MOHAMED SATHAK A.J.COLLEGE OF ENGINEERING
MAB8551 — Algebra and Number Theory

UNIT-I GROUPS AND RINGS

NOTES
Algebraic systems

Algebraic
systems

Semi
groups

Monoids

Algebraic systems: A set ‘A’ with one or more binary(closed) operations defined on it is called an
algebraic system.

Types of Algebraic systems

Semi groups

Monoids

Groups

Sub groups

Normal Subgroups

NOTATIONS:

1. N={1,2,3/4,... o} =Set of all natural numbers.
Z={0, 1, £2, +3, +4, ..o} = Set of all integers.
Q = Set of all rational numbers.

R = Set of all real numbers.
C = Set of all complex numbers.

a s wDn

Binary Operation:
The binary operator * is said to be a binary operation (closed operation) on a non empty set A, if
a*beA forall abeA (Closure property).

Semi Group: An algebraic system (A, *) is said to be a semi group if
1. * is closed operation on A.
2. * is an associative operation, for all a, b, ¢ in A.
Ex. (N, +) is a semi group.
Ex. (N, .) is a semi group.
Ex. (N, —) is not a semi group.

Subsemigroup : Let (S, *) be a semigroup and let T be a subset of S. If T is closed under
operation *, then (T, *) is called a subsemigroup of (S, * ).
Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.
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tvhoid:  An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
1) *isa closed operation in A.
2) *isan associative operation in A.
3) There s an identity in A.

Ex. ‘N’ is a monoid with respect to multiplication.

Submonoid : Let (S, * ) beamonoid with identity e, and let T be a non- empty subset of S. If
T is closed under the operation * and e I T, then (T, *) is called a submonoid
of (S, *).

Group: An algebraic system (G, *) is said to be a group if the following conditions are satisfied.
1) * is a closed operation.
2) * is an associative operation.
3) There s an identity in G.
4) Every element in G has inverse in G.

Abelian group (Commutative group):
A group (G, *) is said to be abelian (or commutative) if a*b =b*a foralla, binG.

1. Prove that if every element of the group is its own inverse, then G is abelian.

Solution:
If every element of the group is its own inverse, then a™* = a for all acG

=(abF av ad G
=b'a' ab (0 (ab)*=b"a?)
=ba a  (Ub'=banda’=a)

Therefore G is abelian.

2. Prove that identity element in a group is unique.

Solution:
Let (G,*) be a group.
Let ‘e1” and ‘e>’ be the identity elements in G
Suppose e; is the identity, then
ei*e=er*er=e
Suppose e; is the identity, then
ei*er=ex*er=e
Therefore e1= e».
Hence identity element is unique.

3. Prove that a group is abelian if and only if 1ab!  =a'b*Va,beG.
Solution:

By closure property Va,beG = adb G
Let X :(ab)_l, then x(ab)=e

By associative property = (xab e
post multiply by b* = (xa)p = eb™
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(xa)=b™
post multiply by a* = (xa)a2 b™a™

==X b™a™
Assume that G is an abelian group

. (ab)"'=b’a*=a'®’  (  Gisabelian)"

Conversely assume that (ab)fl =ab'VabeG
To Prove : G is abelian

ab=((ab)") =(a**)"=(b*)"(a*)" =ba.

Thus G is abelian.

Prove that if every element of the group is its own inverse, then G is abelian.
If every element of the group is its own inverse, then a™* = a for all aeG

=(abF av ad G
=b'a' ab (: (ab)'lzb'la’l)
—ba ab (Ub*=band a*=a)

Therefore G is abelian.

Give an example of semi group but not a dhoid.

Solution:
The set of all positive integers over addition form a semi-group but it is not a Monoid.

Let Z be the group of integers with the binary operation * defined by a * b=a+b — 2 forall
a,b e Z. Find the identity element of the group (Z,*)

Solution:
a=a*e=a+e-2
a=a+e-2=>=a 2

M1 of-1 0171 ofl-1 o : ,
1) i i L | fforms an abelian group under matrix
1Mo =
o 1/,,0 1/°0

w “JL IL IL 1)

Prove that G =

multiplication.
Solution: 1 0] 10 1 0 -1 0
Let | =| |, =|r —:, B =|r0 1—|| and C=|r 0 1—||
01 0 1 B B
I R L |
The matrix multiplication table is,
x| I |A|B|C
I |1 |A|B|C
AlA|Il |[C|B
B|{B|C|I |A
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Claim 1: Closure property
Since all the elements inside the table are the elements of G.
Hence G is closed under multiplication.
Claim 2: Associative property
#knowhat matrix multiplication is alays associative
Claim 3: Identity property
From the above table wobserve that the matrix | €G is the Identity matrix.
Claim 4: Inverse property
From the above table wobserve that all the matrices are inverse to each other.
Hence Inverse element exists.
Claim 5: Commutative property
From the table evhave

AxB=C=BxA AxC=B=CxA BxC=A=CxB

Therefore commutative property exists.

DSSTES
Addition odulo m ( + )

m

let s a positive integer. For any two positive integers a and b

a+ b=a+bifa+b<m

a+ b= 1 if a+bl mwhere risthe remnder obtained by dividing (a+b)
with m
Mtiplication odulo p ( x ID)

let p is a positive integer. For any two positive integers a and b
a><pb=ab, ifab<p
a x b= 1 if ab=p where risthe reainder obtained by dividing (ab) with p.

Ex. 3 x 4 =2 , 5x 4 =0 , 2 %X 2=4,
5 5 5

1. Show that set G = {0,1,2,3,4,5} is a group with respect to addition modulo 6.
Solution:
The composition table of G is

+ 0 1
6

N
w
ol

A W N B O
A W N O
g A W N
O O oW N
R O o1 A W
N P o o1 P
w N = O O
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5 5 0 1 2 3 4

Closure property: Since all the entries of the composition table are the elements of the given
set, the set G is closed under + 3

Associativity: The binary operation + i% associative in G.
forex. 2+ 3)+ 4 =5+ 4=3 and
6 6 6
2+(3+4)=2+1=3
6 6 6

Identity : Here, The first row of the table coincides with the top row. The element heading that
row, i.e., 0 is the identity element.

Inverse: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4. 5are 0,
5, 4, 3, 2, 1 respectively.

Commutativity: The corresponding rows and columns of the table are identical. Therefore the
binary operation + ig commutative.

Hence, (G, +) is an abelian group.
6

Symmetry Group:
Let F be a set of points in R". The symmetry group of F in R" is the set of all isometries of that R"
carry F onto itself. The group operation is function composition.
Isometry:

An isometry of n-dimensional space R" is a function from R" onto R" that preserves
distance.

Note: More precisely, = is an isometry from ®™ to &™ if for all x, ¥ € R* we have
d(xy) = d{a(), ()

where d is a metric on K=,

Dihedral Groups

The symmetries of a regular n .-gon form the dihedral group, <Dn, > , Which consists of 2n

permutations.

