\
& \therefore \quad x=0, \pm \sqrt{2 / 3} \\
& f^{\prime}(0)=0 \\
& f^{\prime}(\sqrt{2} / 3)=12(\sqrt{2} / 3)^{3}-8(\sqrt{2 / 3}) \\
& =12 \times \frac{2 \sqrt{2}}{3 \sqrt{3}}-\frac{8 \sqrt{2}}{\sqrt{3}} \\
& =\frac{8 \sqrt{2}}{\sqrt{3}}-\frac{8 \sqrt{2}}{\sqrt{3}} \\
& \begin{aligned}
f^{\prime}(-\sqrt{2} / 3) & =12(-\sqrt{2 / 3})-8(f \\
& =-12 \times \frac{2 \sqrt{2}}{3 \sqrt{3}}+\frac{8 \sqrt{2}}{\sqrt{3}}
\end{aligned} \\
& =\frac{-8 \sqrt{2}}{\sqrt{3}}+\frac{8 \sqrt{2}}{\sqrt{3}} \\
& =0 \\
& =0
\end{aligned}
$$

Hence $-1<0<1 ;-1<\sqrt{2 / 3}<1,-1<-\sqrt{2} / 3<1$
Hence Rolles theorem is verified.
5. verify the mean value theorem for $f(x)=x^{3}-x$
Sol: Given $f(x)=x^{3}-x$
Clearly $f(x)$ is continuous \& differentiable for all x.

$$
f^{\prime}(x)=3 x^{2}-1
$$

Now, $\quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, a=0, b=2$

$$
3 c^{2}-1=\frac{f(2)-f(0)}{2-0}
$$

$$
=\frac{6-0}{2}
$$

$$
3 c^{2}-1=3
$$

$$
3 c^{2}=4
$$

$$
c^{2}=4 / 3
$$

$$
c= \pm 2 / \sqrt{3}
$$

Here $c=2 / \sqrt{3}$ lies in $[0,2]$
Hence mean value theorem is verified.
Increasing and Decreasing function: Defn: A function $f(x)$ is an increasing function at $x=a$ if its derivative at $x=a$ is positive $\dot{\text { i }}, f^{\prime}(a)=0$

A function $f(x)$ is an decreasing function at $x=a$ if its derivative at $x=a$ is negative. if $f^{\prime}(a)<0$.

Lagrange's Mean value theorem.
Let a function $f(x)$ satisfies the following conditions.

1. $f(x)$ is continuous in a closed interval $[a, b]$,
2. $f(x)$ is differentiable in the open interval (a, b). Then there exists atleast one point ' c ' in the open interval (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ Test for concavity:
i) $f^{\prime \prime}(x)>0 \Rightarrow f$ is concave upward
ii) $f^{\prime \prime}(x)<0 \Rightarrow f$ is concave downward.

The first derivative test:
Suppose that c is a critical number
of a continuous function f.
a) If f^{\prime} changes from the to -ve at c. then f has a local maximum at $<$. b) If f^{\prime} changes from -re to the at c, then f has a local minimum at c.
c) If f' does not change sign at c. then f has no local maximum or minima m at c.

The second derivative test:
suppose $f^{\prime \prime}$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ then f has a local maximum at c.

Inflection point:
A point on a curve $y=f(x)$ is called an inflection point if f is continuous there and the curve changes from concave upward to concave downward (or) from concave downward to concave upward.
Absolute maximum \& Absolute minimum:
A function f has or attains a n absolute maximum at $x=x$, if $f\left(x_{1}\right) \geqslant f(x)$ for every x belonging to the domain of f. A function f has or attains an absolute minimum at $x=x$, if $f(x,) \leq f(x)$ for all x belonging to the domain of f.

1. Given $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$. find the intervals of increase and / or decrease, the local maximum and minimum values, intervals of concavity and the inflection points.
Sol: Given that $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$

$$
f^{\prime}(x)=\cos x-\sin x
$$

For Critical points, $f^{\prime}(x)=0$

$$
\begin{aligned}
& \Rightarrow \cos x-\sin x=0 \\
& \Rightarrow \frac{\sin x}{\cos x}=1 \Rightarrow \tan x=1 \\
& \Rightarrow x=\tan ^{-1}(1)=\pi / 4,5 \pi / 4
\end{aligned}
$$

on $\quad 0 \leqslant x \leq \pi / 4, f^{\prime}(30)=\cos 30^{\circ}-\sin 30^{\circ}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{2}-\frac{1}{2} \quad 0+\frac{1}{\pi / 4} \frac{1}{5 \pi / 4}-1 \\
& =+\sqrt{2 \pi}
\end{aligned}
$$

$\Rightarrow f(x)$ is Increasing.
on $\pi / 4 \leqslant x<5 \pi / 4, \quad f^{\prime}\left(90^{\circ}\right)=\cos 90^{\circ}-\sin 90^{\circ}$

$$
=0-1
$$

$$
=-v_{e}
$$

$\Rightarrow f(x)$ is decreasing.
on $5 \pi / 4<x<2 \pi, f^{\prime}\left(270^{\circ}\right)=\cos 270^{\circ}-\sin 270$

$$
=0-(-1)
$$

$$
=1+r_{e}
$$

$\Rightarrow f(x)$ is Increasing.

Finding local maxima \& local minima:
By $i^{\text {st }}$ derivative test.
$f(\pi / 4)=\sin \pi / 4+\cos \pi / 4=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}=\sqrt{2} 70$
$\Rightarrow f$ has local maximum.
$f(5 \pi / 4)=\sin \frac{5 \pi}{4}+\cos 5 \pi / 4=\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}<0$
$\Rightarrow f$ has local minimum.
Testing of concavity:

$$
f^{\prime \prime}(x)=-\sin x-\cos x
$$

$$
f^{\prime \prime}(x)=0 \quad \text { (hyp per critical number) }
$$

$$
\Rightarrow-\sin x-\cos x=0
$$

$$
\begin{aligned}
\sin x & =-\cos x \\
\frac{\sin x}{\cos x} & =-1 \\
\tan x & =-1 \\
x & =\tan ^{-1}(-1) \\
x & =\frac{3 \pi}{4}, \frac{7 \pi}{4}
\end{aligned}
$$

on $0<x<3 \pi / 4, f^{\prime \prime}\left(90^{\circ}\right)=-\sin 90-\cos 90=-1<0$

$$
\Rightarrow f \text { is Concave downwar }
$$

on $3 \pi / 4<x<7 \pi / 4 \quad f^{\prime \prime}(270)=-\sin 270-\cos 270$
$=-(-y)-0$
$=1>0$
(a) For critical points $f^{\prime}(x)=0$ \Rightarrow fox) $4 x(x-1)(x+1)=0$

$$
\Rightarrow x=0 \quad x=1, x=-1
$$

The critical points are $-1,0,1,-\infty \quad 1 \quad 1, \infty$
(b) $\begin{aligned}-\infty<x<-1 \quad f^{\prime}(-3) & =4(-2)(-3)(-1) \\ & =-24<0\end{aligned}$

$$
\Rightarrow \text { bi decreasing }
$$

on $-1<2<0 \quad f^{\prime}(-0.5)=4(-0.5)(-1.5)(0.5)$
$=+$ we >0
\Rightarrow \& sin reaving.
on $0<x<1 \Rightarrow f^{\prime}(0.5)=4(0.5)(-0.5)(1.5)$

$$
\Rightarrow f i \text { decreaunis }
$$

on $1<x<\infty \quad f^{\prime}(2)=4.2(1)(3)=$ the >0

$$
\Rightarrow \text { fo is in creasing }
$$

c)

local min value at $x=0, f(0)=3$
local Max value at $x=1, f(x)=1-2+3=2$
local Man value at $x=-1, \quad f(-1)=1-2+3=2$
d) Texting of concavity.

$$
\left.\left.\begin{array}{rl}
f^{\prime \prime}(x)=12 x^{2}-4 \\
f^{\prime \prime}(x)=0 & \Rightarrow 12 x^{2}-4
\end{array}\right)=0 f\left(3 x^{2}-1\right)=0 \quad-1 / \sqrt{3}\right)
$$

on $-\infty<x<+1 / \sqrt{3} \quad f^{\prime \prime}(x)=0 \Rightarrow$ is concave up
on $-1 / \sqrt{3}<x<1 / \sqrt{3} \quad f^{\prime \prime}(x)<0 \Rightarrow$ fir con cave dour
on $+1 / \sqrt{3}<x<\infty, f^{\prime \prime}(x)>0 \Rightarrow f$ a concave up
c) Inflexion points are $\left[x_{1}, f\left(x_{1}\right)\right]$

Be, $\pm(1 / \sqrt{3}, 22 / a)$ since $f(\pm 1 / \sqrt{3})=22 / 9$.

Problem(ii)

Given $f(x)=x+2 \sin x, 0<x<211$.
$d_{(n)}=1+2 \cos x$.
For critical points $f^{\prime}(n)=0$

$$
\begin{gathered}
\Rightarrow 1+2 \cos x=0 \\
\cos x=-1 / 2 \\
x=2 \pi / 3141 / 3
\end{gathered}
$$

(a) The oritical points are $2 \pi / 3,4 \pi / 3$
b) $0<x<2 \pi / 2 \quad f^{\prime}(30)=\pi / 6+2 \sin \pi / 6=\pi / 6 t 1>0$
$\Rightarrow f(x)$ is. 个

$$
\begin{aligned}
2 \pi / 3<x<4 \pi f_{3}^{\prime}(180) & =1+2 \cos \pi \pi=-1<0 \\
\Rightarrow f(x) & \text { is } \downarrow
\end{aligned}
$$

$4 \pi / 3<x<2 \pi, f^{\prime}(300)=1+200 \% 300^{\circ}=1-2 \sin 30 .>0$

$$
\Rightarrow \quad \hat{f}(x) \text { u } \uparrow
$$

c) Local Ma sima $\&$ Local Minima

$$
\begin{aligned}
& \left.x<2 \pi / 3, f^{\prime}\left(\pi_{2}\right)=1+20 \operatorname{si\pi }\right)=1>0 \\
& 2 \pi / 3<x<4 \pi / 2, f^{\prime}(180)=1+2 \cos 2 \pi=1-2=-1<0
\end{aligned}
$$

\Rightarrow of has local manimum at $x=2 \pi / 3$

$$
\therefore \text { Maximum value }=f(2 \pi / 3)=2 \pi / 3+2 \sin \left(\frac{2 \pi}{3}\right)=3.83
$$

$$
x<4 \pi / a, \quad f^{\prime}(180)=-1<0
$$

$$
x>4 \pi / 3, \quad f^{\prime}(300)=1+2 \cos 360^{\circ}=1+2=3>0
$$

\Rightarrow of has local minimum at $x=4 \pi / 3$

$$
\begin{aligned}
\therefore \text { Minimum value }=f(4 \pi / 3) & =\left(4 \pi_{3}\right)+2 \sin \left(\frac{6 \pi}{3}\right) \\
& =2.481 /
\end{aligned}
$$

d) Testing of Concavity

$$
\begin{aligned}
& f^{\prime \prime}(x)=-2 \sin x \\
& f^{\prime \prime}(x)=0 \Rightarrow-2 \sin x=0 \\
& \Rightarrow \sin n=0 \\
& \Rightarrow x=0, \pi, \quad \text { का }
\end{aligned}
$$

on $0<x<\pi, \quad f^{\prime \prime}(\pi / 2)=-2 \sin (\pi / 2)=-2<0$
\Rightarrow concave downward

$$
\text { on } \pi<x<2 \pi f^{\prime \prime}(\pi / 2)=-2 \sin (3 \pi / 2)=-2(-1)=2>0 \Rightarrow
$$

concave upward
(c) point of inflexion. $(x, y$,
vi ($\pi, \pi+2 \sin x$), ie ($\pi, \pi+0$)
a (π, π)
\Rightarrow For the function $f(x)=2 x^{3}+3 x^{2}-36 x$
(i) Find the intervals on which it is ncreasing or decreaung
(ii) Find the local Maximum and minimum value of .
(iii) find the intervals of concavity and the inflexion points.
geld Given $f(x)=2 x^{3}+3 x^{2}-36 x$

$$
f^{\prime}(x)=6 x^{2}+6 x-36
$$

for critical points $f^{\prime}(x)=0$

$$
\begin{gathered}
\Rightarrow \quad 6 x^{2}+6 x-36=0 \\
x^{2}+x-6=0 \\
(x-2)(x+3)=0 \\
x=2,-31
\end{gathered}
$$

Critical points are $-3,2$
(a) Increauing or decreasing
on $x<-3 f^{\prime}(-4)=6(-4)^{2}+6(-4)-36=6 \times 16-24-36$

$$
=96-60=36>0
$$

$\Rightarrow f(x)$ is increasing
on $-3<x<2 \quad f^{\prime}(0)=-36<0$
$\Rightarrow f(x)$ is decreaing
on $x>2, \quad f^{\prime}(3)=6\left(3^{2}\right)+6(3)-36$

$$
=6 \times 9+18-36=54-18>0
$$

$\Rightarrow f(x)$ is increasing $\underset{\infty}{1}-\frac{1}{2}$
(ii) Local maxima and Local Minima

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}+6 x-36 \\
& f^{\prime \prime}(x)=12 x+6
\end{aligned}
$$

At $n=-3$ f' changes form the to -re
\Rightarrow of has local maximum
local Maximum value $\begin{aligned} & =\phi(-3) \\ & =2(-3)+1\end{aligned}$

$$
\begin{aligned}
& =2(-3)^{3}+3(-3)^{2}-36(-3) \\
& =-54+27+108 \\
& =-81
\end{aligned}
$$

At $n=2$ of'changes form - re to the
\Rightarrow of has local minimum.
\therefore local minimum value $=f(2)$

$$
\begin{aligned}
& \left.=2\left(2^{3}\right)+3\left(2^{2}\right)-362\right) \\
& =16+12-72 \\
& =28-72 \\
& =-44 .
\end{aligned}
$$

(iii) Testing Concavity

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x+6 \\
& f^{\prime \prime}(x)=0 \quad \text { (hyper critical numbs) } \\
& \Rightarrow(2 x+6=0 \\
& \Rightarrow 6(2 x+1)=0 \\
& \Rightarrow x=-1 / 2
\end{aligned}
$$

$$
\text { on } \left.\begin{aligned}
&-\infty<x<-1 / 2 \quad f^{\prime \prime}(-1)=12(-1)+6 \\
&=-12-16 \\
&=-6<0 \\
& \Rightarrow f \text { \& concave downward }
\end{aligned} \right\rvert\, .
$$

$\Rightarrow f$ is concave upward.
Inoflexionpoint $(-1 / 2, f(-1 / 2)=(-1 / 2,37 / 2)$

$$
\begin{aligned}
\therefore f(-1 / 2) & =2(-1 / 2)^{3}+3(-1 / 2)^{2}-36(-4 / 2) \\
& =-2 / 8+3 / 4+36 / 2 \\
& =-1 / 4+3 / 4+36 / 2 \\
& =2 / 4+36 / 2 \\
& =\frac{37}{2} / 1
\end{aligned}
$$

4) Find the local maximum and minimum valuer of using both the first and second derivative tat for

$$
y=x^{5}-5 x+3
$$

soon Given $y=x^{5}-5 x+3 \quad$ Here $y=f(x)$

$$
f^{\prime}(x)=5 x^{4}-5
$$

For critical points $f(n)=0$

$$
\begin{aligned}
& \Rightarrow 5 x^{4}-5=0 \\
& 5\left(x^{4}-1\right)=0 \\
& \Rightarrow x^{4}=1 \\
& \Rightarrow x^{2}= \pm 1 \\
& \Rightarrow x= \pm 1
\end{aligned}
$$

The critical points are $1,-1$

Increany decreasing

$\underset{-\infty-1}{\text { the, }- \text {, the }} \underset{\infty}{\longrightarrow} |$| on $-\infty<x<0, x=-1$. |
| :--- |
| $f^{\prime \prime}(-1)=20(-1)^{3}=-20<0$ |

or $-\infty \quad<x<-1 \quad x=-2$

$$
f^{\prime}(-2)=5(-2)^{4}-5=5 \times 16-5=75>0
$$

$\Rightarrow f$ is increasing

$$
\text { on }-1<x<1 \quad x=0
$$

$$
f^{\prime}(0)=5\left(0^{4}\right)-5=-5<0
$$

$\Rightarrow f u$ decreauns
on $12 x<\infty \quad x=2$

$$
f^{\prime}(2)=5(2)^{4}-5=80-5=75>0 .
$$

$\Rightarrow f$ is increany
Local Maximum \& Local Minimum (First derivative
At $x=-1 \quad f^{\prime}$ changes tue to the Tent)
\Rightarrow of has local Maximum

$$
\begin{aligned}
\text { man value } & =f(-1)=(-1)^{5}-5(-1)+3 \\
& =-1+5+3=2
\end{aligned}
$$

$d+x=1 \quad \&^{\prime}$ changes we to the
\Rightarrow of has local minimum

$$
\text { min value }=f(1)=1^{5}-5(1)+3 \Rightarrow 4-5=-1
$$

By Ind derivatue test.

$$
\begin{aligned}
f^{\prime}(x) & =5 x^{4}-5 \\
f^{\prime \prime}(x) & =20 x^{3} \\
\Rightarrow f^{\prime \prime}(x) & =0 \Rightarrow 20 x^{3}=0 \\
& \Rightarrow x=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { on }-\infty<x<0, x=-1 . \\
& f^{\prime \prime}(-1)=20(-1)^{3}=-20<0
\end{aligned}
$$

$\Rightarrow i_{i}$ i concave downward
on $<x<\infty, n=1$
$f^{\prime \prime}(c)=20\left(1^{3}\right)=20>0 \Rightarrow f$ is Concave upward.
Local Maxima \& minima: by II ${ }^{\text {nd }}$ derivation

$$
\text { At } x=1 \quad f^{\prime}(1)=0 \Rightarrow f^{\prime \prime}(1)=20>1
$$

$\Rightarrow f(1)=-1$ is a local minimum
At $x=-1 \quad f^{\prime}(-1)=0 \quad 1 f^{\prime}(-1)=20$
$\Rightarrow f(-1)=-1$ is a local maximum.
5) Find maxima and minima foo the fun $f(x)=x \log , 0$

Sod $y=x \log n$.

$$
\begin{aligned}
& d y / d x=d / d x(x \log x)=x \cdot \frac{1}{x}+\log x \cdot 1 \\
& =1+\log x \\
& \left.d y\right|_{d x}=0 \\
& \Rightarrow 1+\log x=0 \\
& \log x=-1 \\
& e^{\log g^{2}}=e^{-1} \\
& x=e^{-1}=1 / e \\
& x=1 / e \\
& \text { To find } d^{2} y / d x^{2} \\
& d^{2} g / d x^{2}=d / d n(1+\log n)=1 / n . \\
& \left(\left.d^{2} y\right|_{d x^{2}}\right)_{\text {at } x=1 / 0}=\frac{1}{1 / e}=e=2.71 \text { the. }
\end{aligned}
$$

The given f_{t} is minimum at $x=1$ ce The min value is of (ie) $=1 / p \times \log (1, e)$

$$
\begin{aligned}
& =1 / e r(\log 1-\log 0) \\
& =1 / e^{(-1)} \quad\left\{\begin{array}{l}
\log 1=0 \\
\log e=1
\end{array}\right\} .
\end{aligned}
$$

6) Find the Maximum and Minimum value of The function $y-(x-2)^{2}(x-3)$ con

$$
\phi(x)=(x-2)^{2}(x-3)
$$

Son

$$
\begin{aligned}
\text { Given } y & =(x-2)^{2}(x-3) \\
d_{y} / d x & =(x-2)^{2} \cdot 1+(x-3) 2(x-2) \\
& =(x-2)[(x-2)+2(x-3)] \\
& =(x-2)[x-2+2 x-6] \\
& =(x-2)[3 x-5]
\end{aligned}
$$

$d y \quad \int d x=0$

$$
\begin{array}{ll}
\Rightarrow & (x-2)(3 x-8)=0 \\
\Rightarrow & x-2=0 \text { (on } 3 x-8=0 \\
x & 3 x=8 \\
x & x=g_{3}
\end{array}
$$

To find $d^{2} y / d x^{2}$

$$
\begin{aligned}
& d y \mid d x=(x-2)(3 x-8) \\
& d^{2} y / d x^{2}=(x-2) \cdot 3+(3 x-8) \cdot 1 \\
&=3 x-6+3 x-8 \\
&=6 x-14 \\
&\left(d^{2} y / d x^{2}\right)_{\text {at } x}=2=6(2)-14=12-14 \\
&=-2<0
\end{aligned}
$$

$\Rightarrow f(x)$ has maximum
Max value is $y=(x-2)^{2}(x-3)$

$$
y=0
$$

$$
=(2-2)^{2}(x-3)
$$

$$
\left(\frac{d^{2} y}{d x^{2}}\right)_{\text {at } x=8 / 3}=\frac{2}{6}(8 / 7)=14
$$

$$
=16-12=4>0
$$

\Rightarrow of has minimum.
\therefore Min value is $f(8 / 3)=(8 / 3-2)^{2}(8 / 3-3)$.

$$
\begin{aligned}
& =\left(\frac{8-6}{3}\right)\left(\frac{2-9}{3}\right) \\
& =(2 / 3)^{2}(-1 / 3) \\
& =4 / 9(-1 / 3) \\
& =-4 / 27 / 1 .
\end{aligned}
$$

MSAJCE FUNCTIONS OF SEVERAL VARIABLES

Homogeneous Function

A function $f(x, y)$ is said to be a homogeneous function of degree n if $f(t x, t y)=t^{n} f(x, y)$.
Example:

$$
\begin{aligned}
& f(x, y)=\frac{x^{6}+y^{6}}{x^{4}-y^{4}} \\
& f(t x, t y)=t^{2} f(x, y)
\end{aligned}
$$

Euler's Theorem

If f be a homogeneous function of degree n in x and y, then $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f$
and $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial f}{\partial z}=n f$

1) If $u=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$

Solution:

Given $u(x, y, z)=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$.

$$
u(t x, t y, t z)=\frac{t x}{t y}+\frac{t y}{t z}+\frac{t z}{t x}=\frac{t}{t}\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=t^{0} u(x, y, z)
$$

$\Rightarrow u$ is a homogenous function of degree $n=0$
Hence by Euler's theorem, we have $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=n u=0 \times u=0$
Hence proved.
2) If $u=\frac{x}{y}$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+=0$

Solution:

Given $u(x, y)=\frac{x}{y}$.

$$
u(t x, t y)=\frac{t x}{t y}=\frac{t}{t}\left(\frac{x}{y}\right)=t^{0} u(x, y)
$$

$\Rightarrow u$ is a homogenous function of degree $n=0$
Hence by Euler's theorem, we have $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u=0 \times u=0$
Hence proved.
3) Verify Euler's theorem for the function $u=x^{2}+y^{2}+2 x y$

Solution

Given $u=x^{2}+y^{2}+2 x y$. This is a homogenous function of degree 2 .

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =2 x+2 y \\
x \frac{\partial u}{\partial x} & =2 x^{2}+2 x y \rightarrow(1) \\
\frac{\partial u}{\partial y} & =2 y+2 x \\
y \frac{\partial u}{\partial y} & =2 y^{2}+2 x y \rightarrow(2)
\end{aligned}
$$

Adding equation (1) and (2), we get

$$
\begin{aligned}
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2\left[x^{2}+y^{2}+2 x y\right] \\
& =2 u
\end{aligned}
$$

Hence Euler's theorem is verified
4) Using Euler's theorem given $u(x, y)$ is a homogenous function of degree n prove that $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=n(n-1) u$

Solution

Since $u(x, y)$ is homogenous function of degree n, by Euler's theorem we have

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u \rightarrow(1)
$$

Diff (1) p.w.r.to x,

$$
x \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}+y \frac{\partial^{2} u}{\partial x \partial y}=n \frac{\partial u}{\partial x} \rightarrow(2)
$$

Diff (1) p.w.r.to y,

$$
\begin{aligned}
& y \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial u}{\partial y}+x \frac{\partial^{2} u}{\partial x \partial y}=n \frac{\partial u}{\partial y} \rightarrow(3) \\
&(2) x+(3) y \Rightarrow {\left[\left\{x^{2} \frac{\partial^{2} u}{\partial x^{2}}+x \frac{\partial u}{\partial x}+x y \frac{\partial^{2} u}{\partial x \partial y}\right\}=\left\{n x \frac{\partial u}{\partial x}\right\}+\left\{n y \frac{\partial u}{\partial y}\right\}\right.} \\
&\left.+\left\{y^{2} \frac{\partial^{2} u}{\partial y^{2}}+y \frac{\partial u}{\partial y}+x y \frac{\partial^{2} u}{\partial x \partial y}\right\}\right] \\
& \Rightarrow x^{2} u_{x x}+y^{2} u_{y y}+2 x y u_{x y}+n u=n^{2} u \\
& \Rightarrow x^{2} u_{x x}+y^{2} u_{y y}+2 x y u_{x y}=n u(n-1)
\end{aligned}
$$

Total Derivative

If $u=f(x, y)$ where $x=\varphi(t), y=\Psi(t)$ then $\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}$ is called the total differential of u w.r.to t
In general

$$
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y
$$

Note:

1. $u=f(x, y, z)$ where x, y, z are functions of t then $\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}+\frac{\partial u}{\partial z} \frac{d z}{d t}$
2. If $z=f(x, y)$ where $x=f(u, v), y=g(u, v)$ then

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

3. If $u=f(x, y)$ and $y=\varphi(x)$ then $\frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y}{d x}$
1) If $u=e^{x} y z^{2}$ find $d u$

Solution:
We know that $d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z=e^{x} y z^{2} d x+e^{x} z^{2} d y+2 z e^{x} y d z$
2) If $u=f(x-y, y-z, z-x)$ show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$

Solution:

Put $\left.\begin{array}{l}x-y=x_{1} \\ y-z=x_{2} \\ z-x=x_{3}\end{array}\right\} \rightarrow(A)$
Now from (A), we get

$$
\begin{aligned}
& \therefore u=f(x-y, y-z, z-x) \\
& =f\left(x_{1}, x_{2}, x_{3}\right) \\
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial x}+\frac{\partial u}{\partial x_{2}} \cdot \frac{\partial u}{\partial x}+\frac{\partial u}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial x} \\
& \quad \frac{\partial x_{1}}{\partial x}=1, \frac{\partial x_{2}}{\partial x}=0, \frac{\partial x_{3}}{\partial x}=-1 \\
& \therefore \frac{\partial u}{\partial x}=\frac{\partial u}{\partial x_{1}}-\frac{\partial u}{\partial x_{3}} \rightarrow(1)
\end{aligned}
$$

Similarly $\frac{\partial u}{\partial y}=\frac{\partial u}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial y}+\frac{\partial u}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial y}+\frac{\partial u}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial y}$

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial y}+\frac{\partial u}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial y}+\frac{\partial u}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial y} \\
& =\frac{\partial u}{\partial x_{1}}(-1)+\frac{\partial u}{\partial x_{2}}(1)+\frac{\partial u}{\partial x_{3}}(0) \\
& =-\frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}} \rightarrow(2) \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial z}+\frac{\partial u}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial z}+\frac{\partial u}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial z} \\
& =\frac{\partial u}{\partial x_{1}}(0)+\frac{\partial u}{\partial x_{2}}(-1)+\frac{\partial u}{\partial x_{3}}(1) \\
& =-\frac{\partial u}{\partial x_{2}}+\frac{\partial u}{\partial x_{3}} \rightarrow(3)
\end{aligned}
$$

Adding (1), (2), and (3), we get $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
3) Find $\frac{d u}{d t}$ if $u=x^{3} y^{2}+x^{2} y^{3}$ where $x=a t^{2} \& y=2 a t$ using partial derivative

Solution:

We know that

$$
\begin{aligned}
& \frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t} \\
& =\left(3 x^{2} y^{2}+2 x y^{3}\right) \times 2 a t+\left(2 y x^{3}+3 x^{2} y^{2}\right) \times 2 a \\
& =8 a^{5} t^{6}(3 t+4)+8 a^{5} t^{6}(t+3) \\
& =8 a^{5} t^{6}(4 t+7)
\end{aligned}
$$

4) Find $d u / d t$ if $u=x^{3} y^{4}$ where $x=t^{3}$ andy $=t^{2}$

Solution:

We know that

$$
\begin{aligned}
& \frac{d u}{d t}= \frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t} \\
&=3 x^{2} y^{4} \cdot 3 t^{2}+4 x^{3} y^{3} \cdot 2 t \\
&=3 t^{6} t^{8} 3 t^{2}+4 t^{9} t^{6} 2 t
\end{aligned}
$$

$$
\begin{aligned}
& =9 t^{16}+8 t^{16} \\
& =17 t^{16}
\end{aligned}
$$

5) Using the definition of total derivative find the value of $\frac{d u}{d t}$ given $u=y^{2}-4 a x, x=a t^{2}, y=2 a t$

Solution:

$$
\begin{aligned}
& \frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t} \\
& =-4 a \times 2 a t+2 y \times 2 a \\
& =-8 a^{2} t+8 a^{2} t \\
& =0
\end{aligned}
$$

6) If $\sin z y=\cos z x$ compute $\frac{\partial z}{\partial x}$ when $z=\pi, x=\frac{1}{3} \& y=\frac{1}{6}$

Solution:

Given $\sin z y=\cos z x$
Diff p.w.r to x on both sides, we get

$$
\cos z y \times\left(y \frac{\partial z}{\partial x}\right)=-\sin z x \times\left(x \frac{\partial z}{\partial x}+z\right)
$$

when $z=\pi, x=\frac{1}{3} \& y=\frac{1}{6}$ we get

$$
\begin{aligned}
& \cos \frac{\pi}{6}\left(\frac{1}{6} \times \frac{\partial z}{\partial x}\right)=-\sin \frac{\pi}{3}\left(\frac{1}{3} \times \frac{\partial z}{\partial x}+\pi\right) \\
& \Rightarrow \frac{\partial z}{\partial x}\left(\frac{\sqrt{3}}{12}+\frac{\sqrt{3}}{6}\right)=-\frac{\pi \sqrt{3}}{2} \\
& \Rightarrow \frac{\partial z}{\partial x}=-\frac{\pi \times \sqrt{3} \times 12}{2 \times \sqrt{3} \times 3}=-2 \pi
\end{aligned}
$$