These groups are generated by the two fundamental permutations: rotations and reflections.
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Let G be the set of all rigid motions of a equilateral triangle. Identify the elements of G.
Show that it is a non-abelian group of order six.

Proof:

Consider an equilateral triangle with vertices named as 1, 2, 3.

Let mo, 1 , 72 denote the rotations of the triangle in the counter clockwise direction about an axis
through the centre of the triangle and perpendicular to the plane of the triangle for an angle of
120°, 240°, 360" respectively.

These rotations are called rigid motions of the triangle and are given by
g (123 (1 2 3) (1 2 3)

T2 Ty o) el 8y

Let ry, 12, r3 denote the reflections of the equilateral triangle along the lines joining vertices 3,1,2
and the mid-points of the opposite sides.

Each reflection is a 3-dimensional rigid motion.
(12 3) (1 2 3 (1 2 3)

r1_|\2 1 3}’ I2=|K1 3 2}’ I3=|\3 5 1}|

Let G = {no, m1, T2, I1, I2, I3}

Define binary operations on G as follows
(1 2 3

a.r, =|
B 2 Yoes

Cayley’s table for G is given by

To T T2 I I I3
To To 1% T2 r I I3
T T 1%} o I3 I r
T2 T2 o T p) I3 M
1 I 2 I3 o T 2
2 2 I3 I 2 f1% T
I3 I3 i 2 T 2 f1%

From the table it is clear that G is a group.
Note that 2 2= Tzang 1@ 2= Ts
- B20# 00, G s not an abelian group of order six.
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Algebra and Number Theory

Subgroup :
Let G beagroup and @ = H < G. If H is a group under the same binary operation of G then H is

dinary subgroup of G.
Example:

H ={0,2,4} or K = {0,3} are the proper subgroups of (Z;,+)

1. Prove that the necessary and sufficient condition for a non-empty subset H of a group (G, *)

to be a subgroup isa,beH= I¥ < H

Solution:
Necessary Condition:

Let us assume that H is a subgroup of G. Since H itself a group, have if

a ,beH implies a*beH

Since beH then b™teH hich implies a*bleH

Sufficient Condition:

Let a*b_le H, fora*beH

Claim 1: Identity property

1=e eH

If a eH, hichimplies a*a
Hence the identity element €€H .

Claim 2: Inverse property
Leta,e eH, thene*a t=a ‘eH

Hence a L is the inverse of ..
Claim 3: Closure property

-1
Let a,b_leH , then a*(b_l) =a*beH

Therefore H is closed.

Claim 4: Associative property
Clearly * isassociative.

Hence H is a subgroup of G.

2.  Prove that intersection of two subgroups of a group G is again a subgroup of G, but their
union need not be a subgroup of G.

Solution:
Claim 1: Intersection of two subgroups is again a subgroup.

Let A and B be tersubgroups of a group G. @need to prove that Al Bisa
subgroup.
(i.e.) It is enough to prove that AL B#[ andabe Al B=a* bé AB.

Since A and B are subgroups of G, the identity element € €A and B .
LALIB#

Let
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abeAl B>ad A andabeB

=a*bd Aanda*b'eB

=a*h? AOB

Hence Al B isa subgroup of G.

Claim 2: Union of two subgroups need not be a subgroup
Consider the folloing example,

Consider the group (Z ,+) Jhere  Z is the set of all integers and the operation + represents
usual addition.
Let A=2Z={0+2+4+6,..} andB=3Z={0+3+6+9,..}.
Here (ZZ ,+) and (3Z ,+) are both subgroups of (Z ,+)
LetH=2Z113Z={0+2+3+4+6,.}
Note that 2,3e H, but 2+3=5¢ H=¢b 271 3Z
(i.e.) 2Z 1 3Zis not closed under addition.

Therefore 2Z [ 3Z is not a group
Therefore (H, +) is not a subgroup of (Z, +).

Cyclic group:

A group (G,*) is said to be cyclic if there exists an element acG such that every element of G

can be written as some power of ‘a’.
G = {1-1,i,-i } is a cyclic group with generators (ijor i . )

1.

Show that every cyclic group is abelian.
Let (G,*) be a cyclic group with ‘a’ as generator
min - onEm

s yeG=x aly a wx=zy & & *y X

Prove that the multiplicative group Z *7: {1, 2, 3, 4, 5, 6} is cyclic and find its generator.
The element 3 is a cyclic generator since
3lmod 7 =3

32mod7=9mod7 =2
3mod7=(3*-3)ymod7=(2-3)ymod7=6mod 7 =6
3*mod7=(3-3)mod7 =(6-3)ymod 7 =18 mod 7 = 4
3mod7=(3"-3)ymod7 =(4-3)mod7 =12mod 7 =5
3*mod7 =(3-3)mod7 =(5-3)mod7 =15mod 7 =1
whereas the element 4 is not a generator but only generates a the cyclic subgroup {1, 2, 4} of Z;
since
41 mod7 = 4
42mod 7 =16 mod 7 = 2

4>mod 7= (4*-4)mod 7= (2-4) mod 7 =1 .
Since every element of Z ={1, 2, 3, 4, 5, 6} can be written in powers of 3, Z ={1,2,3,4,5,6}isa
7 7
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cyclic group.

Prove that every subgroup of a cyclic group is cyclic.
Proof:
Let (G,*) be the cyclic group generated by an element a G and let H be the subgroup of G.
Claim: H is cyclic
If H =G or {e} then trivially H is cyclic.
If not the elements of H are non-zero integral powers of a, Since if a"eH, its inverse
a'eH.
Let “m” be the smallest positive integer such that a"™ e H. ()
Let a" be any arbitrary element of H. Let g be the quotient and r be the remainder when n is
divided by m.
Thenn=gm+rwhere0 < r<m. )
Nowa"=a"*"=@""%a"
a’=@") %a" =a"m.
Since a™ eH, (@™ eH by closure property
a"leH
(@™ eH, by existence of inverse, as H is a subgroup
aMeH
Sincea"eH anda™eH
a™™ eH
. a'eH
By (1) & (2), we get r=0, ..n=mq

q
a" =a™ =(am) :

. q
Thus every element of a" e H is of the form (am)

Hence H is a cyclic subgroup generated by a™.

Prove that every group of prime order is cyclic.

Proof:

Let O(G)=p, where p is a prime number.

Let a(#¢)e G.

Consider a subgroup generated by a.

LetH= a

=0(H) 1[I H a»ea H&alsoe=H O(H) 1]
Since H is a subgroup of G, then by Lagrange’s theorem,
O(H)/O(G) = O(H)/p

=O(H) lor p [ pisprime]
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ButO(H)>1, .0 (H) =1
Thus O (H)=p=0(G)

~G=H
But H is a cyclic group, .. G is a cyclic group.

COSETS:
If Hisasub group of( G, *)and a e G then the set
Ha ={h *a|h e H}is called a right coset of H in G.
Similarly aH={a*h|h e H}is called a left coset of H is G.
Note: 1) Any two left (right) cosets of H in G are either identical or disjoint.
2) Let H be a sub group of G. Then the right cosets of H form a partition of G.i.e., the union of

all right cosets of a sub group H is equal to G.

L Letc=0 Z,,+,0 ,Findtheleftcosetsdf H =I[0],[4],[8] and show that the distinct left
cosets of H forms a partition of G.
Z,={ [01,[1],[21,[31,[4],[5].[6],[7.[8], [O1.[10],[11] } ; H ={[O].[4].[8]}
[0]+H :{ [0],[4],[8]} =H=[4]+ H=[8]+ H
[1]+H ={ [1],[5],[9]} =[5]+ H =[9]+ H
[2]+H ={ [2],[6],[10]} =[6]+ H =[10]+ H
[3]+H ={ [3],[7],[11]} =[7]+ H =[11]+H
.G =H U([1]+ H) u([2]+ H) U([3]+ H)

State and Prove Lagrange’s theorem on finite groups (or) Prove that in a finite group,
order of any subgroup divides the order of the group.

The order of each subgroup of a finite group is divides the order of the group.

Proof:

Let G be a finite group and O (G ) =nand let H be a subgroupof Gand O ( H) =m

Let h,,h,,h,, ...,h, are the m distinct elements of H
For X €G, the right coset of H is defined by Hx = {h x, h X, h x,........ h x}.
1 2 3

Since there is a one to one correspondence between H and Hx , the members of Hx are
distinct.
Hence, each right coset of H in G has m distinct members.
| ¥\know that any two right cosets of  H in G are either identical or disjoint. |
The number of distinct right cosets of H in G is finite (say k)
The union of these k distinct cosets of H in G is equal to G.
(i.e) G=Hx, I Hx, [l Hxg ... [0 HX,
O(G)=0(Hx,)+O(Hx,)+O(Hx;)+...+O(Hx,)
n=m+m+m+ +m (ktimes)
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o) _,
O(H)
Hence O ( H ) divides O (G )

3. LetGhea group subgroups H and K. If |G|=660, |K|=66 and KcHcG, what are the
possible values of |[H| ?

O(K) < O(H) < O(G) and O(K) divides O(H) and O(H) divides O(G).
O(K)=|K| =66 = 2-3-11.

O(G) = |G| = 660 = 223-5-11.

|K| divides |H| and |K]| < |H|

=|H| = x [K| = x (2-3-11), with x> 1

|H| divides |G| and |H| < |G|

=|G|=y|H|=yx(2.3.11), withy > 1

=660 =y x (2.3.11)

2°35.11=yx(2.3.11)

25=yx,withx>1,y>1

=Xx=20rx=5

Wen X
Wen X

2 =|H|=2(2.3.11) =132
5 =|H| =5 (2.3.11) =330.

Normal Subgroup :
A subgroup (N, *) of a group (G, *) is said to be a normal subgroup of G, If for every geG and neN,
g*xn*g teN.

1. Provethat intersection of any two normal subgroups of a group (G, *) is a normal subgroup
of a group (G, *).
Solution:
Let G be the group and H and K are the normal subgroups of G.
Since H and K are normal subgroups of
= H and K are subgroups of G
= HIl Kis asubgroup of G.
Nowvhave to prove H U K is normal
Sincee eH and eeK =ee HU K.
Thus H MK is nonempty.
Letxe Gandh e HIl K
XxeGandheH,hekK
XxeG,heHandxeG,heK
Page 11 of 25



So,x*h*xleHandx*h#*x1ekK
SxxhxxleHK
Thus H I K is a Normal subgroup of G.

Quotient group or Factor group:

If (N, *)is a normal subgroup of (G, *) then the group (G/N,®) is called the quotient group or factor
group of G by N or quotient group modulo N.

Group Homomorphism:
Let (G,*) and (S, [)) be two groups. A mapping f: G = S is said to be a group homomorphism if for
any a, b G,

f(a*b) =f(a) 1 f(b).

Example: Consider f :(R*,.) — (R, ) where f(x) = logi(x)

for any a, b eR", f(a-b) = logio(ab) = logio(a)+ logio(b) = f(a) + f(b).
Therefore f(x) is a group homomorphism.

Group Isomorphism:
A group homomorphism ‘f* is called group isomorphism, if ‘f* is one-to-one and onto.

Kernel of homomorphism:
Let (G, *) = (GF, ) be groups with e’ as the identity eleemt of G'. Letf: G — G’ bea

homomorphism. The kernel of f is the set of all elements of G which are mapped onto e’ and is
denoted by ker f.

Kerf={x e G§(x) =€}

1. Consider two groups G and G’ where G={Z, +} and G'={z"/m=0,+1,+2 +3,..,| }. Let

: Z —{z"/ misaninteger} defined by® | m [ = 2"where meZ. Prove that [ is
homomorphism.

(m) = 2"where meZ
Sh(m+r)=2mr=2"2" =0 (m) (r)
Hence 2 is homomorphism.

2. Let f: (G, *)—> (G+, ) beanisomorphism. If G is an abelian group then prove that G’
is also an abelian group.

Leta',b’'e G'.

Then there exists a,b € G,suchthat f(a)=a' & f(b)="b’
a+b=f@+f(b)= f(axb)=f(b*xa)=f(b)+f(@)=b" +a’
Hence G’ is an abelian group.
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Let f: G — H be a homomorphism from the group (G,*) to the group (H, A ). Prove that

the kernel of fis a normal subgroup of G.
Proof:

Let K be the Kernel of the homomorphism g. Thatis K={xe G |g (x)=e"}here

element of H. is
Letx, y € K. Now

g(x*yH=g(0Aag(yH=g(0A[g(N] T =e'A(e)t=ere=¢
x*y_le K

Therefore K is a subgroup of G. Let
xeK,feG

e’ the identity

g (f*x*f =g (f)*g(*g(fH=g(f)e[g(H]=a(f)[g(H)]*=¢

frx*f1lck

Thus K is a normal subgroup of G.

Let (G, 1), (H,*) be groups with respective identities ec , en .Iff :G—>H is a
homomorphism, then show that
@ )f(ec)=en
Mf@t)=[f@)] vaecs
(c)f(@a")=[f(a)]"vaeGand allnez

(d) f(S) is a subgroup of H for each subgroup S of G.
Proof:

@) en *f(eg)=T(eg) =T(eg | ec)=T(ec)*f (ec)
~.ey=T(eg), by right cancellation law

(b) Leta €G, since G is a group, aleG

Since Gisagroup, a* al= eg

By homomorphism f(a *a_l)z f(eg)
f@! f@t)=ey

Hence f ( a‘l) is the inverse of f ( a)

ie. f@h)=[ f@]* vaeG
() VaeGand allneZ
Case(i): if n=0then a'=a’=

(&)= f(e )=e =[f(a)T
s wn | ]
= f@y [f@]"
Case(ii): if nis a positive integer then

a"=alalal a (n times)
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f(a")=f(alalal a) (ntimes)
=f(a) =f(a) =f(a)*0=f(a)
-
P TN P el -]
L 1L |
~f@")=[f@)]"vaeGandallnez

(d) If Sisasubgroup of G, then S = ¢,s0f(S) =¢. Letxy e f(S).