7)If z be a function of x and y and u and v are other two variables, such that $u=l x+m y, v=l y-m x$ show that $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\left(l^{2}+m^{2}\right)\left(\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}\right)$
Solution:

$$
\begin{gather*}
z \text { is a function of } u \text { and } v \\
u \text { and } v \text { are functions of } x \text { and } y \\
u=l x+m y, \quad v=l y-m x \\
\frac{\partial u}{\partial x}=l \quad \frac{\partial v}{\partial x}=-m \\
\frac{\partial u}{\partial y}=m \quad \frac{\partial v}{\partial y}=l \\
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot l+\frac{\partial z}{\partial v}(-m) \\
\frac{\partial}{\partial x}=l \frac{\partial}{\partial u}-m \frac{\partial}{\partial v} \\
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\left(l \frac{\partial}{\partial u}-m \frac{\partial}{\partial v}\right)\left(l \frac{\partial z}{\partial u}-m \frac{\partial z}{\partial v}\right) \\
\frac{\partial^{2} z}{\partial x^{2}}=l^{2} \frac{\partial^{2} z}{\partial u^{2}}-\operatorname{lm} \frac{\partial^{2} z}{\partial u \partial v}-l m \frac{\partial^{2} z}{\partial u \partial v}+m^{2} \frac{\partial^{2} z}{\partial v^{2}} \\
\frac{\partial^{2} z}{\partial x^{2}}=l^{2} \frac{\partial^{2} z}{\partial u^{2}}-2 l m \frac{\partial^{2} z}{\partial u \partial v}+m^{2} \frac{\partial^{2} z}{\partial v^{2}} \tag{1}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial y^{2}}=m^{2} \frac{\partial^{2} z}{\partial u^{2}}+2 \operatorname{lm} \frac{\partial^{2} z}{\partial u \partial v}+l^{2} \frac{\partial^{2} z}{\partial \nu^{2}} \tag{2}
\end{equation*}
$$

(1) $+(2) \Rightarrow$

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\left(l^{2}+m^{2}\right)\left(\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}\right)
$$

8) If $u=x^{2}-y^{2}, v=2 x y, f(x, y)=\varphi(u, v)$ show that $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=4\left(x^{2}+y^{2}\right)\left(\frac{\partial^{2} \varphi}{\partial u^{2}}+\frac{\partial^{2} \varphi}{\partial v^{2}}\right)$

Solution:

$$
\begin{gathered}
u=x^{2}-y^{2} \quad v=2 x y \\
\frac{\partial u}{\partial x}=2 x \quad \frac{\partial v}{\partial x}=2 y \\
\frac{\partial u}{\partial y}=-2 y \quad \frac{\partial v}{\partial y}=2 x \\
\frac{\partial f}{\partial x}=\frac{\partial \varphi}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial \varphi}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial f}{\partial x}=\frac{\partial \varphi}{\partial u} \cdot(2 x)+\frac{\partial \varphi}{\partial v}(2 y) \\
\frac{\partial}{\partial x}=2 x \frac{\partial}{\partial u}+2 y \frac{\partial}{\partial v} \\
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\left(2 x \frac{\partial}{\partial u}+2 y \frac{\partial}{\partial v}\right)\left(2 x \frac{\partial \varphi}{\partial u}+2 y \frac{\partial \varphi}{\partial v}\right) \\
\frac{\partial^{2} f}{\partial x^{2}}=4 x^{2} \frac{\partial^{2} \varphi}{\partial u^{2}}+4 x y \frac{\partial^{2} \varphi}{\partial u \partial v}+4 x y \frac{\partial^{2} \varphi}{\partial u \partial v}+4 y^{2} \frac{\partial^{2} \varphi}{\partial v^{2}} \\
\frac{\partial^{2} f}{\partial x^{2}}=4 x^{2} \frac{\partial^{2} \varphi}{\partial u^{2}}+8 x y \frac{\partial^{2} \varphi}{\partial u \partial v}+4 y^{2} \frac{\partial^{2} \varphi}{\partial v^{2}}
\end{gathered}
$$

Similarly

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y^{2}}=4 y^{2} \frac{\partial^{2} \varphi}{\partial u^{2}}+8 x y \frac{\partial^{2} \varphi}{\partial u \partial v}+4 x^{2} \frac{\partial^{2} \varphi}{\partial v^{2}} \tag{2}
\end{equation*}
$$

$(1)+(2) \Rightarrow$

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=4\left(x^{2}+y^{2}\right)\left(\frac{\partial^{2} \varphi}{\partial u^{2}}+\frac{\partial^{2} \varphi}{\partial v^{2}}\right)
$$

Differentiation of implicit functions

If $f(x, y)=c$ be an implicit relation between x and y which defines as a differentiable function of x , then $\frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y}{d x}$ becomes $0=\frac{d f}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}$ This gives the important formula $\frac{d y}{d x}=-\frac{\partial f / \partial x}{\partial f / \partial y}$

1) If $e^{y}-e^{x}+x y=0$ find $\frac{d y}{d x}$

Solution:

We know that $\frac{d y}{d x}=-\frac{\partial f / \partial x}{\partial f / \partial y}$
Let $f(x, y)=e^{y}-e^{x}+x y ; \frac{\partial f}{\partial x}=-e^{x}+y$ and $\frac{\partial f}{\partial y}=e^{y}+x$

$$
\frac{d y}{d x}=-\frac{\left(-e^{x}+y\right)}{\left(e^{y}+x\right)}=\frac{e^{x}-y}{e^{y}+x}
$$

2) Find $\frac{d y}{d x}$ when $f(x, y)=\log \left(x^{2}+y^{2}\right)+\tan ^{-1} \frac{y}{x}$

Solution:

We know that $\frac{d y}{d x}=-\frac{\partial f / \partial x}{\partial f / \partial y} ; \frac{\partial f}{\partial x}=\frac{2 x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} ; \frac{\partial f}{\partial y}=\frac{2 y}{x^{2}+y^{2}}+\frac{x}{x^{2}+y^{2}}$

$$
\frac{d y}{d x}=-\frac{\frac{2 x-y}{x^{2}+y^{2}}}{\frac{2 y+x}{x^{2}+y^{2}}}=\frac{y-2 x}{2 y+x}
$$

3) Find $\frac{d y}{d x}$ if $x^{3}+y^{3}=3 a x^{2} y$

Solution:

Let $f(x, y)=x^{3}+y^{3}-3 a x^{2} y ; \frac{\partial f}{\partial x}=3 x^{2}-6 a x y ; \frac{\partial f}{\partial y}=3 y^{2}-3 a x^{2}$

$$
\frac{d y}{d x}=-\frac{\partial f / \partial x}{\partial f / \partial y}=-\frac{3\left(x^{2}-2 a x y\right)}{3\left(y^{2}-a x^{2}\right)}=\frac{x^{2}-2 a x y}{y^{2}-a x^{2}}
$$

4) Find $\frac{d y}{d x}$, if $x^{3}+y^{3}=3 a x y$

Solution:

Given $f(x, y)=x^{3}+y^{3}-3 a x y$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=3 x^{2}-3 a y \\
\frac{\partial f}{\partial y}=3 y^{2}-3 a x \\
\frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=-\frac{\left(3 x^{2}-3 a y\right)}{\left(3 y^{2}-3 a x\right)}=\frac{a y-x^{2}}{y^{2}-a x}
\end{gathered}
$$

Taylor's series expansion of a function of two variables

$$
\begin{aligned}
f(x, y)= & f(a, b)+\frac{1}{1!}\left[(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b)\right]+ \\
& \frac{1}{2!}\left[(x-a)^{2} f_{x x}(a, b)+2(x-a)(y-b) f_{x y}(a, b)+(y-b)^{2} f_{y y}(a, b)\right]+ \\
& \frac{1}{3!}\left[(x-a)^{3} f_{x x x}(a, b)+3(x-a)^{2}(y-b) f_{x x y}(a, b)+3(x-a)(y-b)^{2} f_{x y y}(a, b)+(y-b)^{3} f_{y y y}(a, b)\right]+\ldots
\end{aligned}
$$

This is called the Taylor's series of $f(x, y)$ at the point (a, b)

1) Find the Taylor's series expansion of $e^{x} \sin y$ near the point $\left(-1, \frac{\pi}{4}\right)$ up to the first degree terms.
Solution:
By Taylor's theorem, we have
$f(x, y)=f\left(-1, \frac{\pi}{4}\right)+(x+1) f_{x}\left(-1, \frac{\pi}{4}\right)+\left(y-\frac{\pi}{4}\right) f_{y}\left(-1, \frac{\pi}{4}\right)+\frac{(x+1)^{2}}{2} f_{x x}\left(-1, \frac{\pi}{4}\right)+$

$$
\frac{2(x+1)\left(y-\frac{\pi}{4}\right)}{2} f_{x y}\left(-1, \frac{\pi}{4}\right)+\frac{\left(y-\frac{\pi}{4}\right)^{2}}{2} f_{y y}\left(-1, \frac{\pi}{4}\right)+\ldots \rightarrow(1)
$$

$$
\begin{aligned}
& f(x, y)=e^{x} \sin y ; f\left(-1, \frac{\pi}{4}\right)=\frac{1}{e \sqrt{2}} \\
& f_{x}=e^{x} \sin y ; f_{x}\left(-1, \frac{\pi}{4}\right)=\frac{1}{e \sqrt{2}} \\
& f_{y}=e^{x} \cos y ; f_{y}\left(-1, \frac{\pi}{4}\right)=\frac{1}{e \sqrt{2}}
\end{aligned}
$$

Using these values in (1) we get

$$
f(x, y)=e^{x} \sin y=\frac{1}{e \sqrt{2}}\left(1+\left\{(x+1)+\left(y+\frac{\pi}{4}\right)\right\}\right)+\ldots
$$

2) Find the Taylor's series expansion of $e^{x} \sin y$ in powers of $\boldsymbol{x} \boldsymbol{\&} \boldsymbol{y}$ as far as terms of the third degree.
Solution:
By Taylor's theorem, we have

$$
\begin{array}{r}
f(x, y)=f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2!}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right]+ \\
\frac{1}{3!}\left[x^{3} f_{x x x}(0,0)+3 x^{2} y f_{x x y}(0,0)+3 x y^{2} f_{x y y}(0,0)+y^{3} f_{y y y}(0,0)\right]+\ldots \rightarrow(1)
\end{array}
$$

Given

$$
\begin{aligned}
& f(x, y)=e^{x} \sin y ; f(0,0)=0 \\
& f_{x}=e^{x} \sin y ; f_{x}(0,0)=0 \\
& f_{y}=e^{x} \cos y ; f_{y}(0,0)=1 \\
& f_{x x}=e^{x} \sin y ; f_{x x}(0,0)=0 \\
& f_{x y}=e^{x} \cos y ; f_{x y}(0,0)=1 \\
& f_{x x x}=e^{x} \sin y ; f_{x x x}(0,0)=0 \\
& f_{x x y}=e^{x} \cos y ; f_{x x y}(0,0)=1 \\
& f_{x y y}=-e^{x} \sin y ; f_{x y y}(0,0)=0 \\
& f_{y y y}=-e^{x} \cos y ; f_{y y y}(0,0)=-1
\end{aligned}
$$

Using these values in (1) we get

$$
\begin{gathered}
f(x, y)=e^{x} \sin y=0+x \times 0+y \times 1+\frac{x^{2}}{2} \times 0+x y \times 1+\frac{1}{3!}\left[x^{3}(0)+3 x^{2} y(1)+3 x y^{2}(0)+y^{3}(-1)\right]+\ldots \\
=y+x y+\frac{1}{2} x^{2} y-\frac{y^{3}}{6}+\ldots
\end{gathered}
$$

3) Expand $e^{x} \cos y$ in powers of x and y as far as terms of the first degree.

Solution:

Given $f(x, y)=e^{x} \cos y$ then
$f(x, y)=e^{x} \cos y, f(0,0)=1$
$f_{x}(x, y)=e^{x} \cos y, f_{x}(0,0)=1$

$$
\begin{aligned}
& f_{y}(x, y)=-e^{x} \sin y, f_{y}(0,0)=0 \\
& f_{x x}(x, y)=e^{x} \cos y, f_{x x}(0,0)=1 \\
& f_{x y}(x, y)=-e^{x} \sin y, f_{x y}(0,0)=0
\end{aligned}
$$

By Taylor's theorem, we have

$$
\begin{aligned}
f(x, y) & =f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{x^{2}}{2} f_{x x}(0,0)+\frac{2 x y}{2} f_{x y}(0,0)+\frac{y^{2}}{2} f_{y y}(0,0)+\ldots \\
& =1+(x \times 1+y \times 0)+\ldots=1+x+\ldots
\end{aligned}
$$

4) Find Taylor's series expansion of x^{y} near the point $(1,1)$ upto the first degree terms. Solution:

Taylor's series of $f(x, y)$ near the point $(1,1)$ is
$f(x, y)=f(1,1)+(x-1) f_{x}(1,1)+(y-1) f_{y}(1,1)+\frac{(x-1)^{2}}{2} f_{x x}(1,1)+\frac{2(x-1)(y-1)}{2} f_{x y}(1,1)+\frac{(y-1)^{2}}{2} f_{y y}(1,1)+\ldots \rightarrow(1)$

$$
\begin{aligned}
& f(x, y)=x^{y}, f(1,1)=1 \\
& f_{x}(x, y)=y x^{y-1}, f_{x}(1,1)=1 \\
& \left.f_{x x}(x, y)=y(y-1) x^{y-2}, f_{x x}(1,1)\right)=0
\end{aligned}
$$

Let $f(x, y)=x^{y}$
Taking log on both sides, we get

$$
\log f(x, y)=y \log x
$$

Diff p.w.r.to y, we get

$$
\frac{1}{f} f_{y}=\log x
$$

$$
f_{y}=f \log x=x^{y} \log x ; f_{y}(1,1)=0
$$

Using all these values in (1), we get
$f(x, y)=x^{y}=1+(x-1)+\ldots$
5) Expand $e^{x} \log (1+y)$ in powers of \boldsymbol{x} and \boldsymbol{y} upto third degree.

Solution:

$$
\begin{aligned}
& \text { Given } \\
& \qquad \begin{array}{l}
f(x, y)=e^{x} \log (1+y) ; f(0,0)=0 \\
f_{x}=e^{x} \log (1+y) ; f_{x}(0,0)=0 \\
f_{y}=e^{x} \times \frac{1}{1+y} ; f_{y}(0,0)=1 \\
f_{x x}=e^{x} \log (1+y) ; f_{x x}(0,0)=0 \\
f_{x y}=e^{x} \times \frac{1}{1+y} ; f_{x y}(0,0)=1 \\
f_{y y}=\frac{-e^{x}}{1+y} ; f_{y y}(0,0)-1 \\
f_{x x x}=e^{x} \log (1+y) ; f_{x x x}(0,0)=0 \\
f_{x x y}=e^{x} \frac{1}{1+y} ; f_{x x y}(0,0)=1 \\
f_{x y y}=-e^{x} \frac{1}{(1+y)^{2}} ; f_{x y y}(0,0)=-1 \\
f_{y y y}=2 e^{x} \frac{1}{(1+y)^{3}} ; f_{y y y}(0,0)=2
\end{array}
\end{aligned}
$$

By Taylor's theorem, we have

$$
\begin{aligned}
f(x, y)= & f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2!}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right]+ \\
& \frac{1}{3!}\left[x^{3} f_{x x x}(0,0)+3 x^{2} y f_{x x y}(0,0)+3 x y^{2} f_{x y y}(0,0)+y^{3} f_{y y y}(0,0)\right]+\ldots \rightarrow(1) \\
& =y+x y-\frac{y^{2}}{2}+\frac{\left(x^{2} y-x y^{2}\right)}{2}+\frac{y^{3}}{3}+\ldots
\end{aligned}
$$

6) Expand $x y+2 x-3 y+2$ in powers of $x-1$ and $y+2$ using Taylor's theorem upto first degree.
Solution:

Let $f(x, y)=x y+2 x-3 y+2$

$$
\begin{aligned}
& f_{x}=y+2 ; f_{x}(1,-2)=-2+2=0 \\
& f_{y}=x-3 ; f_{y}(1,-2)=1-3=-2
\end{aligned}
$$

By Taylor's theorem, we have

$$
\begin{aligned}
f(x, y)= & f(1,-2)+(x-1) f_{x}(1,-2)+(y+2) f_{y}(1,-2)+\frac{(x-1)^{2}}{2} f_{x x}(1,-2)+\frac{2(x-1)(y+2)}{2} f_{x y}(1,-2) \\
& +\frac{(y+2)^{2}}{2} f_{y y}(1,-2)+\ldots \\
= & 8+((x-1) \times 0+(y+2) \times-2)+\ldots \ldots . \\
= & 8-2 y-4+\ldots .
\end{aligned}
$$

Jacobian in two dimension (or) functional determinant in two dimension

If u, v are functions of two independent variables x and y then the determinant

$$
\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|
$$

is called the Jacobian or functional determinant of u, v with respect to x and y and is written as $\frac{\partial(u, v)}{\partial(x, y)}$ orJ $\left(\frac{u, v}{x, y}\right)$

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right|
$$

Properties of Jacobians

1. If $J=\frac{\partial(u, v)}{\partial(x, y)}$ and $J^{\prime}=\frac{\partial(x, y)}{\partial(u, v)}$ then $J \bullet J^{\prime}=1$
2. If u and v are functions of r, s and r, s are functions of x, y then

$$
\frac{\partial(u, v)}{\partial(x, y)}=\frac{\partial(u, v)}{\partial(r, s)} \times \frac{\partial(r, s)}{\partial(x, y)}
$$

3. If u, v, w are functionaly dependent functions of three independent variables x, y, z then $\frac{\partial(u, v, w)}{\partial(x, y, z)}=0$.
1) If $x=u(\mathbf{1}+\boldsymbol{v})$ and $y=v(\mathbf{1}+u)$ find $\frac{\partial(x, y)}{\partial(u, v)}$

Solution:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1+v & u \\
v & 1+u
\end{array}\right|=(1+v)(1+u)-u v=1+u+v
$$

2) Find the Jacobian of $\frac{\partial(r, \boldsymbol{\theta})}{\partial(x, y)}$ if $x=r \cos \theta, y=r \sin \theta$

Solution:

Let $J=\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}x_{r} & x_{\theta} \\ y_{r} & y_{\theta}\end{array}\right|=\left|\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r$ and $J^{\prime}=\frac{\partial(r, \theta)}{\partial(x, y)}$
But $J J^{\prime}=1 \Rightarrow J^{\prime}=\frac{1}{r}$
3) If $u=\frac{y^{2}}{x}, v=\frac{x^{2}}{y}$ then find $\frac{\partial(x, y)}{\partial(u, v)}$

Solution:
Let $J=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}\frac{-y^{2}}{x^{2}} & \frac{2 y}{x} \\ \frac{2 x}{y} & \frac{-x^{2}}{y^{2}}\end{array}\right|=1-4=-3$ and $J^{\prime}=\frac{\partial(u, v)}{\partial(x, y)}$
But $J J^{\prime}=1 \Rightarrow J^{\prime}=\frac{1}{J}=\frac{1}{-3}$
4) If $u=x y, v=x^{2}$ evaluate $\frac{\partial(u, v)}{\partial(x, y)}$

Solution:

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
y & x \\
2 x & 0
\end{array}\right|=-2 x^{2}
$$

5) If $x=r \cos \theta, y=r \sin \theta$, prove that $\frac{\partial r}{\partial x}=\frac{\partial x}{\partial r}$

Solution:

We know that,

$$
x^{2}+y^{2}=r^{2}, \theta=\tan ^{-1} \frac{y}{x}
$$

Diff above equation p.w.r. to x, we get

$$
\begin{gathered}
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}=\cos \theta \rightarrow(1) \\
x=r \cos \theta, \frac{\partial x}{\partial r}=\cos \theta \rightarrow(2) \\
(1)=(2)
\end{gathered}
$$

Hence proved.
6) If $u=x-y, v=y-z \& w=z-x$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$

Solution:

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)}=\left|\begin{array}{lll}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right|=\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right|=1-1=0
$$

7) If $x=r \cos \theta, y=r \sin \theta, z=z$ then find the Jacobian of x, y, z interms of r, θ, z

Solution:

$\frac{\partial(x, y, z)}{\partial(r, \theta, z)}=\left|\begin{array}{lll}x_{r} & u_{\theta} & x_{z} \\ y_{r} & y_{\theta} & y_{z} \\ z_{r} & z_{\theta} & z_{z}\end{array}\right|=\left|\begin{array}{ccc}\cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right|=r \cos \theta \cos \theta+r \sin \theta \sin \theta=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r$
8) If $u=\frac{x+y}{1-x y}, v=\tan ^{-1} x+\tan ^{-1} y$ then prove that u and v are functionally related

Solution:

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1+y^{2}}{(1-x y)^{2}} & \frac{1+x^{2}}{(1-x y)^{2}} \\
\frac{1}{1+x^{2}} & \frac{1}{1+y^{2}}
\end{array}\right|=\frac{1}{(1-x y)^{2}}-\frac{1}{(1-x y)^{2}}=0
$$

Hence $u \& v$ are functionally related.
9) Find $\frac{\partial(u, v)}{\partial(r, \theta)}$ if $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta \cdot y=r \sin \theta$.

Solution

$$
\begin{aligned}
\frac{\partial(u, v)}{\partial(r, \theta)}=\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(r, \theta)} & =\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right| \times\left|\begin{array}{cc}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right| \\
& =\left|\begin{array}{cc}
2 y & 2 x \\
2 x & -2 y
\end{array}\right| \times\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& =\left(-4 y^{2}-4 x^{2}\right)\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right) \\
& =-4\left(x^{2}+y^{2}\right) \cdot r \\
& =-4 r^{3}
\end{aligned}
$$

10)If $u=x+y, y=u v$ find the Jacobian of (x, y) w.r.to (u, v)

Solution:

Given $u=x+y, y=u v \Rightarrow u=x+u v \Rightarrow x=u-u v$

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1-v & -u \\
v & 1+u
\end{array}\right|=(1-v) u+u v=u
$$

11)If $x=r \cos \theta, y=r \sin \theta$, prove that the Jacobian $J=\frac{\partial(x, y)}{\partial(r, \theta)}=r$ and $J^{\prime}=\frac{\partial(r, \theta)}{\partial(x, y)}=\frac{1}{r}$

Solution:

$$
\begin{aligned}
& x=r \cos \theta \\
& \begin{array}{ll}
\frac{\partial x}{\partial r}=\cos \theta \text { and } \frac{\partial x}{\partial \theta}=-r \sin \theta & \begin{array}{l}
y=r \sin \theta \\
\frac{\partial y}{\partial r}=\sin \theta \text { and } \frac{\partial y}{\partial \theta}=r \cos \theta
\end{array}
\end{array} \\
& J=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
\end{aligned}
$$

To find J^{\prime}

$$
\begin{aligned}
& x=r \cos \theta, y=r \sin \theta, \\
& x^{2}+y^{2}=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& \Rightarrow x^{2}+y^{2}=r^{2} \\
& \text { and } \frac{y}{x}=\frac{r \sin \theta}{r \cos \theta}=\tan \theta \Rightarrow \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \therefore r^{2}=x^{2}+y^{2} \text { and } \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \text { Diff. } 2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \\
& \text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r} \\
& \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{-y}{x^{2}}\right)=-\frac{y}{x^{2}+y^{2}}=\frac{-r \sin \theta}{r^{2}}=\frac{-\sin \theta}{r} \\
& \frac{\partial \theta}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{1}{x^{2}}\right)=\frac{x}{x^{2}+y^{2}}=\frac{r \cos \theta}{r^{2}}=\frac{\cos \theta}{r} \\
& J^{\prime}=\frac{\partial(r, \theta)}{\partial(x, y)}=\left|\frac{\partial \theta}{\partial x} \frac{\partial r}{\partial y}\right| \frac{\partial \theta}{\partial y}\left|=\left|\frac{x}{r} \quad-\frac{x^{2}}{r} \quad \frac{\cos \theta}{r}\right|=\frac{x \cos \theta}{r^{2}}+\frac{y \sin \theta}{r^{2}}\right. \\
& \quad=\frac{r \cos ^{2} \theta}{r^{2}}+\frac{r \sin ^{2} \theta}{r^{2}}=\frac{1}{r}\left(\cos { }^{2} \theta+\sin ^{2} \theta\right)=\frac{1}{r}
\end{aligned}
$$

Hence $J J^{\prime}=1$
12) If $u=\frac{y z}{x}, v=\frac{z x}{y}, w=\frac{x y}{z}$ find the Jacobian of u, v, w w.r.t x, y, z.

Solution:

$$
\begin{aligned}
\frac{\partial(u, v, w)}{\partial(x, y, z)} & =\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\frac{-y z}{x^{2}} & \frac{z}{x} & \frac{y}{x} \\
\frac{z}{y} & \frac{-z x}{y^{2}} & \frac{x}{y} \\
\frac{y}{z} & \frac{x}{z} & \frac{-x y}{z^{2}}
\end{array}\right|=-\frac{y z}{x^{2}}\left(\frac{x^{2}}{y z}-\frac{x^{2}}{y z}\right)-\frac{z}{x}\left(-\frac{x}{z}-\frac{x}{z}\right)+\frac{y}{x}\left(\frac{x}{y}+\frac{x}{y}\right) \\
& =2+2=4
\end{aligned}
$$

13) Prove $u=x+y+z, v=x y+y z+z x, w=x^{2}+y^{2}+z^{2}$ are functionally dependent. Find the relationship between them.

Solution:

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right|
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
y+z & z+x & x+y \\
2 x & 2 y & 2 z
\end{array}\right| \\
& =1[2 z(z+x)-2 y(x+y)]-1[2 z(y+z)-2 x(x+y)] \\
& \quad+1[2 y(y+z)-2 x(z+x)] \\
& =2 z^{2}+2 x z-2 x y-2 y^{2}-2 y z-2 z^{2}+2 x^{2}+2 x y \\
& \quad+2 y^{2}+2 y z-2 x z-2 x^{2}
\end{aligned} \quad \begin{array}{r}
=0
\end{array}
$$

$\therefore u, v$ and w are functionally dependent. The relation between them is given by the
Formula

$$
\begin{aligned}
(x+y+z)^{2} & =x^{2}+y^{2}+z^{2}+2(x y+y z+z x) \\
u^{2} & =w+2 v
\end{aligned}
$$

Maxima and Minima for functions of Two variables

Working rule to find the maximum or minimum values of $f(x, y)$
Let $f(x, y)$ be the given function

- $f_{x}, f_{y}, f_{x y}, f_{y y} \& f_{x x}$ should exist.
- Substitute $f_{x}=0 \& f_{y}=0$. Solving these equation will give the points at which maxima \& minima exists. Let the points be (a, b).
- Let $r=f_{x x}, s=f_{x y}, t=f_{y y} \& \Delta=r t-s^{2}$.
- If $\Delta \succ 0 \& r($ or $t) \prec 0$ for the solution (a, b) then $f(x, y)$ has a maximum value at (a, b).
- If $\Delta \succ 0 \& r($ or $t) \succ 0$ for the solution (a, b) then $f(x, y)$ has a minimum value at (a, b).
- If $\Delta \prec 0$ for the solution (a, b) then $f(x, y)$ has neither a maximum nor minimum value at (a, b). In this case the point (a, b) is called a saddle point of the function $f(x, y)$
- If $\Delta=0$ or $r=0$ then further investigations is needed.

1) Define saddle point Solution:

Let $r=\frac{\partial^{2} f}{\partial x^{2}}, s=\frac{\partial^{2} f}{\partial x \partial y}, t=\frac{\partial^{2} f}{\partial y^{2}}$
If $r t-s^{2}<0$ for certain point (x, y) then the function is neither maximum nor minimum at that point. This point is known as saddle point
2) Find the maximum and minimum values of $x^{2}-x y+y^{2}-2 x+y$

Solution:

$$
\begin{aligned}
& f(x, y)=x^{2}-x y+y^{2}-2 x+y \\
& p=f_{x}=2 x-y-2 \\
& q=f_{y}=-x+2 y+1 \\
& r=f_{x x}=2 \\
& s=f_{x y}=-1 \\
& t=f_{y y}=2
\end{aligned}
$$

At maximum and minimum point: $p=q=0,(1,0)$ may be a maximum point or minimum point .
At (1,0): $\left.\begin{array}{l}r t-s^{2}=4-1=3 \\ r=2\end{array}\right\}>0$
$\Rightarrow(1,0)$ is the minimum point
Therefore the minimum value is 1
3) Find the maximum and minimum value of $x^{2}+y^{2}-x y-2 x+y$ Solution:

$$
\begin{aligned}
& f(x, y)=x^{2}-x y+y^{2}-2 x+y \\
& f_{x}=2 x-y-2 \\
& f_{y}=-x+2 y+1 \\
& f_{x}=0 \Rightarrow 2 x-y-2=0 \rightarrow(1) \\
& f_{y}=0 \Rightarrow-x+2 y+1=0 \rightarrow(2)
\end{aligned}
$$

Solving (1) \& (2) we get $x=1$ and $y=0$
The stationary point is $(1,0)$.
At $(1,0)$

$$
\begin{gathered}
r t-s^{2}=4-1=3>0 \\
r=2>0
\end{gathered}
$$

$\therefore(0,1)$ is a minimum point.
\therefore minimum value $=f(1,0)=-1$
4) Find the stationary point of $f(x, y)=x^{3}+y^{3}-12 x y$

Solution:

$$
\begin{aligned}
& f(x, y)= x^{3}+y^{3}-12 x y \\
& f_{x}=3 x^{2}-12 y \\
& f_{y}=3 y^{2}-12 x \\
& f_{x}=0 \Rightarrow 3 x^{2}-12 y=0 \rightarrow(1) \\
& f_{y}=0 \Rightarrow 3 y^{2}-12 x=0 \rightarrow(2)
\end{aligned}
$$

Solving (1) \& (2) we get

$$
\begin{aligned}
& y\left(y^{3}-64\right)=0 \\
& y=0, y=4
\end{aligned}
$$

Sub in (2) we get $x=0, x=4$. The Stationary points are $(0,0)$ and $(4,4)$
5) Find the extreme values of the function $f(x, y)=x^{3}+y^{3}-12 x-3 y+20$

Solution:

$$
\begin{aligned}
& f(x, y)=x^{3}+y^{3}-12 x-3 y+20 \\
& \quad p=f_{x}=3 x^{2}-12 ; q=f_{y}=3 y^{2}-3 ; r=f_{x x}=6 x \\
& \quad s=f_{x y}=0 ; \quad t=f_{y y}=6 y
\end{aligned}
$$

To find stationary points:

$$
\begin{aligned}
& \mathrm{p}=0=\mathrm{q} \\
& 3 x^{2}-12=0,3 y^{2}-3=0 \\
& x^{2}=4
\end{aligned} \quad y^{2}=1, ~ \begin{array}{ll}
x= \pm 2 & y= \pm 1
\end{array}
$$

$\therefore(2,1),(2,-1),(-2,1),(-2,-1)$ are stationary points.