Then x = f(a), y = f(b) for some a,beS. Since S is a subgroup of G, it follows that
sal bes,

f(a)«f(b)=f(al b)e f(S)
=x ey f(S), sof(S)is closed
Finally, xt=[f@]t=fla™
laeS = ad S&f[ad f(S)
xtef(s)
.. f(S) is a subgroup of H for each subgroup S of G.
State and prove Fundamental Theorem of Group Homomorphism.
Statemnt :

Let (G, *) and (H, A) be two groups.Let g:G —>H be a hooorphismwith

kernel K. Then G/K is isonrphic to H(g(G) < H).

Proof:

Let g: G—H be ahooorphistrorthe group
(G,*) to the group (H , A)
Then K= ker(g) = {X eGl/g (x) = el} is a noral sub-group of (G,*)

Also we know that the quotient set (% ,®) is a group.

Define [ : G/K/_) H is apping fromhe group (% ,®) to the group (H , A) given
by
(Ka)=g(a), foranyaeG.

Typeyour text
Since if Ka=Kb
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=a*bdé K

=g(a*bh2) ¢
=g@ gb=) e
=0@ 9bA ob) 2 g(b)

=g @) ¢ g(b
=g@) g(b)
—B(Ka) B(Kb)

is well defined.
Claizm [ ishonorphism
LetKa, kb € G.

Now,

Bl(Ka ® Kb) = BI[K (a *b)]
=g(a*b)
=9g(a) A g(b)
= [ (Ka) A B(Kb)

: is a hoonrphism
Clai:m [ is one-to-one.
IfE (Ka) =0 (Kb)

then g(a) =g(b)
=0@ 9b3) 9@ g(b)
g(a*b’l) =g(b*b’1) =g(e)=¢

na*htek=ka kb
.2 is one-to-one.
Claim: @ is onto.

Let Y be any elemnt of H.

Since g: G —H is hoomrphistror to H.

Therefore there exists an eleent aeGsuch that ¢ (a) =y
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- Foreverya eG,Ka e G}/

we get @ (Ka) =g (a)forallg (a) =yeH
.. @ is onto.

:% — H is anisonrphism % =~ H

State and prove Cayley’s theorem.
Stateant :

Every finite group G of order n is isonrphic to a perntation group of degree n.
Proof:
Let O(G) be finite say n and ae G. Define fa: G >G as fa(x) = ax VxeG
To prove f, is bijection
Consider fa(x) = fa(y)
= ax =ay =X =y = fais one to one
For any g €G, there exists an eleent a,x €G such that g=ax = fi3(x)
Thus for every inge in G, there is a pre-iage in G = f,is onto
Since G has n elemnts, f ,isjust the perntation of n-syhols
Define G' = {f. / aeG}
To prove G’ is a group under coposition
(i) Closure property
(fa"fp) (x) = fa[fo(x)]
= fa(bx)
= abx = f3p(x)

Since a, beG, abeG =fapeCG’
Therefore it has the closure property.
(ii) Associative property:
fa°(fo°fc) )(x) = fa [(fb °fc) (x)]

= fa [fo(fc(x))]

= fa [fb(cx)]

= fa(bcx)
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= abcx
Thus (fa°fp) °fe=fa°(fo°fc)
Therefore it has the associative property.
(iii) Identity eleant:
Consider (fa°fe) (x) = fa[fe(x)]
= fa(ex) = fa(x)
—=f. is the identity eleemt

(iv) Inverse eleant:

(fa: far1 )(X) — fa[ fa’1 (X)]
= f.(a'x)
—aa 'X=ex= f (%)

2" is the inverse of '@
Thus (G, °) is a group
Define ¢: G — G’ by ¢(a) =fafor all aeG.
(i) ¢ is one to one
Consider ¢ (a) = ¢(b)
=fa=f
= fa(x) =fb(x)
= ax = bx
=a=b
Thus ¢ is one to one
ii) ¢ is onto
For every f, €G/,
since f is onto, there exists aeG
such that p(a) =fa
Thus o is onto
(iii) @ is a honmrphism

¢(a*b) = fap =F2 °f
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(faf6) (x) = fa[fo(x)]
= fa(bx)
= abx = fap(x)
=0(a)°¢(b)
Thus ¢ is a honorphism
@ is aisonrphisthetween G and G !
= G=G"

Show that (M ,[) is an abelian group where MAA %A% A%} with Az[o M and

is the ordinary matrix multiplication. Further prove that (M ,])is isomorphic to the
abelian group (G,[) where G={1, -1, i, -i} and [ is the ordinary multiplication.
Solution:
0 1 -1 0 0 -1 1 0
R TR C b S YT B PV
L ] L ] L ] L

Forall ISm,n <4, A™ A"=A™"=A"where 1<r<4andm+n=r (mod 4).

Thus . is a closure. Thus . is a closure operation. Since matrix multiplication is associative so is

10
A ] 1|=Iis the identity.

o 1l

A =" =A
HENI

(#°) _1[0 —1]: 2

(#3155

e e

Forall ISm,n <4, A™ A"=A™"=A""=A" A" 50 ‘.’ iscommutative.

(M [) is an abelian group .
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Define f: M G suchthat  f(A) =i, f(A*) =-1=i*, f(A’)=-i=1®,f(A")=1=1"
..fis 1-1 and onto

Since i* =—i=f(A%)=f(A AY)=f (A (AY) =ii’=i®=—i

Hence f is isomorphic from M to G.

RING:

An algebraic system
) <R, +>

<R+ > s called a ring if it satisfies the following properties

is an abelian group
i) <R "> is a semi group

(i) R satisfies distributive law
Example: (Z,+, .), (R,+, .) and (C,+, .) are all rings.

Commutative ring:
A commutative ring is a ring R that satisfies ab = ba foralla,b e R (itis

commutative under multiplication). Note that rings are always commutative under

addition.
Subring:
Let (R, +, - ) bearing. A non-—empty subset S of R is called a subring of R , if (S, +, - ) is
a ring.
Example: The ring of rational numbers is a subring of the ring of real numbers.

Prove that the set R of numbers of the form a + b \/5 , Where a and b are integers, is a ring

with respect to ordinary addition and multiplication.
Proof:

1. Closure: Let X,= a,+b, /2 X, =a,+b,\/2 € Rwherea,, a,,b,,b,eZ

X, + X, :(a1+b1\/2_)+(a2+b2\/§):(a1+a2)+(bl+b2)\/§eR
where(a, +a,) &(b,+b,)e Z

. Riis closed under +.

2. Associative:  Let X,=a,+ b, V2 X,=a,+ b, V2, X;= a,+ b, J2 € R where
a,a,a,h,b,beZ

(x1+x +x—r|_(a1+b\/2—) (a2+b2\/2)}+(a3+b3\/—2)
_r(a1+a,z) (b1+b)\/21 (a3+b\/2)

F +a)+ T+fb+% +b |
ave)sa {048 0]

=[a +(a,+a)]+[b +(b,+b)]v2
=(a1+b1\/§)+[ a2+a3)+(b2+b3)\/§]
(a1+b1\/28+[(a2+b2\/2)+(a3+b3\/2)}xl+(x2+x3)
3. Identity:0+0\'5.7_e R

(a+b\/5)+(0+@/_2):(a+0)+(b+0)\/§:a+b«/§
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4.Inverse:a+bgd,—a—-b \/2eR
(a+b\£)+(—a—b \/E)z(a—a)+(b—b)\/§=0+0~/§
(-a) + (—b)\/i Is the identity inverse of a +b J2

5. Commutative law:
X, + X, =(a1+Q\/§)+(a2+bzx/§):(a1+az)+(bl+bz)x/§
=(a,+a,)+(b,+b)2
:(a2 +b2x/§)+(a1+blx/§):x2+ X,

Under Multiplication
6. Closure Axioms:

x%,=(a +bv2).(a, +b,v2) =(aa, + 2bb,) + (a,b + ab,) V2
aa+ 2bb, ab+ab eZ

1 2 1 2
. XX, €R
7 ASSOCIa'[IVE

(%% )X —r(a1+b 2@+, \/2) (a,+b, 2)
=[(a1a2+2blb2) (a2b1+a1b2)x/§]-(a3+b3x/§)

=[(aa, +2bb,)a, +2(a,b +ab, )b, |+[ (aa, + 2bb, )b, +(ah +ab, )a, |-

=% (% X)

8. Distributive szs

R ey
a, + a,+a,)+(b,+
A 7

=[a( a2+a3)+2(b2+b3 b, |+ [bl(a2+a3)+(b2+b3)a1]\/§

=(a1+b1\/§>-(a2+b2\/§)+(a1+b1\/§)-(a3+b3\/§)

= Fla2+ a,a,+ 2bb,+ 2b.b,+ ﬁa2%1+rﬁa3b1+ J2ab,++/2ab, :

=L(alaz+2blb2)+(alb2+azbl)\/2J+L(aias+2b1b3)+(e\1b3+asb1)\/~2J
X, - (X %)= X, - X, + X+ X,
(X + %) X=X, X+ X+ X,

Hence the given set is a ring.

Prove that the set Z, =[0,1,2,9 is a commutative ring with respect to the binary operation

+,and X, .

Answer:
Composition table for additive modulo 4.
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+o | [0] | [1] | [2] | [3]
[or| o 1 2 3
| 1 2 3 0
21| 2 3 0 1
[31 3 0 1 2

Composition table for multiplicative modulo 4.

xa | [0] | [1] | [2] | [3]
[or| o 0 0 0
[11 | 0 1 2 3
21 0 2 0 2
[31 0 3 2 1

From tables, eget
(i) all the entries in both tables belongs to Z,
Therefore Z, is closed under the both operations addition and multiplication.
(if) From the both tables, entries in the first, second, third and fourth rovs equal to entries in
the first, second, third and fourth columns respectively.
Hence the operations are commutative.
(iif) Modular addition and Modular multiplications are alays associative.
(iv) 0 is the additive identity and 1 is the multiplicative identity.
(v) dAditive inverse of 0, 1, 2, 3 are respectively 0, 3, 2, 1. Multiplicative inverses of the non-
zero elements 1, 2 and 3 are 1, 2 and 3 respectively.
(vi) Ifa,b, c €Z, then
ax (b+c)=(axb)+(axc)
(a+b)xc=(axc)+(bxc)
The operation multiplication is distributive over addition

Hence (Z a4 Xy ) is a commutative ring ith unity.

a 0 ]
Let AZJ{O ] a R} (@) Show that A is a ring under matrix addition and
L= a J

multiplication (b) Prove that R is isomorphic to A.

Proof: 1
0 0
a ForanyB=r Wand C:rC W,Wehave
(2a)
[0 b o cl
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AR A

BC=R E}F 0 z[bc OJEA
Alsoforany B = b , the additiveinverse — B = - 0—‘exists such that

o bl l g b

Lo L ]
B+(—B)=[g SLH) —0b|—|=[8 0leA

Lm 1L I .

Distributive ngws ( |
MO T e L Sl

L S R R R R N )
A(B+C)- BE! (+c) b0 | [( b+ac) 0

a.(b+ (ab+a.c)
J L ]

_{a.b O|ﬂ [ac Oﬂ

N

{198 8 8 e

Similarly, (B+C).A=B.A+C.A
Thus A'is aring.

(b) To prove isomorphism, consider a one-to-one and onto function f from R onto A defined as
follows

[r 0.
Forallr eR,f:R — A wheref (8 [0 Jl-e-,fOV any real number we
r

associate a 2" order scalar matrix.

° [ OL[S %t )+t

Now for any[r s e R
0 s

f(r+s) 0 ras

L i L
[rs 0] [r 01 fs 0]

f(r-s)= = : =f(r)-f(s)
o) [ L
Thus two operations +, -are preserved and f is 1 —1and onto.

.. fis an isomorphism from R to A.

Integral domain:
A commutative ring R with a unit element is called an integral domain if R has no zero divisors.

Zero Divisors
Aring (R, +, - ) is said to be ring with zero divisors, if there exists non zero elements
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a, b in R, such that ab=0.

Example:
({0.1,2,3,4,5}, +,,%, )isaringand 2 x,3 = 0. However 2 = 0 & 3 % 0.
2 and 3 are zero divisors of the ring

1. Show that a finite integral domain is a field
Proof:
Let {D, +, - } be a finite integral domain.

Then D has a finite number of distinct elements, say {ay, a;, a3,"/a, }.

Let a(= 0) be any element of D.
Then the elementsa -a;,a-a,,a-ag,' 'a-a, € D, since D is closed under multiplication.

The elements a-a;,a-a,,a-as, a-a, are distinct, because ifa

-aj=a-ajeD,then a-(ai —aj):o.

But a #0. Hence aj—a j= 0, since D is an integral domain i.e., aj=a j, which is not true
because a;, a, , a3, 'a, are distinct elements of D.