	$(2,1)$	$(2,-1)$	$(-2,1)$	$(-2,-1)$
r	12	12	-12	-12
s	0	0	0	0
t	6	-6	6	-6
$r t-s^{2}$	72	-72	-72	72

At $(2,1) \mathrm{r}=12>0$, minimum point
At $(-2,-1) \mathrm{r}=-12<0$ maximum point
Minimum value $=f(2,1)$

$$
=2^{3}+1^{3}-12(2)-3(1)+20=2
$$

Maximum value $=f(-2,-1)$

$$
=(-2)^{3}+(-1)^{3}-12(-2)-3(-1)+20=38
$$

6) Find the maximum and minimum of $f(x, y)=\sin x+\sin y+\sin (x+y), 0 \leq x, y \leq \frac{\pi}{2}$

Solution:

$$
\begin{aligned}
& \mathrm{p}=\cos \mathrm{x} \cos (\mathrm{x}+\mathrm{y}) \quad \mathrm{q}=\cos \mathrm{y} \cos (\mathrm{x}+\mathrm{y}) \\
& \mathrm{r}=-\sin \mathrm{x}-\sin (\mathrm{x}+\mathrm{y}) \quad \mathrm{s}=-\sin (\mathrm{x}+\mathrm{y}) \quad \mathrm{t}==-\sin \mathrm{x}-\sin (\mathrm{x}+\mathrm{y})
\end{aligned}
$$

To find stationary points:

$$
\begin{aligned}
& \mathrm{p}=0=\mathrm{q} \\
& \cos x \cos (x+y)=0, \quad \cos y \cos (x+y)=0 \\
& \Rightarrow 2 \cos \left(\frac{2 x+y}{2}\right) \cos \left(\frac{y}{2}\right)=0 \quad 2 \cos \left(\frac{x+2 y}{2}\right) \cos \left(\frac{x}{2}\right)=0 \\
& \Rightarrow \frac{2 x+y}{2}=\frac{\pi}{2} \quad \text { and } \frac{x+2 y}{2}=\frac{\pi}{2} \because \text { if } \frac{y}{2}=\frac{\pi}{2} \text { then } y=\pi \text { lies outside the range similarly for } x \\
& 2 x+y=\pi \text { and } x+2 y=\pi \\
& \Rightarrow x=\frac{\pi}{3} \quad, y=\frac{\pi}{3} \\
& \therefore\left(\frac{\pi}{3}, \frac{\pi}{3}\right) \text { is a stationary point } \\
& r=-\sin \frac{\pi}{3}-\sin \frac{2 \pi}{3}=\frac{-\sqrt{3}}{2}-\frac{1}{2}=-\frac{\sqrt{3}+1}{2} \\
& s=-\sin \frac{2 \pi}{3}=-\frac{1}{2} \\
& t=-\sin \frac{\pi}{3}--\sin \frac{2 \pi}{3}=-\frac{\sqrt{3}+1}{2} \\
& r t-s^{2}=\frac{(\sqrt{3}+1)^{2}}{4}-\frac{1}{4}>0 \quad \therefore \text { extreme point } \\
& \text { and } r=-\frac{\sqrt{3}+1}{2}<0 \text { max imum point } \\
& f\left(\frac{\pi}{3}, \frac{\pi}{3}\right)=\sin \frac{\pi}{3}+\sin \frac{\pi}{3}+\sin \frac{2 \pi}{3}=\sqrt{3}+\frac{1}{2} \text { is max imum value }
\end{aligned}
$$

7)Find the maximum and minimum of $f(x, y)=x^{4}+x^{2} y+y^{2}$

Solution:

$$
p=4 x^{3}+2 x y \quad q=x^{2}+2 y \quad r=12 x^{2}+2 y \quad s=2 x \quad t=2
$$

To find stationary points:

$$
\mathrm{p}=0=\mathrm{q}
$$

$$
\begin{aligned}
& 4 x^{3}+2 x y=0 \quad \text { and } x^{2}+2 y=0 \\
& 2 x\left(2 x^{2}+y\right)=0 \quad x^{2}+2 y=0 \\
& \Rightarrow 2 x^{2}+y=0 \quad x^{2}+2 y=0 \\
& \Rightarrow 2 x^{2}=-y \quad x^{2}=-2 y \\
& \Rightarrow 2(-2 y)=-y \\
& \Rightarrow-4 y=-y \Rightarrow-4 y+y=0 \Rightarrow-3 y=0 \Rightarrow y=0 \\
& \therefore x=0
\end{aligned}
$$

$\therefore(0,0)$ is a stationary point.
$\mathrm{r}=0, \mathrm{~s}=0, \mathrm{t}=2$
$\therefore \mathrm{rt}-s^{2}=0$
further investigation is necessary.
8) Examine the function $f(x, y)=x^{3} y^{2}(12-x-y)$ for extreme values.

Solution:

$$
\begin{aligned}
& f(x, y)=12 x^{3} y^{2}-x^{4} y^{2}-x^{3} y^{3} \\
& f_{x}=36 x^{2} y^{2}-4 x^{3} y^{2}-3 x^{2} y^{3} \\
& f_{y}=24 x^{3} y-2 x^{4} y-3 x^{3} y^{2} \\
& f_{x x}=72 x y^{2}-12 x^{2} y^{2}-6 x y^{3} \\
& f_{x y}=72 x^{3} y-8 x^{2} y-9 x^{2} y^{2} \\
& f_{y y}=24 x^{3}-2 x^{4}-6 x^{3}
\end{aligned}
$$

The stationary points are given by

$$
\begin{array}{lr}
f_{x}=0 ; f_{y}=0 & \\
x^{2} y^{2}(36-4 x-3 y)=0 & -------(1) \\
x^{3} y(24-2 x-3 y)=0 & -------(2) \\
(1) \Rightarrow 4 x+3 y=36 & -------(3) \\
(2) \Rightarrow 2 x+3 y=24 & ------(4) \tag{3}
\end{array}
$$

Solve (3) and (4), the stationary points are (0,0),(0,8),(0,12),(12,0),(9,0) and (6,4).
For the first five points, $r t-s^{2}=0$
Further investigation is required
At $(6,4)$

$$
r=-2304, \quad s=-1728, \quad t=-2592
$$

$\therefore r t-s^{2}>0$ and $r>0$
$\therefore f$ has a maximum at $(6,4)$
Maximum value of $f(x, y)=6912$.

Lagrange's Method of undetermined multipliers

Suppose we require to find the maximum and minimum values $f(x, y, z)$ where x, y, z Are subject to a constraint equation $\varphi(x, y, z)=0$.

We define a function $L=f+\lambda \varphi$ where λ is called Lagrange multipliers which is independent of x, y, z.

The stationary points of L are given by $L_{x}=0, L_{y}=0, L_{z}=0, L_{\lambda}=0$

1)Find the minimum value of $x^{2}+y^{2}+z^{2}$, subject to $a x+b y+c z=p$

Solution:

$$
L(x, y, z)=x^{2}+y^{2}+z^{2}+\lambda(a x+b y+c z-p)
$$

Differentiate w.r.t.x,y,z\& λ partially
$L_{x}=2 x+\lambda y=0-----(1)$
$L_{y}=2 y+\lambda b=0-----(2)$

$$
\begin{align*}
& L_{z}=2 z+\lambda c=0-----(3) \\
& L_{\lambda}=a x+b y+c z-p=0-- \tag{4}
\end{align*}
$$

(1) $\mathrm{b}-(2) \mathrm{a} \Rightarrow 2 b x+\lambda b y-2 a y-\lambda a b=0$
$\Rightarrow b x=a y \Rightarrow \frac{x}{y}=\frac{a}{b}$

$$
\begin{gathered}
\text { (2)c-(3) } \mathrm{b} \Rightarrow 2 c y x+\lambda b c-2 b z-\lambda b c=0 \\
\Rightarrow c y=b z \Rightarrow \frac{y}{z}=\frac{b}{c} \\
x=\alpha(\text { assume }), y=\frac{b}{a} x=\frac{b}{a} \alpha \\
z=\frac{c}{b} y=\frac{c}{b} \frac{b}{a} \alpha \Rightarrow z=\frac{c}{a} \alpha
\end{gathered}
$$

substitute in (4)

$$
\begin{aligned}
& a \alpha+\frac{b^{2}}{a} \alpha+\frac{c^{2}}{a} \alpha-p=0 \\
& \left(a^{2}+b^{2}+c^{2}\right) \alpha-a p=0 \\
& \quad \alpha=\frac{a p}{a^{2}+b^{2}+c^{2}} \\
& x=\frac{a p}{a^{2}+b^{2}+c^{2}}, y=\frac{b}{a} \times \frac{a p}{a^{2}+b^{2}+c^{2}}=\alpha=\frac{b p}{a^{2}+b^{2}+c^{2}} \\
& z=\frac{c}{a} \alpha=\alpha=\frac{c p}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

and minimum value $f(x, y, z)=x^{2}+y^{2}+z^{2}$

$$
=\frac{a^{2} p^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}+\frac{b^{2} p^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}+\frac{c^{2} p^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}=\frac{p^{2}}{\left(a^{2}+b^{2}+c^{2}\right)}
$$

2)The temperature at any point $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ in space is given by $T=k x y z^{2}$, where \mathbf{k} is a constant. Find the highest temperature on the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$

Solution:

$$
\begin{aligned}
& T=k x y z^{2} \quad \phi: x^{2}+y^{2}+z^{2}-a^{2}=0 \\
& \quad L(x, y, z)=k x y z^{2}+\lambda\left(x^{2}+y^{2}+z^{2}-a^{2}\right)
\end{aligned}
$$

Differentiate w.r.t. $x, y, z \& \lambda$ partially

$$
\begin{equation*}
L_{x}=k y z^{2}+\lambda 2 x=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
L_{y}=k x z^{2}+\lambda 2 y=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
L_{z}=k 2 x y z+\lambda 2 z=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
L_{\lambda}=x^{2}+y^{2}+z^{2}-a^{2}=0 \tag{4}
\end{equation*}
$$

$$
\text { (1) } y-(2) x \Rightarrow k z^{2}\left(y^{2}-x^{2}\right)=0 \Rightarrow y^{2}-x^{2}=0
$$

$$
\Rightarrow y= \pm x
$$

$$
\begin{gathered}
(1) z-(3) x \Rightarrow k y z\left(z^{2}-2 x^{2}\right)=0 \Rightarrow z^{2}-2 x^{2}=0 \\
\Rightarrow z= \pm \sqrt{2} x
\end{gathered}
$$

Assume $x=\alpha, y= \pm \alpha \quad z= \pm \sqrt{2} \alpha$

$$
y= \pm \alpha \quad z= \pm \sqrt{2} \alpha
$$

$$
\alpha^{2}+\alpha^{2}+2 \alpha^{2}=a^{2}
$$

Substitute in (4), $4 \alpha^{2}=a^{2} \Rightarrow \alpha= \pm \frac{a}{2}$
$\therefore x=\frac{a}{2} \quad y=\frac{a}{2} \quad z=\frac{\sqrt{2} a}{2}=\frac{a}{\sqrt{2}}$ $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{\sqrt{2}}\right)$ is the point
\therefore Max temp $=k x y z^{2}=\frac{k a^{4}}{8}$
3)Show that of all rectangular parallelepiped with given surface area ,cube has the greatest volume.

Solution:

$$
\begin{aligned}
& \text { Assume surface area }=\mathrm{S}=2(x y+y z+z x) \\
& \text { Max } V=x y z \text { subject to } 2(x y+y z+z x)=\mathrm{S} \\
& \qquad L(x, y, z)=x y z+\lambda(2 x y+2 y z+2 z x-S) \\
& L_{x}=y z+\lambda(2 y+2 z)=0-----(1) \\
& L_{y}=x z+\lambda(2 x+2 z)=0-----(2) \\
& L_{z}=x y+\lambda(2 x+2 y)=0-----(3) \\
& L_{\lambda}=2 x y+2 x z+2 y z-S=0-----(4) \\
& (1) \mathrm{x}-(2) \mathrm{y} \Rightarrow \lambda 2 z(x-y)=0 \Rightarrow x=y \\
& \text { similarly }(1) \mathrm{z}-(2) \mathrm{x} \Rightarrow x=z \\
& \Rightarrow x=y=z \text { is a cube }
\end{aligned}
$$

4) Find the volume of the largest rectangular parallelepiped that can be inscribed in the Ellipsoid.

Solution:

The given ellipsoid is

$$
\phi(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1
$$

The volume of the parallelepiped is $f(x, y, z)=8 x y z$

$$
\begin{aligned}
& \quad L(x, y, z)=8 x y z+\lambda\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1\right) \\
& L_{x}=8 y z+\lambda\left(\frac{2 x}{a^{2}}\right)=0-----(1) \\
& L_{y}=8 x z+\lambda\left(\frac{2 y}{b^{2}}\right)=0-----(2) \\
& L_{z}=8 x y+\lambda\left(\frac{2 z}{c^{2}}\right)=0-----(3) \\
& L_{\lambda}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0-----(4)
\end{aligned}
$$

Solve the equations
(1) $x+(2) y+(3) z \Rightarrow$

$$
24 x y z+2 \lambda\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)=0
$$

$$
\lambda=-12 x y z
$$

put in $(1) \Rightarrow 8 y z-12 x y z\left(\frac{2 x}{a^{2}}\right)=0$

$$
\begin{aligned}
& 8 y z\left(1-\frac{3 x^{2}}{a^{2}}\right)=0 \\
& \frac{3 x^{2}}{a^{2}}=1 \Rightarrow x=\frac{a}{\sqrt{3}}
\end{aligned}
$$

similarly,

$$
y=\frac{b}{\sqrt{3}}, z=\frac{c}{\sqrt{3}}
$$

\therefore Max Volume $=\frac{8 a b c}{3 \sqrt{3}}$

MOHAMED SATHAK A.J.COLLEGE OF ENGINEERING UNIT-IV INTEGRAL CALCULUS

1. Define definite integral.

The definite integral is $\int_{a}^{b} f(x) d x=\lim _{x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{\dot{i}}\right) \Delta x$.
2: write dawn the midpoint rule in definite integral.

$$
\begin{aligned}
& \text { awn the midpoint rule in definite integral. } \\
& \int_{a}^{f} f(x) d x=\sum_{i=1}^{n} f(\bar{x}) \Delta x=\Delta x\left[f\left(\overline{x_{i}}\right)+f\left(\overline{x_{2}}\right)+\cdots+f\left(\overline{x_{i j}}\right]\right]
\end{aligned}
$$

where $\Delta x=\frac{b-a}{n}$ and $\overline{x_{i}}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)=$ mid point of $\left[x_{i-1}, x_{i}\right]$.
3. Write down the properties of definite integrals.
(1) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(2) $\int_{a}^{b} c d x=c \int_{a}^{b} d x=c(b-a), c$ is constant
(3) $\int_{a}^{b}[F(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(4) $\int_{a}^{b} e f(x) d y=c \int_{a}^{b} f(x) d x$ where c is a constant.
(5) $\int_{a}^{b} f(x) d x=\int_{a}^{a} f(x) d x+\int_{c}^{b} f(x) d x$
(b) $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
4. Evaluate the integral $\int_{0}^{1} \sqrt{1-x^{2}} d x$ by intropreting each interns of area.

$$
\begin{aligned}
\text { Let } \begin{aligned}
f(x)=\sqrt{1-x^{2}} \Rightarrow y=\sqrt{1-x^{2}} & \Rightarrow y^{2}=\left(\sqrt{1-x^{2}}\right)^{2} \\
& \Rightarrow x^{2}+y^{2}=1
\end{aligned} \text {. }
\end{aligned}
$$

which is a circle with radius 1 .

$$
\therefore \int_{0}^{1} \sqrt{L x^{2}} d x=\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi(1)^{2}=\pi / 4 \quad \int_{-1 / 4}^{4} \operatorname{taran}(4)
$$

5. State the fundarnented theorem of calculus part-I

If t is continuous on [air], then the function' g is darned by $g(x)=\int_{a}^{x} f(t) d t ; \quad a \leq x \leq b$ is continuous on [air] and differentiable on (alb), and $g^{\prime}(x)=f(x)$.
6. State the fundamental theorem of calculus poot-II

If f is continues on $\left[a[b], \pi_{e} \int_{a}^{b} f(x) d x=f(b)+c(a)\right.$
where F is any anti-derivative of $f, i c e, F^{\prime}=f$.
7. State the fundamanted theorem of calculus.
suppose f is continuous on $[a, b]$

$$
\begin{aligned}
& \text { 1. If } g(x)=\int_{a}^{x} f(t) d t \text {, men } g^{\prime}(x)=f(x) \text {. } \\
& \text { 2. } \int_{a}^{b} f(x) d x=F(b)-F(a) \text {, where } F \text { is art anti-devirative of } 0 \text {. } \\
& i e, F^{\prime}=f \text {. }
\end{aligned}
$$

8. Find the derivative of the function $g(x)=\int_{0}^{x} \sqrt{1+t^{2}} d t$:

$$
\text { Here } \begin{aligned}
& f(t)=\sqrt{1+t^{2}} \text { is continuous, } \\
& y(x)=\int_{2}^{x} \sqrt{1+t^{2}} \text { te } \\
& y(x)=\sqrt{1+x^{2}} \\
& y
\end{aligned}
$$

9. what is wrong with the following calculation?

$$
\int_{-1}^{3} \frac{1}{x^{2}} d x=\left[\frac{x^{-1}}{-1}\right]_{1}^{3}=-\frac{1}{3}-1=\frac{-4}{3}
$$

Here $f(x)=\frac{1}{x^{2}}$ is not continuous on $[-1,3]$
$f(x)$ has infinite discontinuity at $x=0$
$\therefore \int_{-1}^{3} \frac{1}{x^{2}} d x$ does not exists
10. Prove that following integral by interpreting each in terns of area $\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}$
sofa: Given $\begin{array}{r}\int_{a}^{b} x d x, \text { were } f(x)=x: \\ \int f(x) d x=\frac{x^{2}}{2}\end{array}$

$$
\therefore \text { Area }=F(h)-F(a)=\frac{b^{2}}{2}-\frac{a^{2}}{2}=\frac{b^{2}-a^{2}}{2} \text { by } F+c 2
$$

it Evaluate $\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta$

$$
\text { sin: Let } \begin{aligned}
I & =\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta \\
& =\int \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin t} d \theta \\
& =\int \cot \theta \operatorname{cosec} \theta d \theta \\
& =-\operatorname{cosec} \theta+c
\end{aligned}
$$

12. Evaluate \int tarhuedx
she: put $\begin{aligned} y & =\cosh x \\ d y & =\sinh x\end{aligned}$
\int rath $x d y=\int \frac{\sinh x}{\cos x} d x$

$$
\begin{aligned}
=\int \frac{d y}{y} & =\log y+c \\
& =\log (\cos x)+c / 1
\end{aligned}
$$

B. Evaluate $\int \tan ^{3} x d x$.
stane: $\int \tan ^{2} x d x=\int \tan ^{2} x \cdot \tan x d x$

$$
\left.=\int \sec ^{2}-1\right) \tan x d x
$$

$$
\begin{aligned}
& =\int \sec ^{2} x \tan x d x-\int \tan x d x
\end{aligned}
$$

$$
=\frac{\tan ^{2} x}{2}-\log \sec x+c
$$

14. Evaluate $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x$

Lat Let $x=\sin \theta \Rightarrow \sin x=\frac{x}{a} \Rightarrow \theta=\sin ^{-1}(x)$ $d x=a \cos \theta d \theta$
$\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\int \frac{\operatorname{acos} \theta}{\sqrt{a^{2}-\theta^{2}}} d \theta=\int \frac{d \cos \theta}{d \sqrt{s^{2} \theta}} d \theta$
$=\int \frac{\cot \theta}{\operatorname{cts} t} d \theta$
$=\int d \theta$
$=\theta+c$
$=\operatorname{sen}^{-1}(/ 4)+c$
15. Evaluate $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$

Sita. Let $x=a \operatorname{cosin} \theta \Rightarrow \cos A=\frac{x}{x} \Rightarrow s=\tan ^{-1}(1 / 2)$
$d x=a \sinh t d \theta$.
$\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\int \frac{1}{\sqrt{a^{2} \cosh ^{2} \theta-a^{2}}}(a \sinh s) d \theta$
$=\int \frac{\alpha x \sin \theta}{\alpha \sin t} d \theta=\int d \theta=\theta=\cosh ^{-1}(x)+C$
(or) $\operatorname{lan} \sqrt{x}+\sqrt{x} a)+6$
16. Evaluates $\int \sqrt{1+\sin 2 x} d x$
$\int \sqrt{1+\sin 2 x} d x=\int \sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} d x$
$=\int \sqrt{(\sin x+\cos x)^{2}} d x$
$=\int(\sin x+\cos x) d x$
$=-\cos x+\sin x+c$

1. Evaluate $\int_{i}^{\infty} \frac{1}{x} d x$ and determine whether the integral is convergent or divergent
and

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\lim _{t \rightarrow \infty}[\log x]_{1}^{\infty} \\
& =\lim _{r \rightarrow \infty}(\log t-\operatorname{lig} 1)=\lim _{t \rightarrow \infty} t=\log \infty=\infty
\end{aligned}
$$

$$
\Rightarrow \int_{1}^{\infty} \frac{1}{x} d x \text { is divergent. }
$$

18. Evaluate $\int_{4}^{\infty} \frac{1}{\sqrt{x}} d x$

$$
\begin{aligned}
& \int_{-}^{\infty} \frac{1}{\sqrt{x}} t x=\lim _{t \rightarrow \infty} \int_{4}^{t} \frac{1}{\sqrt{x}} d x \\
&=\lim _{t \rightarrow \infty}[2 \sqrt{x}]_{4}^{t} \\
&=\lim _{t \rightarrow \infty}(\sqrt{ } \sqrt{r}-2 \sqrt{t}) \\
&=\infty \\
& \Rightarrow \int_{4}^{\infty} \frac{1}{\sqrt{x}} d x \text { is divergent. }
\end{aligned}
$$

19. Evaluate $\int_{1}^{2} \frac{d x}{1-x} d x$

$$
\begin{aligned}
& \int_{i}^{2} \frac{d y}{1-x}=\left[\frac{\log (1-x)}{-1}\right]_{1}^{2}=-[\log (1-x)]_{1}^{2} \\
&=-[\log 0-\log (-1)] \\
&=-\infty \\
& \Rightarrow \int_{1}^{2} \frac{c_{1}}{1-x} \text { is divergent. }
\end{aligned}
$$

20. Evaluate $\int_{1}^{1} \frac{d x}{x}$

$$
\begin{array}{r}
\int_{-1}^{1} \frac{d}{x}=\lim _{t \rightarrow 0^{+}} \int_{c}^{1} \frac{d x}{x}=\lim _{t \rightarrow 0^{+}} \log n=\alpha \\
\Rightarrow 1_{1}^{1} \frac{d x}{x} \text { is divergent } / / 1
\end{array}
$$

21) Evaluate $\int_{1}^{\infty} \frac{1}{e^{x}+x^{2}} d x$.

क्रher - Here $\frac{1}{x^{2}}>\frac{1}{e^{x}+x^{2}}$ and $\int_{1}^{\infty} \frac{d x}{x^{2}}$ is convergent by p-rast

$$
\Rightarrow \quad \int_{i}^{\infty} \frac{d x}{e^{x+x^{2}}} \text { is convergent. }
$$

22. Evaluate $\int_{0}^{11} \tan ^{-1} x d x$

$$
\begin{aligned}
& =\pi / 4-1 / 2 \int_{0} \frac{241 x}{1+x^{2}} \\
& =\pi / 4-\frac{1}{2}\left[\log \left(1+x^{2}\right)\right]! \\
& =\pi / 4-1 / 2 \log 2 .
\end{aligned}
$$

23. Evaluate $\int \frac{x^{3}}{\sqrt{4+x^{2}}}$.

Let $t=x^{2}+4 \Rightarrow x^{2}=t-4$

$$
\begin{aligned}
\therefore \int \frac{x^{3}}{\sqrt{4+x^{2}}} & =\int \frac{x^{2}}{\sqrt{x^{2}+4}} x d x \\
& =\int \frac{t-4}{\sqrt{t}} \frac{d t}{2} \\
& =\int\left(t^{y_{2}}-+^{-1} 1^{2}\right) \frac{d t}{2} \\
& =\frac{1}{2}\left[\frac{t^{3 / 2}}{3 / 2}-+\frac{+2}{y_{2}}\right] \\
& =\frac{t^{3 / 2}}{3}-4 t^{1 / 2}+c
\end{aligned}
$$

$$
=\frac{1 / 3}{3}\left(x^{2}+4\right)^{3 / 2}-4 \sqrt{x^{2}+}+e-1 / .
$$

24. Evaluate $\int(\log x)^{2} d x$

When:- Let $u=(\cos)^{2}$,

$$
\begin{array}{ll}
\text { Let } u=(\cos)^{2}, & d u=d x \\
d u=2 \log x \cdot 1 \cdot d x \quad v=x . \\
\text { I } x(\log x)^{2}-\int x \cdot 2 \log x \cdot 3 x d x=x(\log x)^{2}-2(x \log x+x)+c,
\end{array}
$$

25. Evaluate $\int \frac{x}{1+\cos x} d x$
$\xrightarrow{\text { otn.i. }} \int \frac{x}{x} d x$ $\int \frac{x}{1-\cos x} d x=\int \frac{x}{\operatorname{sos} x_{1}} d x$
$=\frac{1}{2} \int x \operatorname{sic}^{2} x_{2} d x-$ (1)
L.t $u=x \quad\left\{\begin{array}{l}d x=\sec ^{2} x / 2 d x \\ x=\int \operatorname{coc}^{2} x / 2 d x\end{array}\right.$
$=\frac{\tan x}{y_{2}}$
$s=2+\tan x$
$\int u d x=u x-\int u d u$
$\int 1 \cos ^{2} x d x=x \cdot 2 \tan x / 2-\int 2 \tan ^{x} / 2 d x$.
$=2 x \tan x / 2-\frac{\log \sec (x)}{1 / 2}+c$
$=2 x \tan x / 2-2 \log (\tan x / 2)+c$
(1) $\Rightarrow \int \frac{x}{1+\cos x} d x=\frac{1}{2} 2\left(x \tan x / 2-\log \left(\sec ^{2} x / 2\right)\right)+C$
$=x+\operatorname{ran} / 2-\log \sec (x) 3)+c 1 /$
26. Eracte $\int \frac{1}{3 t i x+x^{2}} d x$

$$
\left.\left.\begin{array}{rl}
\text { afx } & \frac{1}{x^{2}+2+2} d r
\end{array}\right) \left.=\int \frac{d x}{x^{2}+2 x+3} \quad \begin{array}{l}
2 a b=2 x \\
2 a b=2 x \\
b=1
\end{array} \right\rvert\, a x x\right)
$$

29). Determine whethen the integral $\int_{2}^{3} \frac{1}{\sqrt{3-x}} \cdot d x$ is cyt or dgt sol. Here, infinite discontimuity occur at $x=3$
$\int_{y}^{2} \frac{1}{\sqrt{3} x} d x \lim _{t \rightarrow 3} \int_{2}^{t} \frac{1}{\sqrt{3 x}} d x$
$=\lim _{t \rightarrow 3} \int_{2}^{t}(3 \cdot x)^{-1} d x$
$=\lim _{r \rightarrow 3}\left[\frac{(3-x)^{-\frac{t_{2}}{2}}}{\left.-t_{2}+1\right)}\right]_{2}^{r}$
$=\lim _{t \rightarrow 3}\left[\frac{(3-x)^{1 / 2}}{-1 / 2}\right]_{2}^{t}$
$=\lim _{t \rightarrow 3}-\dot{x}\left[(3-x)^{y}\right]^{t}$
$=-2 \lim _{t \rightarrow 3}\left[(3-t)^{x}-\left(2 x^{x}\right]\right.$
$=-2 \lim _{t \rightarrow 3^{+}}\left[\sqrt{3^{t}}-1\right]$
$=-2(c-1)$
$=2(f i n i t)$
$\int_{2}^{3} \frac{1}{\sqrt{3-x}} d x$ is convergent.
30) Evaluate $\int \frac{1}{1+\sin x} d x$

$$
\begin{aligned}
\int \frac{1}{1+\sin } d x & =\int \frac{1}{1+\sin x} \times \frac{1 \sin x}{1-\sin x} d x \\
& =\int \frac{1}{1-\sin x} d x \\
& =\int \frac{1 \sin x}{\sin x}=\int \frac{1}{\cos ^{2} x} d x-\int \frac{\sin x}{\cos ^{2} x} d x \\
& =\int \sec ^{2} x d x-\int \sec x \tan x d x \\
& =\tan x \sec x+C,
\end{aligned}
$$

PART-B

1. Eraluate $\int^{3}\left(x^{2}-2 x\right) d x$ by uing rimann sum by taling Sol:

Rieman swn is
$\int_{a}^{b} f\left(x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \pm x\right.$.
wint $\therefore x=\frac{1-a}{n}$ and $x_{i}=a+i \Delta x$
aice $\int_{0}^{5}(-2 x) d x, \quad \Delta x=\frac{3-0}{n}=\frac{5}{n}$
$x_{0}=0, \quad x_{i}=\frac{j}{n}, \quad x_{i}=\frac{2}{n}(e), \ldots \quad x_{i}=\frac{y_{n}}{n} i$
$\int_{\underline{=}}^{=}\left(i^{2}-\alpha, d x=\lim _{x \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \geq x\right.$
$=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{5 i}{n}\right)\left(\frac{b_{2}}{r_{i}}\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n} f\left(\frac{3 i}{n}\right) \quad \because f(x)=x^{2}-2 x$
$=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{2}-2\left(\frac{3 i}{n}\right)\right]$
$=\lim _{n \rightarrow \infty} \frac{=}{n}\left\{\frac{a}{r_{i}} \sum_{i=1}^{n} i^{2}-\frac{k}{n_{i}} \sum_{i=1}^{n} i\right\}$
$=\lim _{n \rightarrow \infty} \frac{27}{n_{3}} \sum_{i=1}^{n} i^{2}-\lim _{n \rightarrow \infty} \frac{18}{n^{2}} \sum_{i=1}^{n} i$
$=\lim _{n \rightarrow \infty} \frac{\frac{27}{n^{3}}}{\frac{n(n+1)(2 n+1)}{b_{2}}-\lim _{n \rightarrow \infty} \frac{18^{9}}{n^{2}} \frac{n(n+1)}{2}}$
$=\frac{9}{2} \lim _{n \rightarrow \infty} \frac{1}{n^{5}} n^{n}+\left(1+\frac{1}{n}\right) n^{\prime}\left(2+\frac{1}{n}\right)-9 \lim _{n \rightarrow \infty} \frac{1}{y^{2}} x \cdot n(1+/ n)$
$=\frac{9}{2} 2-9$
$=9-9$
$=0$
2) a) Evaluate the Riemam sum for $f(x)=x^{3} 6 x$ taking the sample points to $b e_{3}$ right end points and $a=0 \quad b=3$ and $n=6$ (b) Evaluate $\int_{0}^{3}\left(x^{3}-6 x\right) d x$.
(a) Hase $n-6, \quad \Delta x=\frac{6-a}{n}=\frac{3-0}{6}=\frac{1}{2}=0.5$
$x_{0}=0, x_{1}=0.5, x_{2}=1, x_{3}=1.5, x_{4}=2, x_{5}=2.5 \& x_{5}=3$.
The Rienann sum is
$R_{6}=\sum_{i=1}^{6} f(x i) \Delta x$
$=f\left(x_{i}\right) \Delta x+f\left(x_{2}\right) \Delta x+f(13) \Delta x+f\left(x_{4}\right) \Delta x+\frac{1}{1}(5) \Delta x\left(B x_{0}(0) \Delta\right.$
$=[f(0.5)+f(1)+f(1.5)+f(2)+f(2.5)+f(3)] \Delta x$
$=[-2.875-5-5.625-4+0.625-9] \frac{1}{2}$
$=-3.9375$
(b) Here $4 x=\frac{3-0}{n}=\frac{3}{n}$
$\Rightarrow x_{0}=0, \quad x_{1}=\frac{3}{n}, x_{2}=\frac{5}{n}, x_{3}=\frac{9}{n} \cdots x_{i}=\frac{31}{n}$.
$\therefore \int_{0}^{3}\left(x^{3}-6 x\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{3!}{n}\right) \frac{3}{n}$
$=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[\left(\frac{i i}{n}\right)^{3}-6\left(\frac{3 i}{n}\right)\right]$
$=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[\frac{a 7}{n^{3}} i^{3}-\frac{18}{n} i\right]$
$=\lim _{n \rightarrow \infty} \frac{81}{n^{4}} \sum_{i=1}^{n} i^{3}-\lim _{n \rightarrow \infty} \frac{54}{n^{2}} \sum_{i=1}^{n} i$
$=\lim _{n \rightarrow \infty} \frac{p+1}{n 4}\left[\frac{n(n+1)}{2}\right]^{2}-\lim _{n \rightarrow \infty} \frac{5 t}{n^{2}} \frac{n(n+1)}{工}$
$=\lim _{n \rightarrow \infty} \frac{81}{n_{4}} \frac{n^{4}\left(1+x_{4}\right)^{1}}{4}-\lim _{n \rightarrow \infty} \frac{27}{n^{2}} x^{2}\left(1+i_{n}\right) \quad$,
$=\frac{81}{4}-27$
$=-\frac{27}{4}$

3. Evaluate $\int e^{\tan ^{-1} x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right] d x$ (Tim 20x.)

ste:-

$$
\begin{aligned}
\text { Deut } u & =\tan ^{-1} x \Rightarrow \tan u=x \\
d u & =\frac{1}{1+x^{2}} d x
\end{aligned}
$$

$$
\text { Lot } I=\int e^{\tan ^{-1} x} \cdot\left(\frac{1+y+x^{2}}{1+x^{2}}\right) d x=\int e^{u\left(1+\tan u+\tan ^{2} u\right)} \frac{d x}{1+x^{2}} d x
$$

$$
=\int e^{u}\left(\operatorname{san} u+\sec ^{2} u\right) d u
$$

pet $t e^{u \tan u}$
$d t=\left[e^{u} \sec ^{2} u+e^{u} \tan u\right] d u$
$\therefore \quad I=\int d t$
$=t+c$
$=e^{u \tan u+c}$
$=e^{\tan ^{-1} x} \cdot x+c$
$=x e^{\tan ^{-1} x}+c \%$
Integration by pats:

1. Evaluate $\int(\log x)^{2} d x$
sin:-

$$
\text { Let } \begin{array}{ll}
u=1 \log x)^{2} & d x=d x \\
& v=x
\end{array}
$$

$\int u d v=u x-\int x d u$
$\int\left(\operatorname{tog} x^{2} d x=(\log x)^{2} x-\int x \cdot 2 \log x \cdot \frac{1}{x} d x\right.$ $=\left(\log ^{2} x-2 \int \log x d x-(1)\right.$
3. Evaluate $\int \frac{x}{1+\sin x} d x$
sola::

$$
\int \frac{1}{1}-1 \cdot d_{x}=\int \frac{x(1-\sin x)}{(1+\sin x)(1-\sin x)} d x
$$

$$
=\int \frac{x-x \sin x}{1-\sin ^{2} x} d x
$$

$$
=\int \frac{x-x \sin x}{\cos ^{2} x} d x
$$

$$
=\int \frac{x}{\cos ^{2} x} d x-\int \frac{x \sin x}{\cos ^{2} x} d x
$$

$$
=\int x \sec ^{2} x d x-\int x \sec x \tan x d x
$$

$$
=I_{1}-I_{2} \cdots(1)
$$

$$
\begin{aligned}
& \therefore 0 \Rightarrow \int \frac{x}{1+\sin x} d x=x \tan x-\operatorname{logec} x-x \sec x+\log (\cos +\tan x)+(6
\end{aligned}
$$

$=x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x \rightarrow 0$

$$
\begin{gathered}
\text { Evaluate } \int \frac{1}{1+n^{2}} d x \\
\text { put } \quad t=1+x^{2} \\
d t=2 \cdot x d x \\
x d x=\frac{d t}{2} \\
\therefore \int \frac{x}{1+x^{2}} d x=\int \frac{\frac{d t}{2}}{t}
\end{gathered}
$$

$$
=\frac{1}{2} \int \frac{\Delta t}{t}
$$

$$
=\frac{1}{2} \log t+c
$$

$$
=\frac{1}{2} \log \left(1+x^{2}\right)+c
$$

$\therefore(1) \Rightarrow \int \tan ^{-1} x d x=x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+c$.
Now, $\int_{0}^{1} \tan ^{-1} x d x=\left[x \tan ^{-1} x\right]_{0}^{1}-\frac{1}{2}\left[\log \left(1+x^{2}\right)\right]_{0}^{1}+c$
$=\left(\tan ^{-1}(0)-0\right)-\frac{1}{2}(\log =-\log 1)$
$=1 \cdot \pi / 4-1 / 2 \log 2$

Assignment :
5. Evaluate $\int_{2}^{1 / 2} \cos ^{-1} x d x$
6. Evaluate $\int \sin ^{-1} x d x$

Reduction formula:

1) Find the reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x$ ($N / P 2016$) sm:

$$
\text { Let } I n=\int \sin ^{n}(x) d x \quad \text { - (1) }
$$

$=\int \sin ^{n-2} x \sin x d x$

$$
\begin{array}{ll}
u=\sin ^{n-1} x & d u=\sin x d x \\
d u=x-1 \sin ^{n-2} x \cos x d x & v=\int \sin x d x \\
u=-\cos x
\end{array}
$$

$\therefore \int u x=u x-\int u d u$
$I=\sin ^{n-1} x(-\cos x)-\int-\cos x(n-1) \sin ^{n-2} x \cos x d x$
$=-\cos x \sin ^{n-1} x+\int(n-1) \sin ^{n-2} x \cos ^{2} x d x$
$=-\cos x \sin ^{n-1} x+(n-1) \int \sin ^{n-2} x\left(1-\sin ^{2} x\right) d x$
$=-\cos x \sin ^{n-1} x+(n-1) \int \sin ^{n-2} x d x-(n-1) \int \sin ^{n-2} x \sin ^{2} x d x$
$=-\cos x \sin ^{n-1} x+(n-1) \int \sin ^{n-2} x d x \cdot(n-1) \int \sin ^{n} x d x$
$=-\cos x \sin ^{n-1} x+(n-1) I_{n-2}-(n-1) I_{n}$
$I_{n}+(n-1) I_{n}=-\cos x \sin ^{n-1} x+(n-1) I_{n-2}$
$I_{n}+n I_{n}-T_{n}=-\cos x \sin ^{n-1} x+(n-1) I_{n-2}$
$n I_{n}=-\sin x \sin ^{n-1} x+(n-1) I_{n-2}$

$$
I_{n}=\frac{-1}{n} \cos x \sin ^{n-1} x+\frac{n-1}{n} I_{n-2} \text { (2) }
$$

io. $\int \sin ^{n} x d x=\frac{-1}{n} \cos x \sin ^{n-1} x+\frac{n-1}{n} \int \sin ^{n-2} x d x$ - (3)

$$
\begin{aligned}
& \text { To find } \int_{0}^{T / 2} \sin ^{n} x d x \\
& \left(\pi_{2} \Rightarrow \quad \int_{0}^{\pi / 2} \sin ^{n} x d x=\left[\frac{-1}{n} \cos x \sin ^{n-1} x\right]_{0}^{\pi / 2}+\frac{n-1}{n} \int_{0}^{7} \sin ^{n-2} x d x\right. \\
& I_{n}=(0-0)+\frac{n-1}{n} I_{n-2} \\
& I_{n}=\frac{n-1}{n} I_{n-2} \ldots ? \\
& I_{n-2}=\frac{n-3}{n-2} I_{n-1} \\
& I_{n-1}=\frac{n-5}{n-4} I_{n-6} \\
& \text { (3) } \Rightarrow I_{n}=\frac{n-1}{n} \frac{n-3}{n-2} I_{n-4} \\
& =\frac{n-1}{r} \frac{n-3}{n-2} \frac{n-5}{n-4} I_{n-6} \\
& I_{n}=\left\{\begin{array}{llll}
\frac{n-1}{n} & \frac{n-3}{n-2} & \frac{n-5}{n-4} \cdots \frac{1}{2}=1 & \text { if } n: s \text { oven } \\
\frac{n-1}{n} \frac{n-3}{n-2} & \frac{n-5}{n-4} \cdots \frac{2}{3}=1 & \text { if } n \text { is and }
\end{array}\right. \\
& \text { Put } n=0 \text { in (1) } \quad I_{0}=\int_{0}^{\pi / 2} \sin ^{0} x d x=\int_{0}^{\pi / 2} d x=[x]_{0}^{3 / 2}=\pi \\
& \text { put } n=1 \operatorname{ir}(1), \quad I_{1}=\int_{0}^{\pi / 2} \sin n d x=[-\cos]_{0}^{-\sqrt{2}}-[\cos z-\cos]-[0-7]-1 \\
& \therefore \text { (1) } \Rightarrow\left\{\begin{array}{lllll}
\frac{n-1}{n} & \frac{n-3}{n-2} \frac{n-5}{n-4} \cdots \frac{1}{2} \frac{\pi}{2} & \text { if } n \text { is anew } \\
\frac{n-1}{n} & \frac{n-3}{n-2} \frac{n-5}{n-4} \cdots \frac{2}{3} & \text { is } n \text { is ali }
\end{array}\right. \\
& \text { 2. Evaluate } \int \sin ^{n} x d x \text {. } \\
& \text { wits unto equation (3) in previous protium. }
\end{aligned}
$$

3. Find the reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x$

號 Lat $I_{n}=\int \operatorname{cs}^{3} x d x-$ (1)$=\int \cos ^{n-1} x \cos x d x$

$\int u a n=u x-j v d u$
$2_{n}=\cos ^{n-1} x \sin x-\int \sin x(x \rightarrow) \cos ^{n-1} x(-\sin x) d x$

$=\cos ^{-1} x \sin x+(\cos) \int \cos ^{n-2} x\left(1-\cos ^{2} x\right) d x$
$=\cos ^{-1} x \sin x+(n-1) \int \cos ^{n-1} x d x-(n-1) \int \cos ^{-1-2} x \cos ^{2} x d x$
$=\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x d x-(n-1) \int \cos ^{n} x d x$
$I_{n}=\cos ^{-1} x \sin x+(n-1) I_{n-2}-(x-1) I n$.
$\Rightarrow I n+2 \cdot I_{n}=\cos ^{n-1} x \sin x+(n-1) I_{n-2}$
$7_{x} x+n=n-f_{n}^{\prime}=\cos ^{n} x \sin x+(n-1) I n-2$
$n_{I_{n}}=\cos ^{n-1} x \sin x+(n-1) I_{n-2}$

$$
I_{n}=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} I_{n-2}
$$

$\Rightarrow \int \cos ^{n} x d x=\frac{1}{n} \cos ^{r-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x-$-(2)
where $I_{0}=\int d x=x+c \quad($ Pate $n=0$ in $\Delta)$)
$I_{1}=\iint_{\cos i t h}=\sin x+c[$ rut $n=1 \operatorname{in}(A)]$
$\stackrel{T o}{\sim} \underset{\sim}{\text { find }} \int_{0}^{1 / 2 / 2} \cos ^{2} x d x$
(2) $\Rightarrow \quad I_{n}=\left[n^{\csc ^{n-1} x} \sin n\right]_{0}^{1 / 2}+\frac{n-1}{n} I_{n-2}$
$I_{n}=(0-0)+\frac{r-1}{n} I_{n-2}$
$\Rightarrow I_{n}=\frac{n-1}{n} I_{n-2}$
$=\frac{n-1}{n} \frac{n-3}{n-2} I_{n-4} \quad \| I_{n-2}=\frac{n-3}{n-2} I_{n-1}$
$=\frac{n-1}{n} \frac{n-5}{n-1} \sum_{n-6}$
$=\left\{\begin{array}{l}\frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-1} \cdots \frac{1}{2} I_{0} \text { it } n \text { is even } \\ \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-t} \cdots z_{5} \text { It it } n \text { is odd }\end{array}\right.$ (東
Put $n=0$ in (1) $I_{0}=\int_{0}^{T / 2} \operatorname{cosidx} x=\int_{0}^{\pi} d x=\left[x_{0}^{\pi / 2}=\pi / 2\right.$
Que $n=1$ in © $I_{1}=\int_{0}^{\pi / 2} \cos x d x=[\operatorname{rin} x)_{0}^{\pi / 2}=\sin \pi_{2} \sin \omega=1$
\therefore (6) $\Rightarrow \int_{0}^{\pi} \cos ^{n} x d x=\left\{\begin{array}{l}\frac{n-1}{n} \frac{n-3}{n-2} \frac{n-}{n-1} \cdots \frac{1}{2} \pi \text { it } n \text { is even } \\ \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \cdots \frac{1}{2} \cdot 1 \text { it } n \text { is odd } .\end{array}\right.$
4. Evaluate $\int \cos ^{3} x d x$ conf ind the reduction formula for $\cos ^{n} x d x$ She
wit wo to equation (1) in problem (3).
5. Find the reduction formula for $\int \sec ^{n} x d x, n \geqslant 2$ is an integer. sf m:

$$
\begin{aligned}
& \text { Let } I_{n}=\int \sec ^{n} x d x \cdots-0 \\
& =\int \sec ^{n-2} x \sec ^{2} x d x
\end{aligned}
$$

$\int u d x=u x-5 x d u$
$I_{n}=\sec ^{n-2} x \operatorname{an} x-\int \tan x(n-2) \sec ^{n-3} x \sec x \tan x d x$
$=\sec ^{n-2} x \tan x-\left(n^{n}-2\right) \int \sec ^{n-2} x \tan ^{2} x d x$
$=\sec ^{n-2} x \tan x-(x-2) \int \sec ^{n-2} x\left(\sec ^{2} x-1\right) d x$
$=\sec ^{n-2} x \cdot \operatorname{ton} x-(n-2) \int \sec ^{n} x d x+(n-2) \int \sec ^{n-2} x d x$.
$=\sec ^{n-2} x_{x} \tan x-(n-2) I_{n}+(n-2) I_{n-2}$
$I_{n}+\left(n-2 \operatorname{In}_{n}=\sec ^{n-2} x \tan x+(n-2) I_{n-2}\right.$
$I_{n+n I n-2 I n}=\sec ^{n-2} x \tan x+(n-2) I_{n-2}$
$n I_{n}-I_{n}=\sec ^{n-2} x \tan x+(n-2) I_{n-2}$
$\Rightarrow\left(n-1 I_{n}=\sec ^{n-2} x \tan x+(n-2) I_{n-2}\right.$
$\Rightarrow \quad I_{n}=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} I_{n-2}$. where $z_{0}=\int \sec ^{\circ} x d x=\int d x=x+c$ (fy rt $n=0$ ind (A)
$\left.I_{1}=\int \sec x d x=\log \sec x+\operatorname{tos} x\right)+c($ par $n=1$ in (θ) $\cdots=$

6. Find the reduction formula for $\int \tan ^{n} x d x, n \neq 1$

shh:

Note:

2) Evaluate $\int_{0}^{\pi / 2} \sin ^{-1} \cos { }^{5} \theta d \theta$.

$$
=\dot{z}
$$

$$
\begin{aligned}
& \text { Let } I_{n}=\int \tan ^{n} x d x \text {-(1) } \\
& =\int \operatorname{man}^{n-2} x \tan ^{2} x d x \\
& =\int \tan ^{n-2} x\left(\operatorname{sic}^{2} x-1\right) \operatorname{c}^{1} x \\
& =\int \tan ^{n-2} x \sec ^{2} x-\int \tan ^{n-2} x d x \\
& =\int \tan ^{-2} x d \text { (ames) }-\operatorname{In}^{-2} \\
& =\frac{\left(\operatorname{tancm}_{n-1}^{n-1}\right.}{n-1}-\operatorname{In-2} \| \because \int n^{n-2} d^{n}=\frac{t^{n-1}}{n-1} \\
& =\frac{\operatorname{man}^{n-1} x}{n-1}-5 n-2 \\
& \text { Where } \left.I_{0}=\int \tan ^{2} x d x=\int d x=x+c \quad \text { (out } n=0 \text { in } \theta\right) \\
& I_{1}=\int \tan ^{1} x d x=\operatorname{cosec} x+(\text { out } n=1 \operatorname{in} 0)
\end{aligned}
$$

Trignomatric substitution

1．Evaluate $\int \frac{1}{\sqrt{x^{2}-x^{2}}} d x$

$$
\begin{aligned}
& \text { 绖空 } \\
& \text { ut } x=a \sin \theta\left|\begin{array}{l}
\Rightarrow \sin \theta=\frac{x}{a} \\
\\
x=\operatorname{ascsit} x
\end{array}\right| \begin{array}{l}
\Rightarrow \theta=\sin ^{-1}\left(\frac{x}{a}\right) \text {-(1) }
\end{array} \\
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\int \frac{a \cos \theta d \theta}{\sqrt{a^{2}-a^{2} \sin t}} \\
& =\int \frac{\operatorname{accs} \theta}{a \sqrt{1-\sin ^{2} \theta}} d \theta \\
& =\int \frac{\operatorname{acsis} \theta}{\arcsin \theta} d \theta \\
& =\int \frac{a \operatorname{ces} s}{0 \operatorname{sest}} d v \\
& =\int \alpha \\
& =\sigma+c \\
& =\sin ^{-1}\left(\frac{x}{a}\right)+C . \quad 200 \\
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}(x / \omega)+c
\end{aligned}
$$

2．Evaluate $\int \frac{1}{\sqrt{a^{2}+x^{2}}} d x$
Stom：－

$$
\text { Let } \begin{aligned}
x & =a \sinh b \\
d x & =a \cosh \theta d \theta
\end{aligned} \left\lvert\, \begin{array}{ll}
\Rightarrow \sinh \theta=\frac{x}{a} \\
& \Rightarrow \theta=\sinh ^{-1}\left(\frac{x}{a}\right) \quad-(1)
\end{array}\right.
$$

$$
\therefore \int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\int \frac{a \cosh \theta d 0}{\sqrt{a^{2}+a^{2} \sin ^{2} \theta}}
$$

$$
=\int \frac{a \cos \theta}{a \sqrt{1+\theta}} d \theta
$$

$$
=\int \frac{a \cosh \theta}{a \sqrt{\cosh ^{2} \theta}} d \theta
$$

$$
=\int \frac{\alpha \cosh \theta}{\alpha \cosh \theta} d \theta
$$

$$
=\int d \theta
$$

$$
=\theta+c
$$

$$
=\sinh ^{-1}\left(\frac{x}{a}\right)+c \quad x y 0
$$

$$
\therefore \int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\sinh ^{-1}\left(\frac{x}{a}\right)+c
$$

3．Eraluate $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$
－sfore

$$
\begin{aligned}
& \text { Let } \begin{aligned}
x=a \cosh \theta \\
d x=a \sinh \theta d \theta
\end{aligned} \left\lvert\, \begin{aligned}
\Rightarrow \cosh \theta=\frac{x}{a} \\
\Rightarrow \theta=\cosh ^{-1}\left(x_{a}\right)-\mathbb{a}
\end{aligned}\right. \\
& \begin{aligned}
\int \frac{d x}{\sqrt{x^{2}-a^{2}}} & =\int \frac{a \sinh \theta d \theta}{\sqrt{a^{2} \cosh ^{2} \theta-a^{2}}}=\int \frac{a \sinh \theta}{a \sqrt{\cosh ^{2} \theta-1}} d \theta \\
& =\int \frac{a \sinh \theta}{a \sqrt{\sinh ^{2} \theta}} d \dot{\sigma}=\int \frac{a \sinh ^{2} \theta}{a \sinh ^{2} \theta} d \theta=\int d \theta \\
& =\theta+c \\
\int \frac{d \theta}{\sqrt{x^{2}-x^{2}}} & =\cosh ^{-1}\left(\frac{x}{a}\right)+c \quad \text { by } Q
\end{aligned}
\end{aligned}
$$

4. Evaluate $\int \sqrt{a^{2}-x^{2}} d x$

$$
\begin{aligned}
& \text { Sh:- } \\
& \text { put } \begin{aligned}
x & =a \sin \theta \\
d x & =a \operatorname{coss} d \theta
\end{aligned} \left\lvert\, \begin{array}{ll}
\Rightarrow \sin \theta=\frac{x}{a} \ldots \text { (1) } \\
& \Rightarrow \theta=\sin ^{-1}(x) \quad \text { (i) }
\end{array}\right. \\
& \therefore \int \sqrt{a^{2}-x^{2}} d x=\int \sqrt{a^{2}-a^{2} \sin ^{2} \theta} a \cos \theta d A \\
& =\int a \sqrt{1-\sin ^{2} \theta} \operatorname{acos} \theta d \theta \\
& =a^{2} \int \sqrt{\cos ^{2} \theta} \cos \theta d \theta \\
& =a^{2} \int \cos \theta \cdot \cos \theta d \theta \\
& =a^{2} \int \cos ^{2} \theta d \theta \\
& =a^{2} \int \frac{1+05 \theta}{2} d \theta \\
& =\frac{a^{2}}{2} \int(1+\cos 2 \theta) d \theta \\
& =\frac{a^{2}}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)+c, \because \sin ^{2} 2 \theta=28 \sin \theta \cos \theta \\
& =\frac{\partial^{2}}{2}(\theta+\sin \cos \cos t)+c
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{2}}{2} \sin ^{-1}\left(\frac{a}{a}\right)+\frac{\alpha^{2}}{2} \frac{x}{\alpha} \frac{\sqrt{a^{2}-x^{2}}}{\alpha} \\
& =\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+\frac{x}{2} \sqrt{a^{2}-x^{2}}+e \\
& \text { Hence } \int \sqrt{a^{2}-x^{2}} d x=\frac{\sigma^{2}}{2} \sin ^{-1} \theta+\frac{x}{2} \sqrt{a^{2}-x^{2}}+c
\end{aligned}
$$

5. Eveluate $\int \sqrt{a^{2}+x^{2}} d x$

组:

$$
\begin{array}{rl|l}
x=0 \sinh \theta & \left.\sinh \theta=\frac{x}{x} \quad-a\right) \\
& d x=a \cosh \theta d 4 & \theta=\sin ^{-1}\left(\frac{x}{2}\right)-2
\end{array}
$$

$=\int a \sqrt{1+5 x^{2}} x \cdot a \cos x=$
$=a^{2} \int \cos ^{2} \theta d x$
$=a^{2} \int\left(\frac{1+\tan 28}{2}\right) d \theta$
$=\frac{a^{2}}{2} \int\left(1+\cos ^{2} 25\right) d \theta$
$=\frac{02}{2}\left(0+\frac{\sin 2 \theta}{2}\right)$
$=\frac{a^{2}}{2} \theta+\frac{a^{2}}{2} \frac{\sin 2 \theta}{2}$
$=\frac{a^{2}}{2} \sin ^{2}(x)+\frac{a^{2}}{2} \sinh x \cos ^{2} \theta$

$=\frac{\alpha^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+\frac{x}{2} \sqrt{2 \cos ^{2}}$
$x=\frac{a}{x}$

Hence $\sqrt{\left.\sqrt{a^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{2} x^{2}}+\frac{a^{2}}{2} \sin ^{6}(x) \right\rvert\,}$
6. Evaluate $\int \sqrt{x^{2}-a^{2}} d x$

$$
\begin{aligned}
& \text { ie } \begin{array}{l}
x=\operatorname{ainh} \theta \\
d_{x}=\operatorname{asinhe} d \theta
\end{array} \| \begin{array}{l}
\cosh \theta-\frac{a}{a}-D \\
\Rightarrow \theta-\cosh ^{-1}\left(\frac{y}{a}\right)-(2)
\end{array} \\
& \int \sqrt{x^{2}-a} 2 x=\int \sqrt{a^{2} a^{2} t^{2}-a^{2}} \cdot a \sinh \theta d \theta \\
& =\int \sqrt{\operatorname{arsin} \theta} \cdot a \sinh \theta d \theta \\
& =\int a^{2} \sinh \theta \cdot \sinh \theta d \theta \\
& =a^{2} \int \sinh ^{2} \theta d \theta \\
& =a^{2} \int \frac{\cos n: \theta-1}{2} d \theta \\
& =\frac{a^{2}}{2} \int(\operatorname{ses} 20-1) d \theta \\
& =\frac{a^{2}}{2}\left(\frac{\sin 2 \theta}{2}-\theta\right)+c \\
& =\frac{a^{2}}{2} \sinh \theta \cos \theta-\frac{a^{2}}{2} \theta+c \quad \because \sin \cos \theta=\sinh \theta \cosh \theta \\
& \left.=\frac{p^{2}}{2} \frac{\sqrt{x^{2}-x^{2}}}{x} \cdot \frac{x}{x}-\frac{a^{2}}{2} \cos ^{-1}\left(\frac{y}{\alpha}\right)+c \right\rvert\, \sin ^{2} \theta=\cosh ^{2} \theta-1 \\
& =\frac{x}{2} \sqrt{x^{2}-x^{2}}-\frac{a^{2}}{2} \operatorname{coch}^{-1}\left(\frac{x}{a}\right)+c . \begin{aligned}
& =\frac{x^{2}}{a^{2}}-1 \\
& =\frac{x^{2}-a^{2}}{a^{2}} \\
\sinh \theta & =\frac{\sqrt{x^{2}}}{a}
\end{aligned}
\end{aligned}
$$