Hence the sets {a-a;,a-a,,a-az, 'a-a, } and {a;,a,,as,[a, }are the sameSince

a € D is in both sets,

leta-a,=a, forsomek —1)
Then ay is the unity of D, detailed as follows:

Let aj=a-a;a;eD )
Now a j- ax =ay - a j bycommutative property

=ay-(a-aj) , by(2)
= (ax-a)-a;
=(a -ax ) -aj , by commutative property
=a-aj, by (1)
=aj, by(2)
Since a j is an arbitrary element of D, a is the unity of D

Let it be denoted by 1.

Since 1€ D, there exits a(0) and a; € D such thata - aj=3a;-a=1
". ahasan inverse.
Hence {D, +, - } be a finite integral domain.

Field:

A commutative ring (F, +, - ) which has more than one element such that every nonzero element of F
has a multiplicative inverse in F is called a field.
Example: (Q,+, ), (R,+, .) and (C,+, .) are all fields.

Note:
But (Z,+, .) is an integral domain and not a field.

1.  Every field is an integral domain.

Proof:
Let (F, +, -) be a field .
CL Tarmnamndi/ A ANl ann AL T annidannnadan~
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= then it is a commutative ring with identity

To prove that F is an integral domain, it is enough to prove that it has no zero divisors.
Suppose a,beF with a.b=0 with a # 0

Since a is a non zero element, its multiplicative inverse a™ exists

~at-(a-b)y=at-0
:(a-‘l a)ia 0
=1=b 0

=b 0
Thusa-b=0,a#0=b=0
.. F has no zero divisors.
Hence F is an integral domain.

2. Provethat Z isafield if and only if n is a prime.
Proof:
whave Z, ={[0],[1].[2].0 [n-1]}
®\know (Z,,+isacommutativering withidentity 1] |
Let n be a prime, and suppose that 0 <a < n then gcd (a , n)=1
.". there exists integers s, tsuchthatas+th=1=sa—-1=(-t) n
sa-1 is divisible by n

= sa = 1(modn)

= [s][a]=[1]

. [s]is the multiplicativeinverse of [a].

Thus [a]isa unit of Z,, which is consequently a field
Conversely, let Z_ be a field.

So Z, is a commutative ring with identity and without zero divisions of zero.
To prove nis a prime.

if n is not a prime, then n=ny n, where 1 <ny ,nz<n. So [ny | #[0]and [n, ] =[0]

But [ny ][Nz ] = [nnz ] = [n] =[0]
. [ny ].[n2 ]Jaredivisors of zero which contradicts thefact Z, is a field.
Hence n is a prime.

Euclidean Algorithm:

The Euclidean algorithm is a way to find the greatest common divisor of two positive integers, a and
g.uppose we want to compute gcd(27,33). First, we have to divide the bigger one by the smaller one.
Divide 33 by 27, quotient is 1 and remainder is 6.

S0, 33=1x27+6

Thus gcd(33,27)=gcd(27,6). Repeating this (i.e., divide 27 by 6, quotient is 4 and remainder is 3)

S0, 27=4%6+3
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and we see gcd(27,6)=gcd(6,3). Finally divide 6 by 3, quotient is 2 and remainder is O

S0, 6=2x3+0
Since 6 is a perfect multiple of 3, gcd(6,3)=3, and thus we have found that gcd(33,27)=3.

1. Find [100]" in Zioos.

SOLUTION:
gcd(100, 1009)=1,
By Euclidean Algorithm,

R GT00) R ——— (1)
TR ENC) I T I — )
By (2)= 1=100-11(9)
= 100 — 11 [1009— 10(100)] (by (1))

100 + 110 (100) — 11(1009)
= 111(100) — 11 (1009)
= (111) (100) ( mod 1009)

- [4] = [111] [100] ( mod 1009)

= [1007% is [111] in Z1ooo.
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MOHAMED SATHAK A .J.COLLEGE OF ENGINEEING

MAB8551 Algebra and Number Theory
Unit II - Finite Fields and Polynomials

Notes

Introduction

You have studied in school polynomials with integer coefficients,

rational coefficients and real coefficients. A polynomial is an expression of the

form a0+alx+a2x2+...+a x", where N 1s a non-negative integer and

n

a,, a,, a,,; a,are integers (rational or real numbers).

We know how to add two polynomials, subtract one polynomial from
another and multiply two polynomials.

We shall now define polynomial with coefficients from a ring and this
collection of all polynomials with respect to addition and multiplication is a
ring.

Polynomials

Definition: Let ( R, +,) be a ring. An expression of the form

a0+alx+a2x2+ +ax",

n
where n is a non-negative integer and a,, a,, a,, , a, € R, is called a

polynomial over R in the indeterminate x and it is denoted by f ( x)

thus,

f(x)=a+ax+ax*+ +ax'+ +ax’,
0 1 2 r n
ais called the coefficient of xX'and a x'is a term of the polynomial f( x).
Definition: Let f( x) = a+ax+ azx2 + +ax"over aringR.

If a,# 0, where 01s the zero element of R, then a, is called the leading

coefficient of f ( x) and we say f( x) is of degree n.




We write deg f ( x) =n and a,is called the constant term of f ( x).
The set of all polynomials in X over Ris denoted by R x].

Definition: Equal polynomials

Let f(x)=a+ax+ax’+...+ax", and g(x)=b +bx+bx*+...+bx", be two
0 1 2 n 0 1 2 n
polynomials in R[x], then f(x)=g(x) if m=n, a=b Vi=01,23,,n.

Definition: Zero polynomial

A polynomial in R[x] with all coefficients zero is called the zero polynomial

and is denoted by 0.
Zero polynomial has no degree.
That is, degree is not defined for zero polynomial.

Definition: Constant polynomial

A polynomial of the form f( x)=a,, where a,is a constant is called a

constant polynomial.

Degree of non-zero constant polynomial is zero.

Definition: Monic polynomial

A polynomial in which the leading coefficient is 1 (identity of R) is called a
monic polynomial.

For example,

a+ax+a §2+ a x: Is a monic polynomial of degree 3.

Definition: Addition and Multiplication of polynomials in R [x].

Let f(x)=a+ax+ax’+... +ax’
0 1 2 n

and

g(x)=b +bx+b x*+...+bx",
0 1 2

n

Be two polynomials in R [ x].
Then f(x)+9(x)=Co+Cx+Cx, + +Cx_

S

Where C,=a,+ b, Vi.