7. Evaluate $\int \frac{\sqrt{9-x^{2}}}{x^{2}} d x$
one-

$$
\text { Let } \begin{aligned}
x & =3 \sin t \quad \Rightarrow \quad \sin x
\end{aligned}=\frac{x}{3} .
$$

$$
\begin{aligned}
& \int \frac{\sqrt{9-x^{2}}}{x^{2}} d x=\int \frac{\sqrt{9-3 \sin ^{2} \theta}}{9 \sin ^{2} \theta} 3 \cos \theta d \theta \\
& =\int \frac{3 \sqrt{1-\sin ^{2} \theta}}{\mu \sin ^{2} \theta} \operatorname{sic} \cos \theta d \theta \\
& =\int \frac{\sqrt{\cos ^{2} \theta}}{\sin ^{2} \theta} \cos \theta d \theta \\
& =\int \frac{\cos \theta}{\sin ^{2} t} \cos \theta d \theta \\
& =\int \frac{\cos ^{2} \theta}{\sin ^{2} t} d \theta \\
& =\int \cot ^{2} \theta d \theta \\
& =\int\left(\operatorname{cosec}^{2} \theta-1\right) d x \\
& =-\cot \theta-\theta+c \text {. } \\
& =-\frac{\cos \theta}{\sin \theta}-\sin ^{-1}\left(\frac{1}{a}\right)+c \quad=\frac{\sqrt{4-x^{2}}}{3} \\
& =-\frac{\frac{\sqrt{9-x^{2}}}{\beta}}{\frac{x}{b}}-\sin ^{-1}\left(\frac{1}{\alpha}\right)+c \\
& =-\frac{\sqrt{9-x^{2}}}{x}-\left(\frac{a}{a}\right)+c / /
\end{aligned}
$$

8. Evaluate $\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x$
sta

$$
\text { put } \left.\begin{array}{r|l}
x=2 \operatorname{tar} \theta \\
& d x=2 \operatorname{sen} \theta d \theta
\end{array} \right\rvert\, \Rightarrow \tan \theta=\frac{x}{2}, ~ \Rightarrow \theta=\tan ^{-1}\left(\frac{x}{2}\right)
$$

$$
\begin{aligned}
\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x & =\int \frac{1}{4 \tan ^{2} \theta \sqrt{4+4 \tan ^{2} \theta}} 2 \sec ^{2} \theta d \theta \\
& =\int \frac{1}{4 \tan ^{2} \theta \cdot \sqrt{1+\tan ^{2} \theta}} \theta^{2} \sec ^{2} \theta d \theta \\
& =\frac{1}{4} \int \frac{1}{\operatorname{san}^{2} \theta} \frac{1}{\operatorname{sen}^{4} \theta} \operatorname{sen} \theta d \theta \quad \sqrt{1 \tan \theta} \theta \sec \theta \\
& =\frac{1}{4} \int \frac{\sec ^{2} \theta}{\tan ^{2} \theta} d \theta \\
& =\frac{1}{4} \int \frac{\frac{1}{\cos ^{2} \theta}}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} d \theta \\
& =\frac{1}{4} \int \frac{1}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{\sin \theta} d \theta \\
& =\frac{1}{4} \int \frac{\cos ^{2} \theta}{\sin \theta} d \theta
\end{aligned}
$$

$$
\text { Let } u=\sin \theta
$$

$$
d x=\cos d s
$$

$$
=\frac{1}{4} \int \frac{d u}{u^{2}}
$$

$$
=\frac{1}{4}\left(\frac{-1}{4}\right)+c
$$

$$
=\frac{-1}{4 \sin \theta}+c
$$

$$
x \int_{2}^{\sqrt[1]{x_{2}+4}}
$$

$$
\begin{aligned}
& \tan \theta=\frac{x}{2}=\frac{\text { opp }}{\operatorname{adj} j} \\
& \cot \theta=\frac{2}{x}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{4} \cos c \theta+c \\
& =-\frac{1}{4} \frac{\sqrt{x^{2}+4}}{x}+c \\
\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x & =-\frac{\sqrt{x^{2}+4}}{4 x}+c
\end{aligned}
$$

9. Evaluate $\int_{0}^{3 \frac{\sqrt{3}}{2}} \frac{x^{3}}{\left(2-x^{2}+a\right)^{3 / 2}} d x$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi y}{2}} \frac{x^{3}}{\left(1 x^{2}+9\right)^{3 / 2}} d x=\int_{0}^{\pi / 3} \frac{(3 / 2)^{3} \tan ^{3} \theta}{\left[1(3)^{2}+a^{2} \theta+9\right]^{3 / 2}} \frac{3}{2} \tan ^{2} \theta d \theta \\
& =\int_{0}^{\pi / 3} \frac{\frac{27}{8} \operatorname{tar}^{3} \theta}{\left[4 \cdot \frac{9}{4} \tan ^{2} \theta+9\right]^{3 / 2}} \quad \frac{3}{2} \operatorname{sen}^{2} \theta d \theta \\
& =\int_{0}^{\pi / 3} \frac{\frac{27}{8} \tan ^{3} 4}{9^{3 / 2}\left[1+\tan ^{2} 7\right]^{3 / 2}} \cdot \frac{3}{2} \sec ^{2} \tan \\
& =\int_{0}^{7 / 3} \frac{27}{8} \cdot \frac{3}{2} \cdot \frac{1}{9 \sqrt{9}} \frac{\tan ^{3} \theta}{\left(\sec ^{2} x^{3 / 2}\right.} \sec i x d t \\
& =\int_{0}^{\pi / 3} \frac{2 \pi}{8} \cdot \frac{3}{2} \cdot \frac{1}{\alpha y} \cdot \frac{\tan ^{3} \theta}{\sec ^{2} \theta} 5 x \theta \pi \\
& =\frac{3}{16} \int^{\pi / 3} \frac{\tan ^{2} \theta}{\sec \theta} d \theta \\
& =\frac{3}{15} \int_{3}^{\pi 3} \frac{\frac{\sin ^{3} \theta}{\cos ^{3} \theta}}{\frac{1}{\cos }{ }^{6}} d \theta
\end{aligned}
$$

$=\frac{3}{16} \int_{0}^{\pi / \theta} \frac{\sin ^{2} \theta}{\cos ^{3} t} \cdot \cos \theta$ de.
$=\frac{3}{16} \int_{0}^{\pi / 3} \frac{\sin ^{3} \theta}{\cos ^{2} \theta} d \theta$.
$-\frac{3}{16} \int_{0}^{\pi / 3} \frac{\sin ^{2} \theta}{\cos \theta}$ sint $a t$
$=\frac{3}{16} \int_{0}^{\pi / 3} \frac{1-\cos \theta}{\cos ^{2} \theta} \sin \theta d \theta$
$=\frac{3}{16} \int_{1}^{1 / 2} \frac{-u^{2}}{u^{2}}(-d 4)$
$=\frac{3}{16} \int_{i}^{1 / 2}\left(\frac{1}{x^{2}}-i\right)(-1 u)$
$=\frac{3}{6} \int_{i}^{\frac{1}{2}}\left(1-\frac{1}{4}\right) d u$
$=\frac{3}{16}\left(6+\frac{1}{4}\right)^{\frac{1}{2}}$
$=\frac{3}{16}[(\overline{2}+-)-(1+1)]$
$=\frac{3}{16}\left[\frac{1}{2}+2-6\right]$
$=\frac{3}{32}$
$\int_{0}^{\frac{3 \sqrt{3}}{2}} \frac{x^{3}}{\left(x x^{2}+9\right)^{32}} d x=\frac{3}{32}$

Rut $u=\cos \theta \quad$ du $\theta=-\sin \theta d \theta \left\lvert\, \begin{gathered}w h i n \theta=0 \\ \Rightarrow u=\cos 21 \\ \frac{u=1]}{}\end{gathered}\right.$
$\Rightarrow u=\cos 1 / 3=1 / 2$
$\Rightarrow u=\cos 5 / 3$
$u=y_{2}=$
$\therefore u: 1 \rightarrow 1 / 2$.

 $p x+q=A \frac{d}{d x}\left(a x^{2}+b x+c\right)+B$

$$
\text { Take } x=\alpha \cos ^{2} \theta+\beta \sin ^{2} \theta
$$

Droportant formulas:-

1. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left(\frac{x-a}{x+a}\right), x>a$
2. $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left(\frac{a+x}{a-x}\right), x<a$
3. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
4. $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\cosh ^{-1}(x)$ (a) $\log \left(x+\sqrt{x^{2}-a^{2}}\right)$
+5. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sinh ^{-1}\left(\frac{x}{a}\right)$
5. $\int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\sinh \left(\frac{x}{a}\right)(0 y) \log \left(x+\sqrt{x^{2}+a^{2}}\right)$
6. $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \cos ^{-1}\left(\frac{a}{a}\right)$

* 8. $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}+x^{2}\left(\frac{a}{a}\right)$

9. $\int \sqrt{x^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \sinh ^{-1}\left(\frac{y}{a}\right)$
1) Eraluate $\int \frac{1}{\sqrt{a^{2} x^{2}}} d x$ by using trignomatric substiluction hence use it in evaluadion $\int \frac{6 x+5}{\sqrt{6}+x-3 x^{2}} d x$
sin
(i) Lot $x=0 \sin \quad \sin A=\frac{x}{1}$
$d x$-ants $\quad A=\sin ^{1}(x)$
$\int \frac{d x}{\sqrt{a}-}=\int \frac{\operatorname{arct\theta }}{\sqrt{a^{2}-a^{2}+2 \theta}}$
$=\int \frac{\operatorname{acos}}{\sqrt{1-\sin 2}} d t$
$=\int \frac{a \sec e}{\operatorname{acs}} d a$
$=1 d \theta$
$=\sin (x)+C$
$\frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin \left(\frac{x}{a}+C\right]$
(i) $\int \frac{6 x+5}{\sqrt{x+x-x^{2}}} d x$
$6 y \cdot 5=A \frac{d}{d x}\left(6+-2 y^{2}\right)+0 \ldots 0$
$6 x+5=2(1-4 x)+B$

$\therefore 0 \Rightarrow \quad 6 x+5=-\frac{3}{2} \frac{d}{x}(6 x-2 x)+\frac{13}{2}$

$$
\therefore m \cdot \sqrt{6+1-2 n^{2}}
$$

$$
\frac{6,+5}{\sqrt{6,+-2 x^{2}}}=\frac{3}{2} \frac{\frac{1}{1}\left(6, x+2 x^{2}\right)}{\sqrt{1+x-2 x^{2}}}+\frac{13}{1} \frac{1}{\sqrt{1+x-22^{2}}}
$$

$$
\int \frac{5 x+5}{\sqrt{6+x-x^{2}}} d x=\frac{-3}{2} \int \frac{\frac{1}{d x}\left(4-1-2 x^{2}\right)}{\sqrt{4+x-x^{2}}} d x+\frac{3}{2} \int \frac{d x}{\sqrt{-2 x}+x+4}
$$

$$
\left.=-\frac{3}{y} \sqrt{6 x}+\frac{3}{2} \int \frac{d x}{\sqrt{2} \sqrt{x}^{2}-\frac{x}{2}} \right\rvert\, \sqrt{f^{\prime}(x)} d x
$$

$$
=-3 \sqrt{6+x-22^{2}}+\frac{13}{2 / 2} \cdot \frac{d x}{\left.-+x^{2} / 2-3\right)}
$$

$$
=-3 \sqrt{6+x-2 x^{2}}+\frac{13}{2 \sqrt{2}} \int \frac{d x}{\left.\sqrt{\left[x^{2} \frac{x}{2} 2^{2}\right.} x^{-2}\right]} \quad 2 x-\frac{6}{2}
$$

$$
=-3 \sqrt{5-2-2 x^{2}}+\frac{13}{2 \sqrt{2}} \int \frac{21}{\sqrt{(3})^{2}-2}
$$

$$
=-3 \sqrt{5+x-2 x^{2}}+\frac{13}{2 \sqrt{2}} \int \frac{d x}{\sqrt{3^{2}-\left(x-x^{2}\right.}}
$$

$$
=-3 \sqrt{6+x-2 x^{2}}+\frac{3}{2 \cdot \sqrt{2}} \sin ^{-1}\left(\frac{3-x_{2}}{3}\right)+c
$$

$$
=-3 \sqrt{6+x-2 x^{2}}+\frac{13}{2 x} 8^{3 x^{-1}}\left(\frac{\frac{2 x}{4}}{\frac{7}{4}}\right)+0
$$

$$
=-3 \sqrt{6+x-x^{2}}+\frac{33}{2 \sqrt{2}}\left(\frac{x-1}{1}\right)+c
$$

$$
\text { Hence } \int \frac{5 x+5}{\sqrt{3+x-2}} d x=-\sqrt{4-2 x^{2}}=\frac{3}{2 \sqrt{2}} x^{-1} \frac{6-3}{1}+c
$$

2. Evaluate $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$ by using trignomatic substitution. Hence use it in evalucting $\int \frac{3 x-2}{\sqrt{4 x^{2}-4 x-5}} d x$. (i) put x-acsio $\Rightarrow \quad \operatorname{cosin}=\frac{x}{a}$

$$
\begin{aligned}
& d x=a \sin k a t \\
& =\int \frac{a \operatorname{rnt} d \theta}{\sqrt{a^{2}+a^{2} t-a^{2}}}
\end{aligned}
$$

$=\int \frac{2 \sin \theta}{a \sqrt{\cos ^{2} \theta-1}} d \theta$
$=\int \frac{\sin \theta}{x \sin \theta} d \theta$
$=\int 00$
$\begin{aligned} & =\theta+c \\ i \sqrt{\frac{1}{x^{2}}} & =\cot ^{-}(\partial)+c\end{aligned}$
(i) $\int \frac{3 x-5}{\sqrt{4 x^{2}-4 x-5}} d x=\int \frac{3 x-2}{\sqrt{4} \sqrt{x^{2}-x-7 / 4}} d x$

$$
\begin{aligned}
& 3 x-2=+\frac{3}{d x}\left(4 x^{2}-4 x-5\right)+3-(1) \\
& 3 x-2=A(8 x-4)+8
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{-4+3}{2} \\
B=\frac{-1}{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \Rightarrow \quad 3 x-2=\frac{3}{3} \frac{1}{a}\left(4 x^{2}-4 x-5\right)-\frac{1}{2} \\
& \therefore \text { by } \sqrt{4 x^{2}-4 x-5} \\
& \frac{3 x-2}{\sqrt{4 x^{2}-4 x-5}}=\frac{2}{8} \frac{\frac{d}{d x}\left(4 x^{2}-4 x-5\right)}{\sqrt{4 x^{2}-4 x-5}}-\frac{1}{2} \frac{1}{\sqrt{4 x^{2}-4 x-5}} \\
& \int \frac{3 x-2}{\sqrt{4 x^{2}-4 x-5}} d x=\frac{3}{8} \int \frac{\frac{1}{d x}\left(4 x^{2}-4 x-5\right)}{\sqrt{4 x^{2}-4 x-5}}-\frac{1}{2} \int \frac{1}{\sqrt{4 x^{2}-4 x-5}} d x \\
& \left.=\frac{3}{84} \cdot 7 \sqrt{4 x^{2}-4 x-5}-\frac{1}{2} \int-\frac{d x}{\sqrt{4} \sqrt{x^{2}-x-7 / 4}} \right\rvert\, \because\left[\frac{d(\operatorname{cix}(x)]}{\sqrt{f(x)}}=2 \sqrt{5(x)}\right. \\
& =\frac{3}{4} \sqrt{4 x^{2}-4 x-5}-\left.\frac{1}{4} \int \frac{d x}{\sqrt{x^{2}-x-2 / 4}} \quad \begin{array}{ll}
2 a b=x \\
2 \times b=x
\end{array}\right|_{a=x} \\
& =\frac{3}{4} \sqrt{4 x^{2}-4 x-5}-\frac{1}{4} \int \frac{d x}{\sqrt{\left.x^{2}-x+6\right)^{2}-\frac{1}{4}-5}} \quad \begin{array}{l}
\quad 6=1 / 2 \\
b^{2}=1 / 4
\end{array} \\
& =\frac{3}{4} \sqrt{+x^{2}-4 x-5}-\frac{1}{4} \int \frac{d x}{\sqrt{(x-1 /)^{2}-6 / 4}} \\
& =\frac{3}{4} \sqrt{4 x^{2}-4 x-5}-\frac{1}{4} \int \frac{d x}{\sqrt{(x-k)^{2}-(3)^{2}}} \\
& =\frac{3}{4} \sqrt{4 x^{2}-4 x-5}-\frac{1}{4} \cosh ^{-1}\left(\frac{x-\frac{1}{2}}{\frac{3}{2}}\right)+c \\
& =\frac{3}{4} \sqrt{4 x^{2}-4 x-5}-\frac{1}{4} \cosh ^{-1}\left(\frac{2 x+/ 7}{3 / 1}\right)+c \\
& =\frac{3}{4} \sqrt{+x^{2}-4 x-5}-1 / 4 \cosh ^{-1}\left(\frac{2 x-1}{3}\right)+c \\
& \left.\int \frac{3 x-2}{\sqrt{4 x^{2}-x-5}} d x=\frac{3}{4} \sqrt{4 x^{2}-4 x-5}-\frac{1}{4} \cos ^{-1}\left(\frac{2 x-1}{3}\right)+C\right],
\end{aligned}
$$

Evaluate the integral $\int \frac{d x}{(x+1) \sqrt{x^{2}+x}+1}$,

$$
\begin{aligned}
& \text { Dot }+4=\frac{1}{t} \quad \therefore \quad \cdots=1 \\
& A=\frac{t}{5} d t \\
& \int \frac{d x}{\left(x+\sqrt{x^{2}+1}\right.}=\int \frac{-\frac{1}{2} d t}{\frac{1}{t} \sqrt{t-\frac{1}{t}+1}} \\
& =-\int \frac{\frac{2 d t}{t}}{\frac{1-t t^{2}}{z}} \\
& =-\int \frac{d t}{\sqrt{k^{2} t+1}} \quad \begin{array}{l}
2 a b=t \\
2 \times b-k
\end{array} \\
& =\int \frac{d t}{\sqrt{2-t+3)^{2}-x_{2}+1}} \\
& =-\int \frac{d t}{\sqrt{\left(5-\frac{1}{2}\right)^{2}+\left(\frac{(3}{2}\right)^{2}} \quad-\frac{1}{4}+1=} \begin{aligned}
&-\frac{1+4}{4}=\frac{3}{4} \\
&=\left(\frac{\sqrt{3}}{2}\right)^{2}
\end{aligned} \\
& =-\left[\sinh ^{-1} \frac{t-x_{2}}{\frac{\sqrt{3}}{2}}\right]+c \quad \because \int \frac{d x}{\sqrt{x^{2}+\alpha^{2}}}=\sin ^{-1}(x / 2) \\
& =-\sin ^{-1}\left(\frac{\frac{2 t-1}{2}}{\frac{2}{z}}\right)+c \\
& =-\sin ^{-1}\left(\frac{2 t-1}{\sqrt{3}}\right)+c \\
& =-\sin \left(\frac{2}{\frac{2+1}{\sqrt{3}}}\right)+c \\
& =-\sin ^{-1}\left(\frac{2-x-1}{\sqrt{3}(x+1)}\right)+c \\
& =\sin \left[\frac{1+x}{\sqrt{3}+x}\right] \cdots /
\end{aligned}
$$

$$
\begin{aligned}
& y \quad y+1, y \text { 有 } \\
& t \text { Eval,ote } \int \frac{d x}{(x+1)} \\
& \text { xtere - } \\
& \text { OHt } x+1=\frac{1}{t} \\
& d y=-\frac{1}{12}=12 \\
& \int \frac{d x}{x+\sqrt{x^{2}-t}}=\int \frac{-\frac{1}{t^{2}} d t}{\frac{1}{\sqrt{\left.\frac{t}{t}-1\right)^{2}}}} \\
& =\int \frac{-\frac{d t}{t^{2}}}{\frac{1}{\sqrt{\left.\frac{r^{2}}{7}\right)^{2}+1}}} \\
& =\int \frac{\frac{-d t}{x^{2}}}{\frac{1}{z} \frac{\sqrt{1+t^{2}+t^{2}}}{z}} \\
& =-\int \frac{d t}{\sqrt{1-2 t+t^{2}+t^{2}}} \\
& =-\int \frac{d t}{\sqrt{2 t^{2}-2 t+1}} \\
& =\frac{-1}{\sqrt{2}} \int \begin{array}{ll}
\frac{d t}{t^{2}-t+\frac{y}{2}} & 2 \rightarrow t=t \\
2 t,=t
\end{array} \\
& =-\frac{d t}{\sqrt{2}} \int \frac{d t}{\sqrt{t^{2}-t+(y)^{2}-1 / 4}+\frac{1}{2}} \\
& =\frac{-1}{\sqrt{2}} \int \frac{d t}{\sqrt{\left(5-x^{2}+x^{2}\right.}} \quad \quad-\frac{1}{2} \quad \frac{-12}{2}-\frac{1}{4} \cdot a^{2} \\
& =\frac{-1}{\sqrt{2}} \sinh ^{-1}\left(\frac{1-\frac{1}{2}}{\frac{2}{2}}\right)+c \\
& =\frac{-1}{2} \sinh ^{-1}\left(\frac{\frac{2 r-1}{x}}{x}\right)-6 \\
& =\frac{-1}{2} \sin ^{-1}(2 x-1)+c=\frac{1}{\sqrt{2}} \sin ^{-1}\left[2\left(\frac{1}{1+x}\right)-1\right) \cdots \\
& =-\frac{1}{2}\left(0 . h^{-1}(-1-x)=-\frac{1}{12} \sin ^{-1}\left(\frac{1-x}{x}\right)+c\right.
\end{aligned}
$$

Integration of rational functions by partial fraction c. Evaluate $\int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x$

$$
\begin{aligned}
& \xrightarrow{\text { In }} \frac{x^{2}+x-1}{-x^{3}-2 x^{2}-2 x}=\frac{x^{2}+2 x-1}{2 x^{3}+4 x^{2}-x^{2}-2 x} \\
& =\frac{x^{2}+2 x-1}{2 x^{2}(x+2)-x(x+2)} \\
& =\frac{x^{2}+2 x-1}{\left(-x^{2}-x\right)(x+2)} \\
& =\frac{x^{2}+2 x-1}{x(2 x-1)(x+2)}-(1) \\
& \text { NoN } \\
& \frac{x+\cdots}{x(2 x-1)(x+2)}=\frac{2}{x}+\frac{E}{2 x-1}+\frac{c}{x+2}-(2) \\
& x y \text { of } x(-,-i)(x+i) \text { on both fidin, we get } \\
& x^{2}+2-\quad-\quad(2 x-1)(x+2)+E \times(x+2)+C x(2 x-1)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
-1=-2 & 1 / 2+1=A 1-1)(5 / 2)+6 / 2(1 / 2)+1 / 2(1-1) \\
A=1 / 2
\end{array} \left\lvert\, \begin{array}{l}
1 / 4=\frac{5}{4} B \Rightarrow B=\frac{1}{4} \times \frac{1}{5} \Rightarrow B=1 / 5
\end{array}\right. \\
& \text { Put } x=-2
\end{aligned}
$$

$$
\begin{gathered}
(-2)^{2}+2(2)-1=-(-4-1)(-2+2)-3 \\
4-4-1=A(0)+E(0)+c(-3)(-5) \\
-1=10 c \\
c=-1 / 10
\end{gathered}
$$

(2) Lecories

$$
\begin{aligned}
\frac{x^{2}+2 x-1}{x(2 x-1)(x+2)} & =\frac{1 / 2}{x}+\frac{15}{2 x-1}+\frac{-10}{x+2} \\
\int \frac{x^{2}+2 x-1}{x(2 x-1)(x+2)} d x & =\frac{1}{2} \int \frac{1}{x} d x+\frac{1}{5} \int \frac{1}{2 x-1} d x-\frac{1}{12} \int \frac{1}{x+2} d x \\
& =\frac{1}{2} \log x+\frac{1}{5} \frac{\log (2 x-1)}{2}-\frac{1}{10} \log (x+2)+c \\
& =\frac{1}{2} \log x+\frac{1}{10} \log (2 x-1)-\frac{1}{\operatorname{lo}} \log (x-2)+c \\
& =\frac{1}{2} \log x+\frac{1}{10}[\log (2 x-1)-\log (x+2)]+c \\
& =\frac{1}{2} \log x+\frac{1}{10} \log \left(\frac{2 x-1}{x+2}\right)+c \quad \because \log a-\log b=\log \frac{a}{b}
\end{aligned}
$$

2. Evaluate $\int \frac{5 x^{2} x}{\tan ^{2} x+3 \tan x+2} d x \quad$ (Jan 2016) sols!

$$
\text { Fut } u=\tan x
$$

$$
d u=\sec ^{2} x d x
$$

$$
\int \frac{\sec ^{2} x}{\tan ^{2} x+3 \tan x+2} d x=\int \frac{d u}{u^{2}+3 u+2}
$$

$$
\text { Take }-\frac{1}{u^{2}+3 u+2}=\frac{1}{(u+1)(u+3)}
$$

$$
=\frac{A}{u+1}+\frac{B}{u+2} \cdots 0
$$

$$
x^{\text {by }} \text { by }(u+1)(u+2) \text { or worth sides, wi git }
$$

$$
1=A(u+2)+B(u+1)
$$

$$
\left.\begin{array}{l|l}
\text { Fur } A=-2 \text { in } 2 \\
1=B(-2+1) \Rightarrow B=-1]
\end{array} \right\rvert\, \begin{aligned}
& \text { out } u=-1 \text { in }(2) \\
& 1=A(-1+2)+B(-1+1)
\end{aligned}
$$

(1) becomes,

$$
\begin{aligned}
& \frac{1}{u^{2}+3 u+2}
\end{aligned}=\frac{1}{u+1}+\frac{-1}{u+2}, \quad \begin{aligned}
& \int \frac{d u}{u^{2}+3 u+2}=\int \frac{d u}{u+1}-\int \frac{d u}{u+2} \\
&=\log (u+1)-\log (u+2) \\
&=\log \left(\frac{u+1}{u+2}\right)+c \\
&\left.\int \frac{\operatorname{sic}}{}+\frac{d x}{\tan x+3 \tan x+2}=\log \left(\frac{\tan x+1}{\tan x+2}\right)+c\right], \because u=\tan x .
\end{aligned}
$$

3. Eveduate $\int \frac{x^{2}}{(x-1)^{3}(x-2)} d x$
stm:

$$
\begin{aligned}
& \text { Tave } \frac{x^{2}}{\left(x+t^{6}(x-2)\right.}=\frac{A}{x-2}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}-\frac{D}{(x-1)^{3}} \text {-(1) } \\
& x^{\prime} y \text { by }(x-1)^{3}(x-2) \text { on bot sides, } \\
& x^{2}=A(x-1)^{3}+E^{2}(x-1)^{2}(x-2)+C(x-1)(x-2)+D(x-2) \text {-(2) }
\end{aligned}
$$

$$
\therefore \text { (1) } \Rightarrow \frac{x^{2}}{(x-1)^{3}(x-2)}=\frac{4}{x-2}+\frac{-4}{x-1}+\frac{-3}{(x-1)^{2}}+\frac{-1}{(x-1)^{3}}
$$

$$
\int \frac{x^{2}}{(x-1)^{3}(x-2)} d x=1 \int \frac{d x}{x-2}-4 \int \frac{d x}{x-1}-3 \int \frac{d x}{(x-1)^{2}}-\int \frac{d x}{(x-1) 3}
$$

$$
\begin{aligned}
& =A \log (x-2)-x^{\log (x-1)+3}\left[\frac{1}{x-1}\right]+\frac{1}{2(x+1)^{2}}+c \\
& =1 \log \left(\frac{x-2}{x-1}\right)+\frac{3}{x-1}+\frac{1}{2(x-1)^{2}}+c
\end{aligned}
$$

4. Evaluate $\int \frac{10}{(x-1)\left(x^{2}+9\right)} d x$
(Jom 2ris
sim-:

$$
\begin{aligned}
& \text { Take } \frac{10}{(x-1)\left(x^{2}+9\right)}=\frac{1}{x-1}+\frac{3 x+C}{x^{2}+9} \\
& x^{\text {ly }} \text { by }(x-1)\left(x^{2}+9\right) \text { on koth fides, } \\
& 10=A\left(x^{2}+9\right)+(8 x+1)(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& (D) \frac{10}{(x-1)\left(x^{2}+9\right)}=\frac{1}{x-1}+\frac{-x-1}{x^{2}+9} \\
& \int \frac{10}{(x-1)\left(x^{2}+0\right)} d x=\int \frac{1}{x-1} d x-\int \frac{x+1}{x^{2}+9} d x \\
& =\int \frac{1}{x-1} d x-\int \frac{x}{x^{2}+9} d x-\int \frac{d x}{x^{2}+a} \\
& =\frac{1}{2} \int \frac{d x}{x-1}-\frac{1}{2} \int \frac{2 x}{x^{2}+9} d x-\int \frac{d x}{x^{2}+9} \\
& \begin{array}{r}
=\frac{1}{2}\left(\log (x-i)-\frac{1}{2} \log \left(x^{2}+a\right)-\frac{1}{3} \operatorname{lon}-2\right)+C \quad \because \frac{d x}{x^{2}+x^{2}} \\
\quad
\end{array}
\end{aligned}
$$

5. Eraluate $\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{2}-x^{2}-x+1} d x$ (Nin x ow

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { Higet power } \\
\text { oi } x \text { in } N r
\end{array}\right\}>\left\{\begin{array}{l}
\text { Highest power } \\
\text { of } x \text { in Dr }
\end{array}\right\} \Rightarrow \text { use following methad } \\
& \therefore=-x+1 \begin{array}{l}
x+1 \\
\begin{array}{l}
x^{4}-8 x^{3}-2 x^{2}+4 x+1 \\
x^{4}-x^{3}-x^{2}+x \\
4
\end{array}+\frac{1}{4}+2
\end{array} \\
& \frac{\frac{x^{3}-x^{2}+5 x+y}{4-x^{2}-x+1}}{\frac{4 x-1}{x^{3}-x^{2}-x+1}}=(x+1)+\frac{4 x}{x^{3}-x^{2}-x+1} \quad 4 \quad \begin{array}{c}
\frac{20}{3}=? \\
\Rightarrow \frac{20}{3}=6+\frac{6}{3}
\end{array} \\
& \operatorname{Ton} \frac{4 t}{x^{3}-x^{2}-x+1}=\frac{4 x}{x^{2}(x-1)-(x-1)} \\
& =\frac{4 x}{\left(x^{2}-1\right)(x-1)} \\
& =\frac{4 x}{(x+1)(x-1)(x-1)} \\
& =\frac{\Delta x}{(x+1)(x-1)^{2}} \\
& \Rightarrow \quad \frac{A}{(x+1)(x-1)^{2}}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} \\
& x^{i y} \text { by }(x+1)(x-1)^{2} \text { on both sids, } \\
& 4 \cdot A=A(x-1)^{2}+b(x+1)(x-1)+c(x+1) \text { (2) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|c|c}
\text { pur } x=-1 & \text { put } x=1 & \begin{array}{c}
\text { Equating } c o-\alpha l b \\
\text { of } x^{2} \\
\text { on boith sides of (2) } \\
-4=A(-2)^{2}
\end{array} \\
\hline-A=(C 2) & C A & C=2
\end{array} \\
& \text { (1) } \Rightarrow \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1}=x+1+\frac{-1}{x+1}+\frac{1}{x-1}+\frac{2}{(x-1)^{2}} \text {. } \\
& \int \frac{x^{4}-2 x^{2}++x+1}{x^{3}-x^{2}-x+1} d x=\int(x+1) d x-\int \frac{d x}{x+1}+\int \frac{d x}{x-1}+2 \int \frac{d x}{(x-1)^{2}} \\
& =\frac{x^{2}}{2}+x-\log (x+1)+\log (x-1)+2\left(\frac{-1}{x-1}\right)+c \\
& =\frac{x^{2}}{2}+x+\log \left(\frac{x-1}{x+1}\right)-2 \frac{1}{x-1}+c \\
& =\frac{x^{2}}{2}+x-\frac{2}{x-1}+\log \left(\frac{x-1}{x+1}\right)+C \text { /. }
\end{aligned}
$$

6. Evaluate $\int \frac{2 x^{2} x+4}{x^{3}+4 x} d x$

osm:

$$
\begin{aligned}
& \text { Take } \frac{2 x^{2}-x+4}{x^{3}+4 x}=\frac{2 x^{3}-x+4}{x\left(x^{2}+4\right)}=\frac{4}{x}+\frac{B x+C}{x^{2}+4} \longrightarrow(1) \\
& \Rightarrow \frac{2 x^{3}-x++}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{5 x+c}{x^{2}+4} \\
& x^{l y} \text { by } x\left(x^{2}+4\right) \text { on borb sidis, } \\
& =x^{2}-x+t+A\left(x^{2}++\right)+(B x+C) x \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) }) \frac{2 x^{2} x+4}{x^{2}+a x}=\frac{1}{x}+\frac{21}{x+1} \\
& \int \frac{2 x^{2}-\cdots+1}{x^{2}+a x} d x=\int \frac{1}{x} d x+\int \frac{x-1}{x^{2}+1} d x \\
& =\int \frac{1}{x} d x=\int \frac{x}{x^{2}+1} d x-\int \frac{1}{x^{2}+1} d x \\
& =\operatorname{lon} x+\frac{1}{2} \int \frac{5 x}{x^{2}+4} d x-\int \frac{d x}{x^{2}+4} \quad-\int \frac{d x}{x^{2}+n^{2}} \frac{1}{2} \cos (x) \\
& =\operatorname{cog} x+\frac{1}{2} \ln \left(x^{2}+1\right)-\frac{1}{2} \min (\% / 2)+c \\
& =10 x+\log \sqrt{x^{2}+a}-\ln ^{-1}(5)+c
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}+1}{\left(x^{1}-1\right)(2 x+1)}=\frac{1}{x+1}+\frac{1}{3} \frac{1}{3} \\
& \int \frac{x^{2}+1}{\left(x^{2}-1\right)^{\prime}(x+1)} d x-\int \frac{d x}{x+1}+\frac{1}{3} \int \frac{d x}{x-1}-\frac{5}{3} \int \frac{d x}{2 x+1} \\
& \left.=\operatorname{lng}(x+1)+\frac{1}{3} \ln +\ldots\right)-\frac{5}{3} \cdot \frac{\ln (\sqrt{2}+3)}{2}+A
\end{aligned}
$$

7. Evachate $\int \frac{x^{2}+1}{\left(x^{2}-1\right)(2 x+1)} d x$
sfre

$$
\text { Tore } \frac{x^{2}}{\left(x^{2} \rightarrow 1+1\right.}=\frac{x^{2}+1}{(x+1)(x+1)(2 x+1)}=\frac{1}{x+1}+\frac{8}{x-1}+\frac{c}{2 x+1}-0
$$

$\Rightarrow \frac{r^{2}+}{(x+1(x-x)(2 x)}=\frac{t}{x+1}+\frac{3}{x-1}+\frac{c}{2 x+1}-$

$x_{2}+=2(-1-1)(2 x+1)+3(x+1)(2 x+1)+c(x+1)(x-1)$

$5=-\frac{3 c}{4}$
$c=-5 / 3$
(1) $\Rightarrow \frac{x^{2}+1}{\left(x^{2}-1\right)(2 x+1)}=\frac{1}{x+1}+\frac{1 / 3}{x-1}+\frac{-4 / 3}{2 x+1}$

Improper Intivis:
Definition:
The irmper integrats, $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called corvegent is the correponding linit exists and divergent if the limit docs not exists.

1. Determine whethe the integral $\int_{1}^{\infty} \frac{\operatorname{bogx} x}{x^{2}} d x$ is convergent or divergent.

$$
\begin{aligned}
& u=\log x \quad a x=\frac{d x}{x^{2}} \\
& d x=\frac{1}{7}+1 x \quad x=\int \frac{d}{x^{2}}=\frac{-1}{x} \\
& \int \cos x=u x-\int x d x \\
& =\log x\left(\frac{1}{x}\right)-\int \frac{1}{x} \frac{1}{x} d x \\
& =-\frac{\cos x}{x}+\int \frac{1}{x^{2}}+x \\
& =-\frac{\log x}{x}-\frac{1}{x}+c \\
& \int_{1} \frac{\log _{x} x}{x^{2}} d x=\lim _{t \rightarrow 0} \int_{1}^{t} \frac{\log _{x} x}{x^{2}}-x_{x}=\lim _{t \rightarrow x}\left[-\frac{\log x}{x}-\frac{1}{x}\right]^{t} \\
& =\lim _{t \rightarrow \infty}\left[\left(\frac{-\log t}{t}-\frac{1}{t}\right)-\left(-\frac{(-\log t}{1}-1\right)\right] \\
& =\lim _{t \rightarrow i m}\left(\frac{\log t}{t}-\frac{1}{t}+1\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{\log 4}{t}\right)-\frac{1}{\infty}+1 \\
& =-\lim _{t \rightarrow \infty} \frac{\log 5}{5}+1
\end{aligned}
$$

3. Evaluate $\int_{-\infty}^{\infty} x^{-e^{2}} d x$

$u=x^{2}$
$d u=x d x \Rightarrow x d y=\frac{d u}{2}$
$\int x e^{-x^{2}} d v=\int e^{-u} \frac{d v}{2}$
$=\frac{1}{2} \int e^{-u} d u$
$=\frac{1}{2}\left(\frac{e^{-u}}{4}\right)$
$=\frac{-1}{2} e^{-u}$.
$=\frac{-1}{2} e^{-x^{2}}$-(1)
$\int_{-0}^{\infty} x e^{-e^{2}} d x=\int_{-1}^{0} x e^{-x^{2}} d x+\int_{0}^{\infty} x e^{-x^{2}} d x$
$=\lim _{t \rightarrow-\infty} \int_{t} j e^{-x^{2}} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} x e^{-x^{2}} d x$
$=\lim _{t \rightarrow \infty}\left[-\frac{1}{2} E^{-x^{2}}\right]_{t}^{0}+\lim _{t \rightarrow \infty}\left[-\frac{-1}{2} e^{-e^{-2}}\right]_{0}^{t}$
$=\lim _{t \rightarrow-\infty}\left\{\frac{-1}{2}\left(e^{-}-e^{-x^{2}}\right)\right\}+\lim _{t \rightarrow \infty}\left\{\frac{-1}{2}\left(-e^{2}-e^{-0}\right)\right\}$
$=\lim _{t \rightarrow-\infty}\left\{\left\{\frac{1}{2}\left(1-e^{-e^{2}}\right)\right\}+\lim _{t \rightarrow \infty}\left\{-\frac{1}{2}\left(e^{-t^{2}}-1\right)\right\}\right.$
$=-\frac{1}{2}\left(1-e^{-\infty}\right)+\frac{1}{2}\left(e^{-\infty}-1\right)$
$=-\frac{1}{2}+\frac{1}{2}$
$=0$ /
4. $\int_{1}^{\infty} \frac{\log x}{x} d x$

$$
\begin{aligned}
& \operatorname{tanc}=\int \frac{\operatorname{cog} x}{x} d x \\
& u=\log x \\
& d u=\frac{1}{x} d x
\end{aligned} \begin{aligned}
& d=\frac{d x}{x} \\
& \quad=1 \frac{d x}{x}=\sin x
\end{aligned}
$$

$$
\int u d x=u x-\int x d x
$$

$$
x=(\log x)(\cos x)-\int \log x+\frac{1}{2} d x
$$

$$
=(\operatorname{son} x)^{2}-\int \frac{\log x}{x} d x
$$

$$
=\left((99 x)^{2}-I\right.
$$

$$
2 I=(\log x)^{2} \text {, }
$$

$$
I=\frac{1}{2}(\cos x)^{2}
$$

$$
\int_{1}^{\infty} \frac{\operatorname{los} \pi}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\log x}{x} d x
$$

$$
\left.=\lim _{t \rightarrow \infty}\left[\frac{1}{2} \operatorname{(\operatorname {cos}x}\right)^{2}\right]_{1}^{t}
$$

$$
=\lim _{\rightarrow \rightarrow 0} \frac{1}{2}\left[(\log)^{2}-\left(\cos ^{2}\right)^{2}\right]
$$

$$
=\frac{1}{2} \lim _{t \rightarrow \infty}(192)^{2}
$$

$$
=\frac{1}{2} \cdots
$$

$$
=\infty
$$

$$
\text { Uence } \int_{1}^{\infty} \frac{\log x}{x} d x \text { is diongenty }
$$

MOHAMED SATHAK A.J. COLLEGE OF ENGINEERING UNIT -V MULTIPLE INTEGRALS

NOTES

Double Integral

It is denoted by $\iint_{R} f(x, y) d x d y$ where R is the region of integration corresponding to interval of integration.

Note:

1) The order of integration is denoted by $\int_{y_{1}}^{y_{2}} \int_{f_{1}(y)}^{f_{2}(y)} f(x, y) d x d y$ (or) $\int_{x_{1}}^{x_{2}} \int_{f_{1}(x)}^{f_{2}(x)} f(x, y) d y d x$
2) Area of the region $=\iint d x d y$
3) For constant limits it does not matter whether we first integrate w.r.t. x and then w.r.t. y or vice versa.

Problems

1. Evaluate $\int_{0}^{1} \int_{x^{2}}^{x} x^{3} y d x d y$

Sol. Let $I=\int_{0}^{1} \int_{x^{2}}^{x} x^{3} y d y d x$

$$
=\int_{0}^{1} x^{3}\left[\frac{y^{2}}{2}\right]_{x^{2}}^{x} d x
$$

$$
=\frac{1}{2} \int_{0}^{1} x^{3}\left(x^{2}-x^{4}\right) d x
$$

$$
=\frac{1}{2} \int_{0}^{1}\left(x^{5}-x^{7}\right) d x
$$

$$
=\frac{1}{2}\left[\frac{x^{6}}{6}-\frac{x^{8}}{8}\right]_{0}^{1}
$$

$$
=\frac{1}{2}\left[\left(\frac{1}{6}-\frac{1}{8}\right)-(0-0)\right]
$$

$$
=\frac{1}{2}\left(\frac{4-3}{24}\right)
$$

$$
=\frac{1}{48}
$$

2. Evaluate $\int_{0}^{3} \int_{1}^{2} x y(x+y) d y d x$

Sol. Let $I=\int_{0}^{3} \int_{1}^{2}\left(x^{2} y+x y^{2}\right) d y d x$

$$
\begin{aligned}
& =\int_{0}^{3}\left[\frac{x^{2} y^{2}}{2}+\frac{x y^{3}}{3}\right]_{1}^{2} d x \\
& =\int_{0}^{3}\left[\left(\frac{4 x^{2}}{2}+\frac{8 x}{3}\right)-\left(\frac{x^{2}}{2}+\frac{x}{3}\right)\right] d x \\
& =\int_{0}^{3}\left(\frac{3 x^{2}}{2}+\frac{7 x}{3}\right) d x \\
& =\left[\frac{3 x^{3}}{6}+\frac{7 x^{2}}{6}\right]_{0}^{3} \\
& =\left[\left(\frac{27}{2}+\frac{21}{2}\right)-(0-0)\right]=\frac{48}{2}=24
\end{aligned}
$$

3. Evaluate $\int_{0}^{1} \int_{0}^{x} e^{y / x} d y d x$

Sol. Let $I=\int_{0}^{1} \int_{0}^{x} e^{y / x} d y d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left[\frac{e^{y / x}}{1 / x}\right]_{0}^{x} d x \\
& =\int_{0}^{1} x\left(e^{1}-e^{0}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
=(e-1) \int_{0}^{1} x d x & =(e-1)\left[\frac{x^{2}}{2}\right]_{0}^{1} \\
& =(e-1)\left(\frac{1}{2}-0\right) \\
& =\frac{e-1}{2}
\end{aligned}
$$

4. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}$

Sol. Let $I=\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y}{\left(1+x^{2}\right)+y^{2}} d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left[\frac{1}{\sqrt{1+x^{2}}} \tan ^{-1}\left(\frac{y}{\sqrt{1+x^{2}}}\right)\right]_{0}^{\sqrt{1+x^{2}}} d x \\
& =\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right] d x \\
& =\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}}\left[\frac{\pi}{4}-0\right] d x \\
& =\frac{\pi}{4} \int_{0}^{1} \frac{d x}{\sqrt{1+x^{2}}}=\frac{\pi}{4}\left[\log \left(\frac{x+\sqrt{1+x^{2}}}{1}\right)\right]_{0}^{1} \\
& \quad=\frac{\pi}{4}[\log (1+\sqrt{2})-\log (0+1)] \\
& \quad=\frac{\pi}{4} \log (1+\sqrt{2}) \quad(\sin c e \log 1=0)
\end{aligned}
$$

5. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \frac{d x d y}{\sqrt{a^{2}-x^{2}-y^{2}}}$

Sol. Let $I=\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \frac{d y}{\sqrt{\left(a^{2}-x^{2}\right)-y^{2}}} d x$

$$
\begin{aligned}
& =\int_{0}^{a}\left[\sin ^{-1}\left(\frac{y}{\sqrt{a^{2}-x^{2}}}\right)\right]_{0}^{\sqrt{a^{2}-x^{2}}} d x \\
& =\int_{0}^{a}\left[\sin ^{-1}(1)-\sin ^{-1}(0)\right] d x \\
& =\int_{0}^{a}\left[\frac{\pi}{2}-0\right] d x=\frac{\pi}{2} \int_{0}^{a} d x=\frac{\pi}{2}[x]_{0}^{a}=\frac{\pi a}{2}
\end{aligned}
$$

6. Evaluate $\int_{2}^{3} \int_{1}^{2} \frac{d x d y}{x y}$

Sol. $\int_{2}^{3} \int_{1}^{2} \frac{d x d y}{x y}=\int_{2}^{3}[\log x]_{1}^{2} \frac{d y}{y}$

$$
\begin{aligned}
& =\int_{2}^{3}[\log 2-\log 1] \frac{d y}{y} \\
& =\int_{2}^{3}[\log 2-0] \frac{d y}{y} \\
& =\log 2 \int_{2}^{3} \frac{d y}{y} \\
& =\log 2[\log y]_{2}^{3} \\
& =\log 2(\log 3-\log 2) \\
& =\log 2 \log \left(\frac{3}{2}\right)
\end{aligned}
$$

7. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} d x d y$

Sol. $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} d x d y=\int_{0}^{a}[y]_{0}^{\sqrt{a^{2}-x^{2}}} d x$

$$
\begin{aligned}
& =\int_{0}^{a}[y]_{0}^{\sqrt{a^{2}-x^{2}}} d x \\
& =\int_{0}^{a}\left[\sqrt{a^{2}-x^{2}}-0\right] d x \\
& =\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{0}^{a} \\
& =\left\{0+\frac{a^{2}}{2} \sin ^{-1}(1)\right\}-\{0+0\}=\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)=\frac{\pi a^{2}}{4}
\end{aligned}
$$

Some Rough diagrams for standard equation

Circle

$x^{2}+y^{2}=a^{2}$
Centre $=(0,0)$, Radius $=\mathrm{a}$

$$
x^{2}+y^{2}=a^{2}, y \geq 0
$$

$$
x^{2}+y^{2}=\mathrm{a}^{2}, x \geq 0
$$

First quadrant of the circle $x^{2}+y^{2}=a^{2}$

$(x-2)^{2}+y^{2}=4$
Centre $=(2,0)$, Radius $=2$

$$
(x-3)^{2}+(y-2)^{2}=4
$$

Centre $=(3,2)$, Radius $=2$

$x^{2}+(y-1)^{2}=1$
Centre $=(0,1)$, Radius $=1$

Parabola

$$
y^{2}=4 a x
$$

$$
x^{2}=4 a y
$$

Straight Lines $x=0$
$x=0$ is the equation of y-axis.

$$
y=0
$$

$$
y=0 \text { is the equation of } x \text {-axis. }
$$

$$
y=c
$$

$\mathrm{y}=\mathrm{c}$ is the straight line parallel to x-axis.

$$
x=\mathrm{c}
$$

$x=\mathrm{c}$ is the straight line parallel to y -axis.

Straight lines passing through the origin

$$
\mathrm{y}=\mathrm{m} x
$$

$y=-m x$

$$
\begin{aligned}
3 x & =2 y \\
y & =\frac{3}{2} x
\end{aligned}
$$

$x+y=2$
$\frac{x}{2}+\frac{y}{2}=1$
$2 x-4 y=2$
$\frac{x}{4}+\frac{y}{2}=1$
$\frac{x}{1}+\frac{y}{-1 / 2}=1$

Ellipse : $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Unknown curve: $y=4 x-x^{2}$
If we do not know how to draw the curve for the given equation, plot the points for the given equation and draw the curve.

$$
\begin{gathered}
y=4 x-x^{2} \\
x=0 \Rightarrow y=0 \\
x=1 \Rightarrow y=3 \\
x=2 \Rightarrow y=4 \\
x=3 \Rightarrow y=3 \\
x=4 \Rightarrow y=0
\end{gathered}
$$

$$
y^{2}=4-x
$$

Plot the points for the given equation and draw the curve.

$$
\begin{aligned}
\mathrm{y}^{2} & =4-x \\
\text { When } \mathrm{x} & =0, \mathrm{y}= \pm 2 \\
\text { When } \mathrm{x} & =1, \mathrm{y}=\sqrt{3}= \pm 1.7 \\
\text { When } \mathrm{x} & =2, \mathrm{y}=\sqrt{2}= \pm 1.4 \\
\text { When } \mathrm{x} & =3, \mathrm{y}= \pm 1 \\
\text { When } \mathrm{x} & =4, \mathrm{y}=0
\end{aligned}
$$

8. Evaluate $\iint x y d x d y$ taken over the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$.

Sol. $\iint x y d x d y=\int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}} x y d y d x$

$$
\begin{aligned}
& =\int_{0}^{a} x\left[\frac{y^{2}}{2}\right]_{0}^{\sqrt{a^{2}-x^{2}}} d x \\
& =\frac{1}{2} \int_{0}^{a} x\left[\left(a^{2}-x^{2}\right)-0\right] d x
\end{aligned}
$$

$$
=\frac{1}{2} \int_{0}^{a}\left(a^{2} x-x^{3}\right) d x
$$

$$
=\frac{1}{2}\left[\frac{a^{2} x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{a}
$$

$$
=\frac{1}{2}\left[\left(\frac{a^{4}}{2}-\frac{a^{4}}{4}\right)-(0-0)\right]
$$

$$
=\frac{1}{2}\left(\frac{2 a^{4}-a^{4}}{4}\right)=\frac{a^{4}}{8}
$$

Aliter (Another method)

$$
\begin{aligned}
\iint x y d x d y & =\int_{y=0}^{a} \int_{x=0}^{\sqrt{a^{2}-y^{2}}} x y d x d y \\
& =\int_{0}^{a} y\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{a^{2}-y^{2}}} d x \\
& =\frac{1}{2} \int_{0}^{a} y\left[\left(a^{2}-y^{2}\right)-0\right] d x \\
& =\frac{1}{2} \int_{0}^{a}\left(a^{2} y-y^{3}\right) d x \\
& =\frac{1}{2}\left[\frac{a^{2} y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{a} \\
& =\frac{1}{2}\left[\left(\frac{a^{4}}{2}-\frac{a^{4}}{4}\right)-(0-0)\right]=\frac{1}{2}\left(\frac{2 a^{4}-a^{4}}{4}\right)=\frac{a^{4}}{8}
\end{aligned}
$$

9. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the region for which x, y are each ≥ 0 and $x+y \leq 1$.

Sol. $\iint\left(x^{2}+y^{2}\right) d x d y=\int_{x=0}^{1} \int_{y=0}^{1-x}\left(x^{2}+y^{2}\right) d y d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left[x^{2} y+\frac{y^{3}}{3}\right]_{0}^{1-x} d x \\
& =\int_{0}^{1}\left[\left\{x^{2}(1-x)+\frac{(1-x)^{3}}{3}\right\}-(0\right. \\
& =\int_{0}^{1}\left\{x^{2}-x^{3}+\frac{(1-x)^{3}}{3}\right\} d x \\
& =\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{(1-x)^{4}}{-12}\right]_{0}^{1} \\
& =\left[\left(\frac{1}{3}-\frac{1}{4}+0\right)-\left(0-0-\frac{1}{12}\right)\right] \\
& =\frac{1}{12}+\frac{1}{12}=\frac{2}{12}=\frac{1}{6}
\end{aligned}
$$

$$
=\int_{0}^{1}\left[\left\{x^{2}(1-x)+\frac{(1-x)^{3}}{3}\right\}-(0+0)\right] d x \underset{(0,0)}{x=0} \underset{y=0}{ } \mathrm{x}
$$

10. Evaluate $\iint(2 x y-x) d x d y$ over the region formed by the lines $\mathrm{y}=0, x=1$ and $\mathrm{y}=x$.

Sol. $\iint(2 x y-x) d x d y=\int_{x=0}^{1} \int_{y=0}^{x}(2 x y-x) d y d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left[2 x \frac{y^{2}}{2}-x y\right]_{0}^{x} d x \\
& =\int_{0}^{1}\left[\left(x^{3}-x^{2}\right)-(0-0)\right] d x
\end{aligned}
$$

$$
=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}\right]_{0}^{1}
$$

$$
=\left[\left(\frac{1}{4}-\frac{1}{3}\right)-(0-0)\right]
$$

$$
=\frac{3-4}{12}=-\frac{1}{12}
$$

11. Evaluate $\iint y d x d y$ over the region formed by the lines $\mathrm{y}=x$ and $\mathrm{y}=4 x-x^{2}$.

Sol. $\iint y d x d y=\int_{x=0}^{3} \int_{y=x}^{4 x-x^{2}} y d y d x$

$$
\begin{aligned}
& =\int_{0}^{3}\left[\frac{y^{2}}{2}\right]_{x}^{4 x-x^{2}} d x \\
& =\frac{1}{2} \int_{0}^{3}\left[\left(4 x-x^{2}\right)^{2}-x^{2}\right] d x \\
& =\frac{1}{2} \int_{0}^{3}\left(x^{4}-8 x^{3}+15 x^{2}\right] d x \\
& =\frac{1}{2}\left[\frac{x^{5}}{5}-\frac{8 x^{4}}{4}+\frac{15 x^{3}}{3}\right]_{0}^{3}
\end{aligned}
$$

$$
=\frac{1}{2}\left[\left(\frac{243}{5}-2(81)+5(27)\right)-(0-0+0)\right]
$$

$$
=\frac{1}{2}\left(\frac{243}{5}-27\right)=\frac{108}{10}=\frac{54}{5}
$$

12. Evaluate $\iint x y d x d y$ taken over the area of the circle $x^{2}+y^{2}=\mathrm{a}^{2}$.

Sol.

$$
\begin{aligned}
\iint x y d x d y & =\int_{x=-a}^{a} \int_{y=-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} x y d y d x \\
& =\int_{-a}^{a} x\left[\frac{y^{2}}{2}\right]_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} d x \\
& =\frac{1}{2} \int_{-a}^{a} x\left[\left(a^{2}-x^{2}\right)-\left(a^{2}-x^{2}\right)\right] d x \\
& =\frac{1}{2} \int_{-a}^{a} x(0) d x \\
& =0
\end{aligned}
$$

13. Evaluate $\iint_{R} \frac{e^{-y}}{y} d x d y$ given that R is the region between the lines $x=0, x=\mathrm{y}$ and $y=\infty$.
Sol. $\quad \int_{R} \frac{e^{-y}}{y} d x d y=\int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e^{-y}}{y} d y d x$
We note that the choice of order of integration is wrong, as the inner integration cannot be performed.
Hence we try to integrate w.r.t. x first.

$$
\left.\begin{array}{rl}
\iint_{R} \frac{e^{-y}}{y} d x d y & =\int_{y=0}^{\infty} \int_{x=0}^{y} \frac{e^{-y}}{y} d x d y \\
& =\int_{y=0}^{\infty} \frac{e^{-y}}{y}[x]_{0}^{y} d y \\
& =\int_{y=0}^{\infty} \frac{e^{-y}}{y}(y-0) d y
\end{array}=\int_{y=0}^{\infty} e^{-y} d y\right]
$$

14. Evaluate $\iint_{R} x y d x d y$ where R is the region bounded by the parabola $\mathrm{y}^{2}=x$ and the lines $\mathrm{y}=0$ and $x+\mathrm{y}=2$ lying in the first quadrant.
Sol. $\iint_{R} x y d x d y=\int_{x=0}^{1} \int_{y=0}^{\sqrt{x}} x y d y d x+\int_{x=1}^{2} \int_{y=0}^{2-x} x y d y d x$

$$
\text { (OR) } \begin{aligned}
\iint_{R} x y d x d y & =\int_{y=0}^{1} \int_{x=y^{2}}^{2-y} x y d x d y \\
& =\int_{0}^{1} y\left[\frac{x^{2}}{2}\right]_{y^{2}}^{2-y} d y \\
& =\frac{1}{2} \int_{0}^{1} y\left[(2-y)^{2}-y^{4}\right] d y \\
& =\frac{1}{2} \int_{0}^{1} y\left(y^{2}-4 y+4-y^{4}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{1}\left(y^{3}-4 y^{2}+4 y-y^{5}\right) d y \\
& =\frac{1}{2}\left[\frac{y^{4}}{4}-\frac{4 y^{3}}{3}+\frac{4 y^{2}}{2}-\frac{y^{6}}{6}\right]_{0}^{1} \\
& =\frac{1}{2}\left[\left\{\frac{1}{4}-\frac{4}{3}+2-\frac{1}{6}\right\}-(0)\right] \\
& =\frac{1}{2}\left[\frac{6-32+48-4}{24}\right]=\frac{1}{2}\left(\frac{18}{24}\right)=\frac{3}{8}
\end{aligned}
$$

15. Evaluate $\iint_{A} x^{2} d x d y$ where A is the region in the first quadrant bounded by the hyperbola $x \mathrm{y}=16$ and the lines $\mathrm{y}=x, \mathrm{y}=0$ and $x=8$.
Sol. $\iint_{A} x y d x d y=\int_{x=0}^{4} \int_{y=0}^{x} x^{2} d y d x+\int_{x=4}^{8} \int_{y=0}^{16 / x} x^{2} d y d x$

$$
\begin{aligned}
& =\ldots \ldots \ldots . \\
& =\ldots \ldots \ldots \\
& =64+384 \\
& =448
\end{aligned}
$$

16. Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where R is the area of the parallelogram whose vertices are $(1,0),(3,1),(2,2)$ and $(0,1)$.
Sol. $\iint_{R}\left(x^{2}+y^{2}\right) d x d y=\int_{y=0}^{1} \int_{x=1-y}^{1+2 y}\left(x^{2}+y^{2}\right) d x d y+\int_{y=1}^{2} \int_{x=2 y-2}^{4-y}\left(x^{2}+y^{2}\right) d x d y$

$$
\begin{aligned}
& =\cdots \cdots \cdots \\
& =\cdots \cdots \cdots \\
& =4+\frac{15}{2} \\
& =\frac{23}{2}
\end{aligned}
$$

Equation of AB is $\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{x-x_{1}}{x_{1}-x_{2}}$

$$
\begin{array}{r}
\frac{y-0}{0-1}=\frac{x-1}{1-3} \\
\frac{y}{-1}=\frac{x-1}{-2} \\
\Rightarrow x-2 y=1
\end{array}
$$