And the product

_ 2 n 2 m
f(x)-g(x)_(aO +axX+ax +..+ax )~(bo+blx+b2x +- +bx )
=CO+C1X+CZXZ+---+CXr+...C XK

k

Where
Co = aobo
C,=a,b,+ ab,

C,=a,b,+ a,b,+ a,b,

C.,=ab +ab ,+---+ab,
Note: Though the definition of multiplication appear to be complicated, it is

the familiar process of using distributive property and collecting like terms.
For example consider f( x)=2+3x+2x+xand g(x)=1+x+2x",in Z [ X]
Then
f(x)+9(x)=(2+1)+B+1)x+(2+2)x*+(1+0) X
=3 +4X + 4% +x°
And
F(x) g(x)=(2+3x+2¢+x)(1+x+2x)

=2-1+(81+21)x+(21+2-2+3-1) ¥+ (1+2-1+3-2)xX+(1+2-2)x*+1.2X

=2 +5X + 9% + 9x® + 5x* + 2x°

Theorem: Let R be a ring, then ( R x], +,') is a ring.

Proof:
Given Ris a ring.
Letf(x)andg(x)eR[x]

Let f(x)=a+ax+ax’+...+ax",
0 1 2

n




and

g(x)=b +bx+b x*+...+bx",
0 1 2 n

Be two polynomials in R [ x].
Then f (x)+g(x)=C0+Clx+szz+ +C x

S

S

Where C,=a,+ b, Vi.

Since a,+ be R, C, e R.

f(x)+9(x)eR[x]

And

f(x)-g(x)=Co+Cx+Cx + +Cx + Cx

r k

Where
C.=ab +ab, ,+ab, ,+---+ab,eR.
f(x)-g(x)eR[x]
Since addition + and multiplication - are associative in R, addition and

multiplication of polynomials are associative in R [ x].

The zero polynomial 0in R [ x ] is the identity for +in R [ x]. Since
f(x)+0="f(x) Vf(x)eR[X]

If f(x)=a+ax+ax +..+ax"inR[x],

then f(x),g(x),h(x)eR[x] and let

f(x)=a+ax+ax’+,. . +ax
0 1 2

n

g(x)=b +bx+b x*+. . +b x"
0 1 2

h(x)=C0+Clx+sz2+m+C X

p
Then the coefficient of x'in the expansion of ( f(x) g(x))h(x) is the sum of
the products of the form ( ab;) ¢, where r, s, tare non-negative integers such

thatr+s+t=i.




Again the coefficient of x' in the expansion of f (x)( g(x) h(x)) is sum of the

products of the form a, (b,c,), where r,s,t are non-negative integers such that
r+s+t=i.
Since multiplication is associative in R.

a, (b,c.)=(ab,)c,

Coefficient of x'in ( f(x) g (x))h(x)is equal to the coefficient of x'in
FOO)(g(x)h(x))

Multiplication of polynomials is associative.
(fO)a())h(x)=F(x)(g(x)h(x))

Now f(x)[g(x)+h(x)]=f(x)g(x)+ f(x)h(x), since the coefficient of X' in

the L.H.S is a (b, +¢,) and the coefficient of x in the RH.S is

ab, +ac =a (b +c).

Hence (R [x], +:) 1s a ring under polynomial addition and multiplication.

Note:

1 This ring R[ x] is called the ring of polynomials over R or the ring of

polynomials with coefficients in R.

2 IfRis commutative, then R [ x ] is alsocommutative.
For,if f(x)=a +ax+ax’+..+ax"andg(x)=b +bx+bx +...+b x"
Then coefficient of X'in f( x) g (x) is
=a.b, +ab,,+ab, _,+ - +ab,
=b,a,+b_a+b_a, +-+ba [+ Riscommuative]
=bya, +ba ,+ba ,+---+ba,

= Coefficient of Xin g ( x) f( x)

PO g () =g(x) F(x) VI(x),9(x) eR[x]




- R[x] is commutative.

3. If Ris a ring with identity 1, then R [ x | is a ring with identity 1,
Since 1=1+0x+0x" +---+0x e R[x] and
f(x)L=(a+ax+ax+..+ax") (1+0x+0x* +.. +0x')

n

=a +aX+ax+...+ax
0 1 2

=f(x)

Thus 11is the identity in R [x].

Theorem: prove that R[ x] is an integral domain iff R is an integral

domain.

Proof:
Let R be an integral domain.
Then Ris a commutative ring with identity and without zero divisors.

Hence R [ x ] is commutative ring with identity 1, since f( x)-1=f(x).
We have to prove R [ x ] is without zero divisors.

To prove

f(x)=0,g(x)#0=>f(x)g(x)=0

Let f(x)=a +ax+ax’+...+ax",a=0then
0 1 2 n n

g(x)=b +bx+bx*+...+bx",b=0. Then
0 1 2 m m

— 2 n+m
f(x)-g(x)=c FCXFC X+ HC X *

n+m

, wherec =ab +ab +...+ab and
r 0or 1r ro

C a-b

m+n — “n m

Since R 1s without zero divisors

a,=0,b,#0=ab,#0=¢c, ,#0
~f(x)g(x)=0
Hence R [ x ] is an integral domain.

Conversely, let R [ x | be an integral domain.




We have to prove that Ris an integral domain.

We know Ris a subring of R[ x ] .

Therefore, R is an integral domain.

Corollary: If Fis a field, then F[ x] is an integral domain.

Proof: If Fis a field, then Fis an integral domain.

~.F[x] is an integral domain by above theorem.
Note that if Fis a field, the F [ x] is not afield.

Proof: We know if Fis a filed, then F[ x] is an integral domain by Corollary
1.
Let f(x)=xeF[x]. Suppose it has the multiplicative inverse

p— 2 n p—
g(x)_? +ax+ax +..+ax ,thenxg(x)=1

x(a +ax+---+ax”):1+0x+0xz+---
0 1 n

n+1

a, X +ax’ +--+a X" =1+ 0x +0x* +-- + Ox
By definition of equality of polynomials, we find 1 =0 (equating constant
terms).

Which is a contradiction

. f(x) =xhas no multiplicative inverse.

Hence, F[ x] is not a field.

Theorem: If R is an integral domain, then

deg (f(x) g(x))=degf(x)+degg(x).

Proof: Let R be an integral domain.
Then R is a commutative ring with identity and without zero divisions.

ie.,a=0,b-0=ab=0.

Let f(x)z% +ax+a2x2+...+ax“,a¢0therefore deg f( x)=n and
1 n n

g(x)=b +bx+bx*+...+bx", b0 therefore deg g ( x)=m
0 1 2

m m




Since Ris an integral domain, a,-b = 0.

Nowf(x)g(x)=%+clx+czx2+...+c X"""where ¢ =ab=#0
nm

n+m n+m

~deg (f(x)g(x))=n+m=degf(x)+degg(x)

Note:

1 IfRisaring andf( x) and g( x) are non-zero polynomials then either

f(x) g(x)=0ordegf(x)g(x)<degf(x)+degg(x).