Equation of BC is $x+y=4$
Equation of CD is $x-2 y=-2$
Equation of DA is

$$
x+y=1
$$

17. Find the area between the parabolas $y^{2}=4 \mathrm{a} x$ and $x^{2}=4 \mathrm{ay}$.

Sol. Area of the region $=\iint d x d y$

$$
\begin{aligned}
& =\int_{x=0}^{4 a} \int_{y=x^{2} / 4 a}^{2 \sqrt{a x}} d y d x \\
& =\int_{x=0}^{4 a}[y]_{x^{2} / 4 a}^{2 \sqrt{a x}} d x \\
& =\int_{x=0}^{4 a}\left[2 \sqrt{a x}-\frac{x^{2}}{4 a}\right] d x
\end{aligned}
$$

$$
=\left[\frac{2 \sqrt{a} x^{3 / 2}}{3 / 2}-\frac{x^{3}}{12 a}\right]_{0}^{4 a}
$$

$$
=\left(\frac{4 \sqrt{a}}{3}(4 a)^{3 / 2}-\frac{64 a^{3}}{12 a}\right)-0
$$

$$
=\frac{4 \sqrt{a} 4 \sqrt{4} a \sqrt{a}}{3}-\frac{16 a^{2}}{3}
$$

$$
=\frac{32 a^{2}}{3}-\frac{16 a^{2}}{3}=\frac{16 a^{2}}{3}
$$

$$
\begin{aligned}
& y^{2}=4 a x \\
& \left(\frac{x^{2}}{4 a}\right)^{2}=4 a x \\
& x^{4}=16 a^{2}(4 a x) \\
& x^{4}-64 a^{3} x=0 \\
& x\left(x^{3}-64 a^{3}\right)=0 \\
& x=0 \text { or } x^{3}=64 a^{3} \\
& x=4 a
\end{aligned}
$$

$$
\text { When } x=0, y=0
$$

$$
\text { When } x=4 \mathrm{a}, \mathrm{y}=4 \mathrm{a}
$$

18. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Sol. Area of the region $=4$ [Area enclosed in the first quadrant]

$$
\begin{aligned}
& =4 \iint d x d y \\
& =4 \int_{x=0}^{a} \int_{y=0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}} d y d x \\
& =4 \int_{x=0}^{a}[y]_{0}^{b} \sqrt{1-\frac{x^{2}}{a^{2}}} d x
\end{aligned}
$$

$$
=4 \int_{x=0}^{a}\left[b \sqrt{1-\frac{x^{2}}{a^{2}}}-0\right] d x
$$

$$
=\frac{4 b}{a} \int_{x=0}^{a} \sqrt{a^{2}-x^{2}} d x
$$

$$
\begin{aligned}
& =\frac{4 b}{a}\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{0}^{a} \\
& =\frac{4 b}{a}\left[\left\{0+\frac{a^{2}}{2} \sin ^{-1}(1)\right\}-(0-0)\right]^{2} \\
& =\frac{4 b}{a}\left[\frac{a^{2}}{2} \cdot \frac{\pi}{2}\right] \\
& =\pi a b
\end{aligned}
$$

19. Find the area of the parallelogram whose vertices are $\mathrm{A}(1,0), \mathrm{B}(3,1), \mathrm{C}(2,2)$ and $\mathrm{D}(0,1)$ by using double integration.
Sol. Area of the parallelogram $=2$ (Area of ABD)

$$
\begin{aligned}
& =2 \iint d x d y \\
& =2 \int_{y=0}^{1} \int_{x=1-y}^{1+2 y} d x d y \\
& =2 \int_{y=0}^{1}[x]_{1-y}^{1+2 y} d y
\end{aligned}
$$

$$
=2 \int_{y=0}^{1}[(1+2 y)-(1-y)] d y
$$

$$
=2 \int_{y=0}^{1} 3 y d y=6\left[\frac{y^{2}}{2}\right]_{0}^{1}=3(1-0)=3
$$

20. Find the area enclosed by the curve $y^{2}=4 a x$ and the lines $x+y=3 a, y=0$.

Sol. Area $=\int_{x=0}^{a} \int_{y=0}^{2 \sqrt{a x}} d y d x+\int_{x=a}^{3 a} \int_{y=0}^{3 a-x} d y d x$
(OR) Area $=\int_{y=0}^{2 a} \int_{x=y^{2} / 4 a}^{3 a-y} d x d y$

$$
\begin{aligned}
& =\int_{y=0}^{2 a}[x]_{y^{2} / 4 a}^{3 a-y} d y \\
& =\int_{y=0}^{2 a}\left[(3 a-y)-\frac{y^{2}}{4 a}\right] d y
\end{aligned}
$$

$$
\begin{aligned}
& =\left[3 a y-\frac{y^{2}}{2}-\frac{y^{3}}{12 a}\right]_{0}^{2 a} \\
& =\left(6 a^{2}-2 a^{2}-\frac{8 a^{3}}{12 a}\right)-0=4 a^{2}-\frac{2 a^{2}}{3}=\frac{10 a^{2}}{3}
\end{aligned}
$$

21. Find the smaller of the area bounded by $y=2-x$ and $x^{2}+y^{2}=4$.

Sol. Area of the region $=\iint d x d y$

$$
\begin{aligned}
& =\int_{x=0}^{2} \int_{y=2-x}^{\sqrt{4-x^{2}}} d y d x \\
& =\int_{x=0}^{2}[y]_{2-x}^{\sqrt{4-x^{2}}} d x
\end{aligned}
$$

$$
=\int_{x=0}^{2}\left[\sqrt{4-x^{2}}-(2-x)\right] d x
$$

$$
=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)-2 x+\frac{x^{2}}{2}\right]_{0}^{2}
$$

$$
=\left[0+2 \sin ^{-1}(1)-4+2\right]-(0+0-0+0)
$$

$$
=2\left(\frac{\pi}{2}\right)-2=\pi-2
$$

22. Find the area bounded by the parabolas $y^{2}=4-x$ and $y^{2}=x$ by double integration.

Sol. Area of the region $=2$ (Upper area)

$$
\begin{aligned}
& =2 \iint_{\sqrt{2}}^{\sqrt{2}} d x d y \\
& =2 \int_{y=0}^{4-y^{2}} \int_{x=y^{2}}^{\sqrt{2}} d x d y \\
& =2 \int_{y=0}^{\sqrt{2}}[x]_{y^{2}}^{4-y^{2}} d y \\
& =2 \int_{y=0}^{\sqrt{2}}\left[\left(4-y^{2}\right)-y^{2}\right] d y \\
& =2 \int_{y=0}^{\sqrt{2}}\left(4-2 y^{2}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
=2\left[4 y-\frac{2 y^{3}}{3}\right]_{0}^{\sqrt{2}}=2\left[\left\{4 \sqrt{2}-\frac{2(2 \sqrt{2})}{3}\right\}-0\right] & =2\left[\frac{12 \sqrt{2}-4 \sqrt{2}}{3}\right] \\
& =2\left(\frac{8 \sqrt{2}}{3}\right)=\frac{16 \sqrt{2}}{3}
\end{aligned}
$$

Home Work

1. Evaluate the following:
i) $\int_{0}^{a} \int_{0}^{b}\left(x^{2}+y^{2}\right) d x d y$ ii) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (x+2 y) d y d x$ iii) $\int_{1}^{2} \int_{1}^{x} x y^{2} d x d y$
iv) $\int_{0}^{1} \int_{\sqrt{y}}^{2-y} x^{2} d x d y \quad$ v) $\int_{1}^{b} \int_{1}^{a} \frac{d x d y}{x y}$
2. Find the limits in $\iint_{R} f(x, y) d x d y$ where R is the region in the $1^{\text {st }}$ quadrant bounded by $x=1, \mathrm{y}=0, \mathrm{y}^{2}=4 x$.
3. Evaluate $\iint d x d y$ over the region bounded by $x=0, x=2, \mathrm{y}=0$ and $\mathrm{y}=2$.
4. Evaluate $\iint x y d x d y$ taken over the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
5. Evaluate $\iint(x-y) d x d y$ over the region between the line $x=y$ and the parabola $y=x^{2}$.
6. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the positive quadrant of the circle $x^{2}+y^{2}=\mathrm{a}^{2}$.
7. Find the area in the $1^{\text {st }}$ quadrant included between the parabola $x^{2}=16 y$, the Y axis and the line $\mathrm{y}=2$.
8. Evaluate $\iint(1+x y) d x d y$ in the region bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.
9. Evaluate $\iint(x+y) d x d y$ over the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
10. Find the area of the triangle formed by the lines $x=0, y=0,2 x+3 y=6$.
11. Evaluate $\iint_{R} x^{2} d x d y$ where R is the region bounded by the hyperbola $x \mathrm{y}=4, \mathrm{y}=0$, $x=1$ and $x=2$.

Answers

1) $(i) \frac{a b}{3}\left(a^{2}+b^{2}\right)$
(ii) 1 (iii) $\frac{47}{30}$
(iv) $\frac{67}{60}$
(v) $\log a \cdot \log b$
2) $\int_{x=0}^{1} \int_{y=0}^{2 \sqrt{x}} f(x, y) d y d x$
3) 4
4) $\frac{a^{2} b^{2}}{8}$
5) $\frac{1}{60}$
6) $\frac{\pi a^{4}}{8}$
7) $\frac{16 \sqrt{2}}{3}$
8) 54
9) $\frac{a b}{3}(a+b)$
10) 3
11) 6

Transformation from Cartesian co-ordinates to Polar co-ordinates

In certain cases the evaluation of a double integral which is in terms of x and y is made simpler by changing the co-ordinates into Polar co-ordinates.

In two dimension, the Polar co-ordinates are r, θ.
The relation between x, y and r, θ are

$$
\begin{gathered}
x=r \cos \theta, y=r \sin \theta \\
d x d y=\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta \\
=r d r d \theta
\end{gathered}
$$

where $0 \leq r<\infty, 0 \leq \theta \leq 2 \pi$

Note:

1) θ depending upon the given region.

Example:

$0 \leq \theta \leq 2 \pi$

$0 \leq \theta \leq \pi$

$0 \leq \theta \leq \frac{\pi}{2}$
2) The equation of circle in Polar co-ordinates is $r=2 \operatorname{acos} \theta$ whose centre is (a, 0) and radius is ' a '.

$$
\text { Here }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

$0 \leq \theta \leq \frac{\pi}{2}$

Also the equation $\mathrm{r}=\operatorname{acos} \theta$ represents the circle whose centre is $\left(\frac{a}{2}, 0\right)$ and radius is $\frac{a}{2}$.
$r=a$ is the equation of the circle whose centre is $(0,0)$ and radius is ' a '.
3) The equation $r=2 a \sin \theta$ also represents the circle whose centre is ($0, a$ and radius is ' a '.

4) (i) The equation $r=a(1+\cos \theta)$ represents the cardioid.

$$
0 \leq \theta \leq 2 \pi
$$

$$
0 \leq \theta \leq \pi
$$

(ii) The equation $\mathrm{r}=\mathrm{a}(1-\cos \theta)$ also represents the cardioid.

$$
0 \leq \theta \leq 2 \pi
$$

Problems

1. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin \theta} r d r d \theta$

Sol. $\int_{0}^{\pi} \int_{0}^{\sin \theta} r d r d \theta=\int_{0}^{\pi}\left[\frac{r^{2}}{2}\right]_{0}^{\sin \theta} d \theta$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\pi}\left[\sin ^{2} \theta-0\right] d \theta \\
& =\frac{1}{2} \times 2 \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \\
& =\left[\frac{2-1}{2} \cdot \frac{\pi}{2}\right]=\frac{\pi}{4}
\end{aligned}
$$

2. Evaluate $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} d r d \theta$

Sol. $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} d r d \theta=\int_{-\pi / 2}^{\pi / 2}\left[\frac{r^{3}}{3}\right]_{0}^{2 \cos \theta} d \theta$

$$
\begin{aligned}
& =\frac{1}{3} \int_{-\pi / 2}^{\pi / 2}\left[8 \cos ^{3} \theta-0\right] d \theta \\
& =\frac{1}{3} \times 2 \int_{0}^{\pi / 2} 8 \cos ^{3} \theta d \theta \\
& =\frac{16}{3}\left[\frac{3-1}{3}\right]=\frac{32}{9}
\end{aligned}
$$

3. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$. Hence evaluate $\int_{0}^{\infty} e^{-x^{2}} d x$.

Sol. Given $x=0$ to $x=\infty$
and $\mathrm{y}=0$ to $\mathrm{y}=\infty$

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{\theta=0}^{\pi / 2} \int_{r=0}^{\infty} e^{-r^{2}} r d r d \theta \\
& \begin{array}{c}
\text { Put } \mathrm{r}^{2}=\mathrm{t} \\
2 \mathrm{rdr}=\mathrm{dt}
\end{array}
\end{aligned} \quad=\int_{\theta=0}^{\pi / 2} \int_{t=0}^{\infty} e^{-t} \frac{d t}{2} d \theta
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{\theta=0}^{\pi / 2}\left[\frac{e^{-t}}{-1}\right]_{0}^{\infty} d \theta \\
& =-\frac{1}{2} \int_{\theta=0}^{\pi / 2}\left[e^{-\infty}-e^{0}\right] d \theta \\
& =-\frac{1}{2} \int_{\theta=0}^{\pi / 2}[0-1] d \theta \\
& =\frac{1}{2}[\theta]_{0}^{\pi / 2} \\
& =\frac{1}{2}\left(\frac{\pi}{2}-0\right) \\
& =\frac{\pi}{4}
\end{aligned}
$$

Now, we have $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\frac{\pi}{4}$

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}} e^{-y^{2}} d x d y=\frac{\pi}{4} \\
& \int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y=\frac{\pi}{4} \\
& \int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\pi}{4} \\
& {\left[\int_{0}^{\infty} e^{-x^{2}} d x\right]^{2}=\frac{\pi}{4}} \\
& \text { (i.e.) } \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
\end{aligned}
$$

4. Evaluate $\iint_{D} \frac{x y}{\sqrt{x^{2}+y^{2}}} d x d y$ by transforming to Polar co-ordinates where D is the region enclosed by the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=4 a^{2}$ in the first quadrant.

Sol. $\iint_{D} \frac{x y}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{\theta=0}^{\frac{\pi}{2}} \int_{r=a}^{2 a} \frac{r \cos \theta \cdot r \sin \theta}{r} r d r d \theta$

$$
=\int_{\theta=0}^{\frac{\pi}{2}} \int_{r=a}^{2 a} \sin \theta \cos \theta r^{2} d r d \theta
$$

$$
=\int_{\theta=0}^{\frac{\pi}{2}}\left[\frac{r^{3}}{3}\right]_{a}^{2 a} \frac{\sin 2 \theta}{2} d \theta
$$

$$
=\frac{1}{6} \int_{\theta=0}^{\frac{\pi}{2}}\left(8 a^{3}-a^{3}\right) \sin 2 \theta d \theta
$$

$$
\begin{aligned}
& x^{2}+y^{2}=\mathrm{a}^{2} \\
& \text { (or) } \mathrm{r}=\mathrm{a} \\
& x^{2}+\mathrm{y}^{2}=4 \mathrm{a}^{2} \\
& \text { (or) } \mathrm{r}=2 \mathrm{a}
\end{aligned}
$$

$$
=\frac{7 a^{3}}{6}\left[-\frac{\cos 2 \theta}{2}\right]_{0}^{\pi / 2}
$$

$$
=-\frac{7 a^{3}}{12}[-1-1]=\frac{7 a^{3}}{6}
$$

5. Evaluate by changing to Polar co-ordinates the integral
(i) $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} d x d y$
(ii) $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} d x d y$

Sol. Given $x=y$ to $x=a$

$$
\text { and } \mathrm{y}=0 \text { to } \mathrm{y}=\mathrm{a}
$$

(i) $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{\theta=0}^{\pi / 4} \int_{r=0}^{a \sec \theta} \frac{r^{2} \cos ^{2} \theta}{r} r d r d \theta$

$$
\begin{aligned}
& =\int_{\theta=0}^{\frac{\pi}{4}} \int_{r=0}^{a \sec \theta} \cos ^{2} \theta r^{2} d r d \theta \\
& =\int_{\theta=0}^{\frac{\pi}{4}}\left[\frac{r^{3}}{3}\right]_{a}^{a \sec \theta} \cos ^{2} \theta d \theta
\end{aligned}
$$

(or) $\mathrm{r} \cos \theta=\mathrm{a}$ $r=\operatorname{asec} \theta$

$$
\begin{aligned}
& =\frac{1}{3} \int_{\theta=0}^{\frac{\pi}{4}}\left(a^{3} \sec ^{3} \theta-0\right) \frac{1}{\sec ^{2} \theta} d \theta \\
& =\frac{a^{3}}{3} \int_{\theta=0}^{\frac{\pi}{4}} \sec \theta d \theta \\
& =\frac{a^{3}}{3}[\log (\sec \theta+\tan \theta)]_{0}^{\pi / 4} \\
& =\frac{a^{3}}{3}[\log (\sqrt{2}+1)-\log (1+0)] \\
& =\frac{a^{3}}{3} \log (\sqrt{2}+1) \quad(\because \log 1=0)
\end{aligned}
$$

(ii) $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} d x d y=\int_{\theta=0}^{\pi / 4} \int_{r=0}^{a \sec \theta} \frac{r^{2} \cos ^{2} \theta}{\left(r^{2}\right)^{3 / 2}} r d r d \theta$

$$
=\int_{\theta=0}^{\frac{\pi}{4}} \int_{r=0}^{a \sec \theta} \cos ^{2} \theta d r d \theta
$$

$$
=\int_{\theta=0}^{\frac{\pi}{4}}[r]_{a}^{a \sec \theta} \cos ^{2} \theta d \theta
$$

$$
=\int_{\theta=0}^{\frac{\pi}{4}}(a \sec \theta-0) \frac{1}{\sec ^{2} \theta} d \theta
$$

$$
=a \int_{\theta=0}^{\frac{\pi}{4}} \cos \theta d \theta
$$

$$
=a[\sin \theta]_{0}^{\pi / 4}
$$

$$
=a\left[\frac{1}{\sqrt{2}}-0\right]
$$

$$
=\frac{a}{\sqrt{2}}
$$

6. Evaluate $\iint r \sqrt{a^{2}-r^{2}} d r d \theta$ over the upper half of the circle $\mathrm{r}=\operatorname{acos} \theta$.

Sol. $\iint r \sqrt{a^{2}-r^{2}} d r d \theta=\int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{a \cos \theta} r \sqrt{a^{2}-r^{2}} d r d \theta$

$$
=\int_{\theta=0}^{\frac{\pi}{2}} \int_{t=a}^{a \sin \theta} t(-t d t) d \theta
$$

$$
=-\int_{\theta=0}^{\frac{\pi}{2}}\left[\frac{t^{3}}{3}\right]_{a}^{a \sin \theta} d \theta
$$

$$
=-\frac{1}{3} \int_{\theta=0}^{\frac{\pi}{2}}\left(a^{3} \sin ^{3} \theta-a^{3}\right) d \theta
$$

$$
=-\frac{a^{3}}{3} \int_{\theta=0}^{\frac{\pi}{2}} \sin ^{3} \theta d \theta+\frac{a^{3}}{3} \int_{\theta=0}^{\frac{\pi}{2}} d \theta
$$

$$
=-\frac{a^{3}}{3}\left[\frac{3-1}{3} \cdot 1\right]+\frac{a^{3}}{3}[\theta]_{0}^{\pi / 2}
$$

$$
=-\frac{a^{3}}{3}\left(\frac{2}{3}\right)+\frac{a^{3}}{3}\left(\frac{\pi}{2}-0\right)
$$

$$
=\frac{a^{3}}{3}\left(\frac{\pi}{2}-\frac{2}{3}\right)
$$

7. Find the area of a circle of radius ' a ' in Polar co-ordinates.

Sol. The equation of the circle of radius ' a ' is $r=2 a \cos \theta$.
Area of a circle $=2$ (Upper Area)

$$
\begin{aligned}
& =2 \iint_{\pi}^{\pi / 2} r d r d \theta \\
& =2 \int_{\theta=0}^{2 a \cos \theta} \int_{r=0}^{\pi / 2} r d r d \theta \\
& =2 \int_{\theta=0}^{\pi / 2}\left[\frac{r^{2}}{2}\right]_{0}^{2 a \cos \theta} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\theta=0}^{\pi / 2}\left[4 a^{2} \cos ^{2} \theta-0\right] d \theta \\
& =4 a^{2} \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =4 a^{2}\left(\frac{2-1}{2} \cdot \frac{\pi}{2}\right) \\
& =\pi a^{2}
\end{aligned}
$$

8. Evaluate $\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}}\left(x^{2}+y^{2}\right) d x d y$ by changing into polar coordinates.

Sol. Given $y=0$ to $y=\sqrt{2 a x-x^{2}}$

$$
\begin{aligned}
& y^{2}=2 a x-x^{2} \\
& x^{2}-2 a x+y^{2}=0 \\
& (x-a)^{2}+y^{2}=a^{2}
\end{aligned}
$$

and $x=0$ to $x=2 \mathrm{a}$
$\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}}\left(x^{2}+y^{2}\right) d x d y=\int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{2 a \cos \theta} r^{2} r d r d \theta$
$=\int_{\theta=0}^{\frac{\pi}{2}}\left[\frac{r^{4}}{4}\right]_{0}^{2 a \cos \theta} d \theta$
$=\int_{\theta=0}^{\frac{\pi}{2}}\left[\frac{16 a^{4} \cos ^{4} \theta}{4}-0\right] d \theta$
$=4 a^{4} \int_{\theta=0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta$
$=4 a^{4}\left[\frac{4-1}{4} \cdot \frac{4-3}{4-2} \cdot \frac{\pi}{2}\right]$
$=4 a^{4}\left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$
$=\frac{3 \pi a^{4}}{4}$
9. Find the area of the region outside the inner circle $r=2 \cos \theta$ and inside the outer circle $r=4 \cos \theta$.
Sol. Area of the region $=2$ (Upper area)

$$
\begin{aligned}
& =2 \iint^{\pi / 2} r d r d \theta \\
& =2 \int_{\theta=0}^{\pi / 2} \int_{r=2 \cos \theta}^{4 \cos \theta} r d r d \theta \\
& =2 \int_{\theta=0}^{\pi / 2}\left[\frac{r^{2}}{2}\right]_{2 \cos \theta}^{4 \cos \theta} d \theta \\
& =\int_{\theta=0}^{\pi / 2}\left[16 \cos ^{2} \theta-4 \cos ^{2} \theta\right] d \theta \\
& =12 \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =12\left(\frac{2-1}{2} \cdot \frac{\pi}{2}\right) \\
& =3 \pi
\end{aligned}
$$

10. Evaluate $\iint_{A} r^{2} d r d \theta$, A is the area between the circle $\mathrm{r}=\operatorname{acos} \theta$ and $\mathrm{r}=2 \operatorname{acos} \theta$.

Sol. $\iint_{A} r^{2} d r d \theta=\int_{\theta=-\pi / 2}^{\pi / 2} \int_{r=a \cos \theta}^{2 a \cos \theta} r^{2} d r d \theta$

$$
=\int_{\theta=-\pi / 2}^{\pi / 2}\left[\frac{r^{3}}{3}\right]_{a \cos \theta}^{2 a \cos \theta} d \theta
$$

$$
=\frac{1}{3} \int_{\theta=-\pi / 2}^{\pi / 2}\left[8 a^{3} \cos ^{3} \theta-a^{3} \cos ^{3} \theta\right] d \theta
$$

$$
=\frac{7 a^{3}}{3} \int_{\theta=-\pi / 2}^{\pi / 2} \cos ^{3} \theta d \theta
$$

$$
=\frac{7 a^{3}}{3} 2 \int_{\theta=0}^{\pi / 2} \cos ^{3} \theta d \theta
$$

$$
=\frac{14 a^{3}}{3}\left(\frac{3-1}{3} .1\right)
$$

$$
=\frac{28 a^{3}}{9}
$$

11. Find the area of the cardioid $r=4(1+\cos \theta)$.

Sol. Area of the cardioid $=2$ (Upper area)

$$
\begin{aligned}
& =2 \iint_{\theta=0}^{\pi} r d r d \theta \\
& =2 \int_{\theta=0}^{4(1+\cos \theta)} r d r d \theta \\
& =2 \int_{\theta=0}^{\pi}\left[\frac{r^{2}}{2}\right]_{0}^{4(1+\cos \theta)} d \theta \\
& =\int_{\theta=0}^{\pi}\left[16(1+\cos \theta)^{2}-0\right] d \theta \\
& =16 \int_{\theta=0}^{\pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =16 \int_{\theta=0}^{\pi}\left(1+2 \cos \theta+\frac{1+\cos 2 \theta}{2}\right) d \theta \\
& =16\left[\theta+2 \sin \theta+\frac{1}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)\right]_{0}^{\pi} \\
& =16\left[\left\{\pi+0+\frac{1}{2}(\pi+0)\right\}-\{0\}\right] \\
& =16\left(\frac{3 \pi}{2}\right) \\
& =24 \pi
\end{aligned}
$$

12. Find the area lying inside the circle $r=a \sin \theta$ and outside the cardioid $\mathrm{r}=\mathrm{a}(1-\cos \theta)$.
Sol. Area of the region $=\int_{\theta=0}^{\pi / 2} \int_{r=a(1-\cos \theta)}^{a \sin \theta} r d r d \theta$

$$
\begin{aligned}
& =\int_{\theta=0}^{\pi / 2}\left[\frac{r^{2}}{2}\right]_{a(1-\cos \theta)}^{a \sin \theta} d \theta \\
& =\frac{1}{2} \int_{\theta=0}^{\pi / 2}\left[a^{2} \sin ^{2} \theta-a^{2}(1-\cos \theta)^{2}\right] d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{2}}{2} \int_{\theta=0}^{\pi / 2}\left[\sin ^{2} \theta-1+2 \cos \theta-\cos ^{2} \theta\right] d \theta \\
& =\frac{a^{2}}{2} \int_{\theta=0}^{\pi / 2}\left[2 \cos \theta-1-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right] d \theta \\
& =\frac{a^{2}}{2} \int_{\theta=0}^{\pi / 2}[2 \cos \theta-1-\cos 2 \theta] d \theta \\
& =\frac{a^{2}}{2}\left[2 \sin \theta-\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 2} \\
& =\frac{a^{2}}{2}\left[\left\{2-\frac{\pi}{2}-0\right\}-\{0\}\right] \\
& =a^{2}\left(1-\frac{\pi}{4}\right)
\end{aligned}
$$

13. Transform $\int_{0}^{a} \int_{\sqrt{a x-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{d x d y}{\sqrt{a^{2}-x^{2}-y^{2}}}$ into Polar co-ordinates.

Sol. Given $y=\sqrt{a x-x^{2}}$ to $y=\sqrt{a^{2}-x^{2}}$

$$
\begin{array}{r}
y^{2}=a x-x^{2} \text { to } y^{2}=a^{2}-x^{2} \\
x^{2}-a x+y^{2}=0 \text { to } x^{2}+y^{2}=a^{2} \\
\left(x-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2} \text { to } x^{2}+y^{2}=a^{2}
\end{array}
$$

$$
\begin{array}{|c|}
\hline \begin{array}{c}
x^{2}+y^{2}-a x=0 \\
x^{2}+y^{2}=a x \\
r^{2}=a r c o s \theta \\
r^{2}=a \cos \theta
\end{array} \\
\hline \begin{array}{c}
x^{2}+y^{2}=a^{2} \\
r^{2}=a^{2} \\
\mathrm{r}=\mathrm{a}
\end{array} \\
\hline
\end{array}
$$

$$
\text { and } x=0 \text { to } x=\mathrm{a}
$$

$$
\int_{0}^{a} \int_{\sqrt{a x-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{d x d y}{\sqrt{a^{2}-x^{2}-y^{2}}}=\int_{\theta=0}^{\pi / 2} \int_{r=a \cos \theta}^{a} \frac{r d r d \theta}{\sqrt{a^{2}-r^{2}}}
$$

Changing the order of integration

On changing the order of integration the limits of integration change. To find the new limits, we draw the rough sketch of the region of integration. From the sketch, the limits of x and y should determined as usual.

Note: For constant limits the order of integration is immaterial.

Problems

1. Change the order of integration in $\int_{0}^{1} \int_{y}^{1} f(x, y) d x d y$

Sol. Given $x=y$ to $x=1$

$$
\text { and } y=0 \text { to } y=1
$$

$$
\int_{y=0}^{1} \int_{x=y}^{1} f(x, y) d x d y=\int_{x=0}^{1} \int_{y=0}^{x} f(x, y) d y d x
$$

2. Evaluate by changing the order of integration in $\int_{0}^{a} \int_{x}^{a}\left(x^{2}+y^{2}\right) d x d y$

Sol. Given $\mathrm{y}=x$ to $\mathrm{y}=\mathrm{a}$

$$
\text { and } x=0 \text { to } x=\mathrm{a}
$$

$$
\begin{aligned}
\int_{x=0}^{a} \int_{y=x}^{a}\left(x^{2}+y^{2}\right) d x d y & =\int_{y=0}^{a} \int_{x=0}^{y}\left(x^{2}+y^{2}\right) d x d y \\
& =\int_{y=0}^{a}\left[\frac{x^{3}}{3}+x y^{2}\right]_{0}^{y} d y \\
& =\int_{y=0}^{a}\left[\left\{\frac{y^{3}}{3}+y^{3}\right\}-\{0\}\right] d y \\
& =\int_{y=0}^{a} \frac{4 y^{3}}{3} d y \\
& =\frac{4}{3}\left[\frac{y^{4}}{4}\right]_{0}^{a} \\
& =\frac{1}{3}\left(a^{4}-0\right)=\frac{a^{4}}{3}
\end{aligned}
$$

3. Evaluate by changing the order of integration in $\int_{0}^{a} \int_{0}^{2 \sqrt{a x}} x^{2} d x d y$

Sol. Given $\mathrm{y}=0$ to $\mathrm{y}=2 \sqrt{a x}$

$$
\begin{aligned}
& y^{2}=4 \mathrm{ax} \\
& \text { and } x=0 \text { to } x=\mathrm{a} \\
& \int_{x=0}^{a} \int_{y=0}^{2 \sqrt{a x}} x^{2} d x d y=\int_{y=0}^{2 a} \int_{x=\frac{y^{2}}{4 a}}^{a} x^{2} d x d y \\
&=\int_{y=0}^{2 a}\left[\frac{x^{3}}{3}\right]_{\frac{y^{2}}{4 a}}^{a} d y \\
&=\frac{1}{3} \int_{y=0}^{2 a}\left[a^{3}-\frac{y^{6}}{64 a^{3}}\right] d y \\
&=\frac{1}{3}\left[a^{3} y-\frac{y^{7}}{7\left(64 a^{3}\right)}\right]_{0}^{2 a} \\
&=\frac{1}{3}\left[\left\{2 a^{4}-\frac{2^{7} a^{7}}{7\left(2^{6} a^{3}\right)}\right\}-\{0\}\right] \\
&=\frac{1}{3}\left[2 a^{4}-\frac{2 a^{4}}{7}\right] \\
&=\frac{1}{3}\left(\frac{12 a^{4}}{7}\right)=\frac{4 a^{4}}{7}
\end{aligned}
$$

4. Evaluate by changing the order of integration in $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d x d y$

Sol. Given $\mathrm{y}=x$ to $\mathrm{y}=\infty$

$$
\text { and } x=0 \text { to } x=\infty
$$

$$
\begin{aligned}
\int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e^{-y}}{y} d y d x & =\int_{y=0}^{\infty} \int_{x=0}^{y} \frac{e^{-y}}{y} d x d y \\
& =\int_{y=0}^{\infty} \frac{e^{-y}}{y}[x]_{0}^{y} d y
\end{aligned}
$$

$$
\begin{aligned}
=\int_{y=0}^{\infty} \frac{e^{-y}}{y}(y-0) d y & =\int_{y=0}^{\infty} e^{-y} d y \\
& =\left[\frac{e^{-y}}{-1}\right]_{0}^{\infty} \\
& =-\left(e^{-\infty}-e^{0}\right)=-(0-1)=1
\end{aligned}
$$

5. Change the order of integration $\int_{0}^{\infty} \int_{0}^{y} y e^{-y^{2} / x} d x d y$ and hence evaluate it.

Sol. Given $x=0$ to $x=y$

$$
\begin{aligned}
& \text { and } \mathrm{y}=0 \text { to } \mathrm{y}=\infty \\
& \int_{y=0}^{\infty} \int_{x=0}^{y} y e^{-y^{2} / x} d x d y=\int_{x=0}^{\infty} \int_{y=x}^{\infty} y e^{-y^{2} / x} d y d x \\
& =\int_{x=0}^{\infty} \int_{t=x}^{\infty} e^{-t} \frac{x}{2} d t d x \\
& =\frac{1}{2} \int_{x=0}^{\infty}\left[\frac{e^{-t}}{-1}\right]_{x}^{\infty} x d x \\
& =-\frac{1}{2} \int_{x=0}^{\infty}\left[0-e^{-x}\right] x d x \\
& =\frac{1}{2} \int_{x=0}^{\infty} x e^{-x} d x \\
& =\frac{1}{2}\left[x\left(\frac{e^{-x}}{-1}\right)-(1)\left(\frac{e^{-x}}{1}\right)\right]_{0}^{\infty} \\
& =\frac{1}{2}[\{0\}-\{0-1\}] \\
& =\frac{1}{2}
\end{aligned}
$$

6. Evaluate by changing the order of integration in $\int_{0}^{4} \int_{y}^{4} \frac{x}{x^{2}+y^{2}} d x d y$

Sol. $\int_{y=0}^{4} \int_{x=y}^{4} \frac{x}{x^{2}+y^{2}} d x d y=\int_{x=0}^{4} \int_{y=0}^{x} \frac{d y}{x^{2}+y^{2}} x d x$

$$
\begin{aligned}
& =\int_{x=0}^{4}\left[\frac{1}{x} \tan ^{-1}\left(\frac{y}{x}\right)\right]_{0}^{x} x d x \\
& =\int_{x=0}^{4}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right] d x
\end{aligned}
$$

$$
=\int_{x=0}^{4}\left[\frac{\pi}{4}-0\right] d x
$$

$$
\begin{aligned}
& =\frac{\pi}{4}[x]_{0}^{4} \\
& =\frac{\pi}{4}(4-0)=\pi
\end{aligned}
$$

7. By changing the order of integration, evaluate $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2 a-x} x y d y d x$

Sol. Given $\mathrm{y}=x^{2} / \mathrm{a}$ to $\mathrm{y}=2 \mathrm{a}-x$

$$
\begin{aligned}
& \text { (i.e.) } \mathrm{ay}=x^{2} \text { to } x+\mathrm{y}=2 \mathrm{a} \\
& \text { and } x=0 \text { to } x=\mathrm{a} \\
& \int_{x=0}^{a} \int_{y=\frac{x^{2}}{a}}^{2 a-x} x y d y d x=\int_{y=a}^{2 a} \int_{x=0}^{2 a-y} x y d y d x+\int_{y=0}^{a} \int_{x=0}^{\sqrt{a y}} x y d y d x \\
& \int_{y=a}^{2 a} \int_{x=0}^{2 a-y} x y d y d x=\int_{y=a}^{2 a} y\left[\frac{x^{2}}{2}\right]_{0}^{2 a-y} d y \\
& =\frac{1}{2} \int_{y=a}^{2 a} y\left[(2 a-y)^{2}-0\right] d y \\
& =\frac{1}{2} \int_{y=a}^{2 a}\left(y^{3}-4 a y^{2}+4 a^{2} y\right) d y
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left[\frac{y^{4}}{4}-4 a \frac{y^{3}}{3}+4 a^{2} \frac{y^{2}}{2}\right]_{a}^{2 a} \\
= & \frac{1}{2}\left[\left\{4 a^{4}-\frac{32 a^{4}}{3}+8 a^{4}\right\}-\left\{\frac{a^{4}}{4}-\frac{4 a^{4}}{3}+2 a^{4}\right\}\right] \\
= & \frac{1}{2}\left[10 a^{4}-\frac{a^{4}}{4}-\frac{28 a^{4}}{3}\right]=\frac{a^{4}}{2}\left[\frac{120-3-112}{12}\right]=\frac{5 a^{4}}{24} \\
& =\frac{1}{2} \int_{y=0}^{a} y[a y-0] d y=\frac{a}{2}\left[\frac{y^{3}}{3}\right]_{0}^{a}=\frac{a}{6}\left(a^{3}-0\right)=\frac{a^{4}}{6} \\
\int_{y=0}^{a} \int_{x=0}^{\sqrt{a y}} x y d y d x & =\int_{y=0}^{a} y\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{a y}} d y \\
\therefore \int_{x=0}^{a} \int_{y=\frac{x^{2}}{a}}^{2 a-x} x y d y d x & =\frac{5 a^{4}}{24}+\frac{a^{4}}{6} \\
& =\frac{5 a^{4}+4 a^{4}}{24}=\frac{9 a^{4}}{24}=\frac{3 a^{4}}{8}
\end{aligned}
$$

8. Evaluate by changing the order of integration in $\int_{0}^{3} \int_{0}^{\sqrt{4-y}}(x+y) d x d y$

Sol. Given $x=0$ to $x=\sqrt{4-y}$

$$
\begin{aligned}
& x^{2}=4-y \text { (or) } y=4-x^{2} \\
& \text { and } \mathrm{y}=0 \text { to } \mathrm{y}=3 \\
& \int_{y=0}^{3} \int_{x=0}^{\sqrt{4-y}}(x+y) d x d y=\int_{x=0}^{1} \int_{y=0}^{3}(x+y) d y d x \\
& +\int_{x=1}^{2} \int_{y=0}^{4-x^{2}}(x+y) d y d x \\
& \int_{x=0}^{1} \int_{y=0}^{3}(x+y) d x d y=\int_{x=0}^{1}\left[x y+\frac{y^{2}}{2}\right]_{0}^{3} d x \\
& =\int_{x=0}^{1}\left[\left\{3 x+\frac{9}{2}\right\}-0\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{x=0}^{1}\left(3 x+\frac{9}{2}\right) d x \\
& =\left[\frac{3 x^{2}}{2}+\frac{9}{2} x\right]_{0}^{1} \\
& =\left(\frac{3}{2}+\frac{9}{2}\right)-0=\frac{12}{2}=6 \\
\int_{x=1}^{2} \int_{y=0}^{4-x^{2}}(x+y) d x d y & =\int_{x=1}^{2}\left[x y+\frac{y^{2}}{2}\right]_{0}^{4-x^{2}} d x \\
& =\int_{x=1}^{2}\left[\left\{x\left(4-x^{2}\right)+\frac{\left(4-x^{2}\right)^{2}}{2}\right\}-\{0\}\right] d x \\
& =\int_{x=1}^{2}\left[4 x-x^{3}+\frac{16-8 x^{2}+x^{4}}{2}\right] d x \\
& =\left[\frac{4 x^{2}}{2}-\frac{x^{4}}{4}+\frac{1}{2}\left(16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right)\right]_{1}^{2} \\
& =\left\{8-4+\frac{1}{2}\left(32-\frac{64}{3}+\frac{32}{5}\right)\right\}-\left\{2-\frac{1}{4}+\frac{1}{2}\left(16-\frac{8}{3}+\frac{1}{5}\right)\right\} \\
& =4+\frac{1}{2}\left(\frac{480-320+96}{15}\right)-2+\frac{1}{4}-\frac{1}{2}\left(\frac{240-40+3}{15}\right) \\
& =2+\frac{1}{4}+\frac{1}{2}\left(\frac{256}{15}\right)-\frac{1}{2}\left(\frac{203}{15}\right) \\
& =\frac{9}{4}+\frac{256}{30}-\frac{203}{30} \\
& =\frac{135+512-406}{60}=\frac{241}{60} \\
\therefore \int_{y=0}^{3} \int_{x=0}^{\sqrt[4-y]{y}}(x+y) & d x d y=6+\frac{241}{60}=\frac{360+241}{60}=\frac{601}{60}
\end{aligned}
$$

9. Evaluate by changing the order of integration in $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$

Sol. Given $\mathrm{y}=\mathrm{x}$ to $\mathrm{y}=\sqrt{2-x^{2}}$

$$
y^{2}=2-x^{2} \text { (or) } x^{2}+y^{2}=2
$$

$$
\text { and } x=0 \text { to } x=1
$$

$$
\begin{aligned}
& \int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x=\int_{y=0}^{1} \int_{x=0}^{y} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y+\int_{y=1}^{\sqrt{2}} \int_{x=0}^{\sqrt{2-y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \\
& \int_{y=0}^{1} \int_{x=0}^{y} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{y=0}^{1} \int_{t=y}^{y \sqrt{2}} \frac{t d t}{t} d y \\
& =\int_{y=0}^{1}[t]_{y}^{y \sqrt{2}} d y \\
& =\int_{y=0}^{1}[y \sqrt{2}-y] d y \\
& =\int_{y=0}^{1}(\sqrt{2}-1) y d y \\
& =(\sqrt{2}-1)\left[\frac{y^{2}}{2}\right]_{0}^{1} \\
& =(\sqrt{2}-1)\left(\frac{1}{2}-0\right)=\frac{\sqrt{2}-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{y=1}^{\sqrt{2}} \int_{x=0}^{\sqrt{2-y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{y=1}^{\sqrt{2}} \int_{t=y}^{\sqrt{2}} \frac{t d t}{t} d y \\
& =\int_{y=1}^{\sqrt{2}}[t]_{y}^{\sqrt{2}} d y \\
& =\int_{y=1}^{\sqrt{2}}[\sqrt{2}-y] d y \\
& =\left[\sqrt{2} y-\frac{y^{2}}{2}\right]_{1}^{\sqrt{2}} \\
& =\left(2-\frac{2}{2}\right)-\left(\sqrt{2}-\frac{1}{2}\right) \\
& =1-\sqrt{2}+\frac{1}{2} \\
& =\frac{3}{2}-\sqrt{2}=\frac{3-2 \sqrt{2}}{2} \\
& \therefore \int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x=\frac{\sqrt{2}-1}{2}+\frac{3-2 \sqrt{2}}{2} \\
& =\frac{\sqrt{2}-1+3-2 \sqrt{2}}{2} \\
& =\frac{2-\sqrt{2}}{2} \\
& =1-\frac{\sqrt{2}}{2} \\
& =1-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Triple Integral

It is denoted by $\iiint f(x, y, z) d x d y d z$
Note:

1) The order of integration is denoted by

$$
\left.\int_{x_{1}}^{x_{2}} \int_{f_{1}(x)}^{f_{2}(x)} \int_{\phi_{1}(x, y)}^{\phi_{2}(x, y)} f(x, y, z) d z d y d x \quad \text { (or }\right) \quad \int_{z_{1}}^{z_{2}} \int_{f_{1}(z)}^{f_{2}(z)} \int_{\phi_{1}(y, z)}^{\phi_{2}(y, z)} f(x, y, z) d x d y d z
$$

2) Volume of the region $=\iiint d x d y d z$

Problems

1. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{(x+y)^{2}} x d x d y d z$

Sol. Let $I=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{(x+y)^{2}} x d z d y d x$

$$
=\int_{0}^{1} \int_{0}^{1-x} x[z]_{0}^{(x+y)^{2}} d y d x
$$

$$
=\int_{0}^{1} \int_{0}^{1-x} x\left[(x+y)^{2}-0\right] d y d x
$$

$$
=\int_{0}^{1} x\left[\frac{(x+y)^{3}}{3}\right]_{0}^{1-x} d x
$$

$$
=\frac{1}{3} \int_{0}^{1} x\left[(x+1-x)^{3}-(x+0)^{3}\right] d x
$$

$$
=\frac{1}{3} \int_{0}^{1} x\left[1-x^{3}\right] d x
$$

$$
=\frac{1}{3} \int_{0}^{1}\left(x-x^{4}\right) d x
$$

$$
=\frac{1}{3}\left[\frac{x^{2}}{2}-\frac{x^{5}}{5}\right]_{0}^{1}=\frac{1}{3}\left[\left(\frac{1}{2}-\frac{1}{5}\right)-0\right]=\frac{1}{3}\left(\frac{3}{10}\right)=\frac{1}{10}
$$

2. Evaluate $\iiint x y z d x d y d z$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
Sol. $\iiint x y z d x d y d z=\int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}} \int_{z=0}^{\sqrt{a^{2}-x^{2}-y^{2}}} x y z d z d y d x$

$$
=\int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}} x y\left[\frac{z^{2}}{2}\right]_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} d y d x
$$

$$
\begin{equation*}
=\frac{1}{2} \int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}} x y\left[\left(a^{2}-x^{2}-y^{2}\right)-0\right] d y d x \tag{a,0,0}
\end{equation*}
$$

\[
=\frac{1}{2} \int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}}\left(a^{2} x y-x^{3} y-x y^{3}\right) d y d x

\] | $x=0$ is the equation of yoz plane |
| :--- |
| $y=0$ is the equation of $x o z$ plane |
| $z=0$ is the equation of $x o y$ plane |

$=\frac{1}{2} \int_{x=0}^{a}\left[\frac{a^{2} x y^{2}}{2}-\frac{x^{3} y^{2}}{2}-\frac{x y^{4}}{4}\right]_{0}^{\sqrt{a^{2}-x^{2}}} d x$
$=\frac{1}{2} \int_{x=0}^{a}\left[\left\{\frac{a^{2} x\left(a^{2}-x^{2}\right)}{2}-\frac{x^{3}\left(a^{2}-x^{2}\right)}{2}-\frac{x\left(a^{2}-x^{2}\right)^{2}}{4}\right\}-\{0\}\right] d x$
$=\frac{1}{2} \int_{x=0}^{a}\left(a^{2}-x^{2}\right)\left[\frac{a^{2} x}{2}-\frac{x^{3}}{2}-\frac{x\left(a^{2}-x^{2}\right)}{4}\right] d x$
$=\frac{1}{2} \int_{x=0}^{a}\left(a^{2}-x^{2}\right)\left[\frac{2 a^{2} x-2 x^{3}-a^{2} x+x^{3}}{4}\right] d x$
$=\frac{1}{8} \int_{x=0}^{a}\left(a^{2}-x^{2}\right)\left(a^{2} x-x^{3}\right) d x$
$=\frac{1}{8} \int_{x=0}^{a}\left(a^{4} x-a^{2} x^{3}-a^{2} x^{3}+x^{5}\right) d x$
$=\frac{1}{8} \int_{x=0}^{a}\left(a^{4} x-2 a^{2} x^{3}+x^{5}\right) d x$
$=\frac{1}{8}\left[\frac{a^{4} x^{2}}{2}-\frac{2 a^{2} x^{4}}{4}+\frac{x^{6}}{6}\right]_{0}^{a}=\frac{1}{8}\left[\left\{\frac{a^{6}}{2}-\frac{a^{6}}{2}+\frac{a^{6}}{6}\right\}-0\right]=\frac{a^{6}}{48}$
3. Evaluate $\iiint \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}, x, y, z \geq 0, x^{2}+y^{2}+z^{2} \leq 1$.

Sol. $\iiint \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}=\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d z}{\sqrt{\left(1-x^{2}-y^{2}\right)-z^{2}}} d y d x$

$$
=\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}}\left[\sin ^{-1}\left(\frac{z}{\sqrt{1-x^{2}-y^{2}}}\right)\right]_{0}^{\sqrt{1-x^{2}-y^{2}}} d y d x
$$

$$
=\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}}\left[\sin ^{-1}(1)-\sin ^{-1}(0)\right] d y d x
$$

$$
=\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}}\left[\frac{\pi}{2}-0\right] d y d x
$$

$$
=\frac{\pi}{2} \int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} d y d x
$$

$$
=\frac{\pi}{2} \int_{x=0}^{1}[y]_{0}^{\sqrt{1-x^{2}}} d x
$$

$$
=\frac{\pi}{2} \int_{x=0}^{1}\left[\sqrt{1-x^{2}}-0\right] d x
$$

$$
=\frac{\pi}{2} \int_{x=0}^{1} \sqrt{1-x^{2}} d x
$$

$$
=\frac{\pi}{2}\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1}\left(\frac{x}{1}\right)\right]_{0}^{1}
$$

$$
=\frac{\pi}{2}\left[\left\{0+\frac{1}{2} \sin ^{-1}(1)\right\}-\{0+0\}\right]
$$

$$
=\frac{\pi}{2}\left[\frac{1}{2} \cdot \frac{\pi}{2}\right]
$$

$$
=\frac{\pi^{2}}{8}
$$

4. Evaluate $\iiint_{V} \frac{d z d y d x}{(x+y+z+1)^{3}}$ where V is the region bounded by $x=0, \mathrm{y}=0$, $\mathrm{z}=0$ and $x+\mathrm{y}+\mathrm{z}=1$.
Sol. $\iiint_{V} \frac{d z d y d x}{(x+y+z+1)^{3}}=\int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=0}^{1-x-y} \frac{d z}{(x+y+z+1)^{3}} d y d x$

$$
\begin{aligned}
& =\int_{x=0}^{1} \int_{y=0}^{1-x}\left[\frac{(x+y+z+1)^{-2}}{-2}\right]_{0}^{1-x-y} d y d x \\
& =\frac{1}{-2} \int_{x=0}^{1} \int_{y=0}^{1-x}\left[\frac{1}{(x+y+z+1)^{2}}\right]_{0}^{1-x-y} d y d x
\end{aligned}
$$

$$
=\frac{1}{-2} \int_{x=0}^{1} \int_{y=0}^{1-x}\left[\left\{\frac{1}{(x+y+1-x-y+1)^{2}}\right\}-\left\{\frac{1}{(x+y+0+1)^{2}}\right\}\right] d y d x
$$

$$
=\frac{1}{-2} \int_{x=0}^{1} \int_{y=0}^{1-x}\left[\frac{1}{4}-(x+y+1)^{-2}\right] d y d x
$$

$$
=\frac{1}{-2} \int_{x=0}^{1}\left[\frac{y}{4}-\frac{(x+y+1)^{-1}}{-1}\right]_{0}^{1-x} d x
$$

$$
=\frac{1}{-2} \int_{x=0}^{1}\left[\left\{\frac{1-x}{4}+\frac{1}{x+1-x+1}\right\}-\left\{0+\frac{1}{x+0+1}\right\}\right] d x
$$

$$
=\frac{1}{-2} \int_{x=0}^{1}\left[\frac{1-x}{4}+\frac{1}{2}-\frac{1}{x+1}\right] d x
$$

$$
=\frac{1}{-2}\left[\frac{(1-x)^{2}}{-8}+\frac{x}{2}-\log (x+1)\right]_{0}^{1}
$$

$$
=\frac{1}{-2}\left[\left\{0+\frac{1}{2}-\log 2\right\}-\left\{\frac{1}{-8}+0-\log 1\right\}\right]
$$

$$
=\frac{1}{-2}\left[\frac{1}{2}+\frac{1}{8}-\log 2\right]
$$

$$
=\frac{1}{-2}\left[\frac{5}{8}-\log 2\right]
$$

$$
=\frac{1}{2} \log 2-\frac{5}{16}
$$

5. Find the volume of the tetrahedron bounded by the coordinate planes and

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

Sol. Volume of the tetrahedron $=\iiint d x d y d z$

$$
\begin{aligned}
& =\int_{x=0}^{a} \int_{y=0}^{b\left(1-\frac{x}{a}\right)} \int_{z=0}^{c\left(1-\frac{x}{a}-\frac{y}{b}\right)} d z d y d x \\
& =\int_{x=0}^{a} \int_{y=0}^{b\left(1-\frac{x}{a}\right)}[z]_{0}^{c\left(1-\frac{x}{a}-\frac{y}{b}\right)} d y d x
\end{aligned}
$$

$$
=\int_{x=0}^{a} \int_{y=0}^{b\left(1-\frac{x}{a}\right)}\left[c\left(1-\frac{x}{a}-\frac{y}{b}\right)-0\right] d y d x
$$

$$
=c \int_{x=0}^{a} \int_{y=0}^{b\left(1-\frac{x}{a}\right)}\left(1-\frac{x}{a}-\frac{y}{b}\right) d y d x
$$

$$
=c \int_{x=0}^{a}\left[y-\frac{x y}{a}-\frac{y^{2}}{2 b}\right]_{0}^{b\left(1-\frac{x}{a}\right)} d x
$$

$$
=c \int_{x=0}^{a}\left[\left\{b\left(1-\frac{x}{a}\right)-\frac{x}{a} b\left(1-\frac{x}{a}\right)-\frac{b^{2}}{2 b}\left(1-\frac{x}{a}\right)^{2}\right\}-\{0\}\right] d x
$$

$$
=b c \int_{x=0}^{a}\left[\left(1-\frac{x}{a}\right)-\frac{x}{a}\left(1-\frac{x}{a}\right)-\frac{1}{2}\left(1-\frac{x}{a}\right)^{2}\right] d x
$$

$$
=b c \int_{x=0}^{a}\left[\left(1-\frac{x}{a}\right)\left(1-\frac{x}{a}\right)-\frac{1}{2}\left(1-\frac{x}{a}\right)^{2}\right] d x
$$

$$
=b c \int_{x=0}^{a}\left[\left(1-\frac{x}{a}\right)^{2}-\frac{1}{2}\left(1-\frac{x}{a}\right)^{2}\right] d x
$$

$$
=b c \int_{x=0}^{a} \frac{1}{2}\left(1-\frac{x}{a}\right)^{2} d x
$$

$$
\begin{aligned}
& =\frac{b c}{2}\left[\frac{\left(1-\frac{x}{a}\right)^{3}}{-\frac{3}{a}}\right]_{0}^{a} \\
& =-\frac{a b c}{6}[0-1] \\
& =\frac{a b c}{6}
\end{aligned}
$$

6. Evaluate $\iiint_{V} d x d y d z$ where V is the region of space inside the cylinder $x^{2}+y^{2}=4$, that is bounded by the planes $\mathrm{z}=0$ and $\mathrm{z}=3$.
Sol. $\quad \iiint_{V} d x d y d z=\int_{x=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{z=0}^{3} d z d y d x$

$$
=\int_{x=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}[z]_{0}^{3} d y d x
$$

$$
=\int_{x=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}(3-0) d y d x
$$

$$
=3 \int_{x=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y d x
$$

$$
\left.=3 \int_{\theta=0}^{2 \pi} \int_{r=0}^{2} r d r d \theta \quad \text { (by Polar coordinates }\right)
$$

$$
=3 \int_{\theta=0}^{2 \pi}\left[\frac{r^{2}}{2}\right]_{0}^{2} d \theta
$$

$$
=3 \int_{\theta=0}^{2 \pi}(2-0) d \theta
$$

$$
=6 \int_{\theta=0}^{2 \pi} d \theta=6[\theta]_{0}^{2 \pi}=6(2 \pi-0)=12 \pi .
$$

7. Find the volume of the region $x^{2}+y^{2}+z^{2}=r^{2}$, using triple integral.

Sol. Volume of the region $=8$ (Volume in the $1^{\text {st }}$ octant)

$$
\begin{aligned}
& =8 \iiint d x d y d z \\
& =8 \int_{x=0}^{r} \int_{y=0}^{\sqrt{r^{2}-x^{2}}} \int_{z=0}^{r^{2}-x^{2}-y^{2}} d z d y d x \\
& =8 \int_{x=0}^{r} \int_{y=0}^{\sqrt{r^{2}-x^{2}}}[z]_{0}^{\sqrt{r^{2}-x^{2}-y^{2}}} d y d x \\
& =8 \int_{x=0}^{r} \int_{y=0}^{\sqrt{r^{2}-x^{2}}}\left[\sqrt{r^{2}-x^{2}-y^{2}}-0\right] d y d x \\
& =8 \int_{x=0}^{r} \int_{y=0}^{\sqrt{r^{2}-x^{2}}} \sqrt{\left(r^{2}-x^{2}\right)-y^{2}} d y d x \\
& =8 \int_{x=0}^{r}\left[\frac{y}{2} \sqrt{\left(r^{2}-x^{2}\right)-y^{2}}+\frac{r^{2}-x^{2}}{2} \sin ^{-1}\left(\frac{y}{\sqrt{r^{2}-x^{2}}}\right)\right]_{0}^{\sqrt{r^{2}-x^{2}}} d x \\
& =8 \int_{x=0}^{r}\left[\left\{0+\frac{r^{2}-x^{2}}{2} \sin ^{-1}(1)\right\}-\{0+0\}\right] d x \\
& =8 \int_{x=0}^{r} \frac{r^{2}-x^{2}}{2} \cdot \frac{\pi}{2} d x \\
& =2 \pi \int_{x=0}^{r}\left(r^{2}-x^{2}\right) d x \\
& =2 \pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{0}^{r} \\
& =2 \pi\left[\left\{r^{3}-\frac{r^{3}}{3}\right\}-\{0-0\}\right] \\
& =2 \pi\left(\frac{4}{3} \pi r^{3}\right. \\
& =2
\end{aligned}
$$

8. Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Sol. Volume of the ellipsoid $=8$ (Volume in the $1^{\text {st }}$ octant)
where $k^{2}=\frac{b^{2}\left(a^{2}-x^{2}\right)}{a^{2}}$

$$
k=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

$$
=\frac{8 c}{b} \int_{x=0}^{a} \int_{y=0}^{k} \sqrt{k^{2}-y^{2}} d y d x
$$

$$
=\frac{8 c}{b} \int_{x=0}^{a}\left[\frac{y}{2} \sqrt{k^{2}-y^{2}}+\frac{k^{2}}{2} \sin ^{-1}\left(\frac{y}{k}\right)\right]_{0}^{k} d x
$$

$$
=\frac{8 c}{b} \int_{x=0}^{a}\left[\left\{0+\frac{k^{2}}{2} \sin ^{-1}(1)\right\}-\{0+0\}\right] d x
$$

$$
=\frac{8 c}{b} \int_{x=0}^{a} \frac{k^{2}}{2} \cdot \frac{\pi}{2} d x
$$

$$
=\frac{2 c \pi}{b} \int_{x=0}^{a} \frac{b^{2}\left(a^{2}-x^{2}\right)}{a^{2}} d x
$$

$$
\begin{aligned}
& =8 \iiint d x d y d z
\end{aligned}
$$

$$
\begin{aligned}
& =8 \int_{x=0}^{a} \int_{y=0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}}[z]_{0}^{c} \sqrt{1-\frac{x^{2}-\frac{y^{2}}{a^{2}}}{b^{2}}} d y d x \\
& =8 \int_{x=0}^{a} \int_{y=0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}}\left[c \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}-0\right] d y d x \\
& =8 c \int_{x=0}^{a} \int_{y=0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} \sqrt{\frac{a^{2}-x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}} d y d x \\
& =8 c \int_{x=0}^{a} \int_{y=0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} \frac{1}{b} \sqrt{\frac{b^{2}\left(a^{2}-x^{2}\right)}{a^{2}}-y^{2}} d y d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 b c \pi}{a^{2}} \int_{x=0}^{a}\left(a^{2}-x^{2}\right) d x \\
& =\frac{2 b c \pi}{a^{2}}\left[a^{2} x-\frac{x^{3}}{3}\right]_{0}^{a} \\
& =\frac{2 b c \pi}{a^{2}}\left[\left\{a^{3}-\frac{a^{3}}{3}\right\}-0\right] \\
& =\frac{2 b c \pi}{a^{2}}\left(\frac{2 a^{3}}{3}\right) \\
& =\frac{4}{3} \pi a b c .
\end{aligned}
$$

9. Find the volume of the region bounded by the surface $y=x^{2}, x=y^{2}$ and the planes $\mathrm{z}=0, \mathrm{z}=3$.
Sol. Volume of the region $=\iiint d x d y d z$

$$
=\int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}} \int_{z=0}^{3} d z d y d x
$$

$$
=\int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}}[z]_{0}^{3} d y d x
$$

$$
=\int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}}(3-0) d y d x
$$

$$
=3 \int_{x=0}^{1}[y]_{x^{2}}^{\sqrt{x}} d x
$$

$$
=3 \int_{x=0}^{1}\left[\sqrt{x}-x^{2}\right] d x
$$

$$
=3\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{3}}{3}\right]_{0}^{1}
$$

$$
=3\left[\left(\frac{2}{3}-\frac{1}{3}\right)-0\right]=3\left(\frac{1}{3}\right)=1 .
$$