— 2 s
In the product, f(x)g(x)_c0 +EX+C X+ 40X,

Ifc=0Vi,thenf(x)g(x)=0

Otherwise f(x)g(x)=0

If ab, =0, then deg f (x)g(x)<deg f (x)+degg(x).
If ab, #0, then deg f (x)g(x)=deg f (x)+degg(x).
sdegf(x)g(x)<degf(x)+degg(x)

2 f(x)+9g(x)=0 or deg( f(x)+g(x))<max{deg f(x),degg(x)}

Definition: Root of a polynomial

Let R be a ring with identity 1 and let

f(x)=a +ax+ax’+...+ax eR[x]

With deg f( x) > 1.

An element a e Ris called a root of f( x) if

f(a) =a +ala+a2a2+...+ana“=0

Iff(a)=0, then ais root of f ( x).

Note: If R=(Z, ++) , where Z,= {0,1,2,3,4,5} by writing [a] a s a.

A polynomial over Z,can be written differently.

f(x)=2x+5x"+3x—2over Z %s a polynomial




Since [4] =[-2], this polynomial f ( x ) can also be written as 2x*+5x*+ 3x + 4.

What is its degree?

Since [2] #[0] or 2#0(mod6), the leading coefficient of f (x) is non zero.

degf(x)=3

Example: What is the degree of the polynomial f( x) =6 x*+5x*+3x -2

over Z,?

Solution: Given f(x ) =6 x*+5x* + 3x — 2

Since the coefficients are from Z;={0,1, 2, 3,4, 5}
6=0(mod 6)is [6] =[0], [4] =[-2]

The polynomial is 0x® + 5x? + 3x + 4 = 5x2 + 3x + 4.

So, the leading coefficient is 5#01in Z;.

Hence the degf ( x) =2.

Example: Let f(x)=4x+3and g( x) =2x+5be two polynomials over

Z,. Find the degf( x)-g( x)

Solution: Given f( x) =4x*+3,g( x) =2x+5 are polynomials over Z,
ie, f(x),g(x)ez][x]

The degf( x)=2and degg(x) =1, since 4=0,2+01in Z,.

Now, f(x)-g(x)=(4x*+3)(2x+5)

= 8x3 + 20x? + 6X + 15

Normally we expect degree of the product = sum of the degrees.

Since the coefficients belong to Z,, we find 8=0 (mod 8)
i.e, [8] =[0],20=4 (mod 8) and 15 =7 (mod 8)

S f(x)g(x)=4x"+6x+7 overZ
8

~degf(x)g(x)=2<3=degf(x)+degg(x)




Example: Find the roots of the polynomial x?>-2over the real

numbers R.

Solution: Given polynomial is x* -2 over R.

To find the roots of X’— 2, we solve

¥ —2=0= X =2= x=+/2.

The roots are +/2, -/2 inR.

If we consider the polynomial x*-2 over Q, then the roots J2, —# do not
belong to Q.

So, the polynomial X'~ 2 € Q[ x] had no roots in Q.

Example: Find all the roots of f (x) =x"+4xin Z sz]'

Solution: Given f (x)=x*+4x in Z and Z ={01,234567891011}

We verify and find the roots.
Now f(0)=0+0=0

. 0is aroot of f(x)

f(1)=1+4=5=0

. 11s not a root
f(2)=2+4-2=4+8=12=0(mod12)

- 2isaroot of f(x)

f(3) =3%+4-3=9+12=21=9 (mod12 ) =0
. 3is not a root of f( x)
f(4)=4+4-4=16+16=32=8 (mod12 ) =0
- 4is not a root of f( x)
f(5)=5+4-5=25+20=45=9 (mod12 ) =0

. 5is notarootoff(x)

10




f(6) =6°+4-6=36+24=60=0(modl12)

. 6is a root of f( x)
f(7)=72+4-7=49+28=7755(m0d12);tO

.. 7Tis not a root of f( x)

f(8) =8+4-8=64+32=96=0(modl12)

- 8isaroot of f(x)
f(9)=9°+4-9=81+36=117=9 (mod12) =0

. 9is not a root of f( x)

f(10) = 10°+ 4 -10 = 100 + 40 = 140 = 8 (mod12 ) # 0
. 101is not a root of f ( x)

f(ll) =112+4-11=121+44=16559(mod12)¢0
. 11is not a root of f ( x)

- x=0,2,6,8are the roots of f ( x ) over Z,,.

Note: In your earlier classes you have seen that a polynomial of degree 2 had

at most two roots, which is not true here for a polynomial over a ring.

Example: Determine all the roots of f ( x) =x’+5x*+2x+6 over Z [7x].

Solution: Given f ( x) =x*+5x'+ 2 x+ 6 over Z and Z = {0.1,2,3,4,5,6}.

We verify and find the roots.

Now

f(0)=6=-1(mod7) =0

- 0is not a root of f( x)
f(1)=1+5+2+6=14=0(mod7)
. lis aroot of f( x)

f(2)=23+5-22+2-2+6=8+20+4+6=3853(m0d7)7&0

11




- 2is not a root of f( x)
f(3)=3+5-3+2-3+6=27+45+6+6=84=0(mod7)

- 3isaroot of f(x)
f(4)=43+5-42+2-4+6=64+80+8+6=12852(m0d7)¢0
- 41is not a root of f( x)
f(5)=5+5-5+2-5+6=125+125+10+6=266=0(mod 7))
. 5is a root of f( x)
f(6)=6+5-6°+2-6+6=216+180+12+6=434=0(mod 7)
. 61is a root of f( x)

Therefore the roots of f( x) are 1,3,5,61in Z,.

10

Example: Determine all the roots of f ( x) =x"+3x+2 e ZG[ x].

Solution: Given f( x)=x*+3x+2eZ[ x] and Z={0,1, 2, 3, 4, 5}.
6 6

We verify and find the roots.
Now

f(0)=2%0

- 0is not a root of f( x)
f(1)=1°+31+2=1+3+2=6=0(mod 6 )

. lis a root of f( x)
f(2)=224+3.2+42=4+6+2=12=0(mod 6 )

- 2isaroot of f(x)
f(3)=3+3-3+2=9+9+2=20=2(mod6) %0
- 3is not a root of f( x)
f(4)=4+3.4+2=16+12+2=30=0(mod 6 )

- 4is aroot of f( x)

12




f(5)=5+3-5+2=25+15+2=42=0(mod 6 )
- 5is a root of f ( x)

Therefore the roots of f( x) are 1,2, 4,51in Z;.

11

Example: Determine all the polynomials of degree 2 in Z,[ x].

Solution: We have to find all the polynomials of degree 2 over Z ,= {0,1}

Let the general polynomial of degree 2 is f ( x) :a0+a>l<+a>§2, az0
The possible coefficients are from Z,, where a,# 0, so a,=1
_ 2
f(x)_%+alx+x
Ifa=0,a=1thenf(x)=x?
0 1
Ifa=0,a=1thenf(x)=x+x?
0 1
Ifa=1,a=0thenf(x)=1+x’
0 1
Ifa=1,a=1thenf(x)=1+x+x’
0 1

Therefore, there are four possible polynomials of degree 2,

2%, x+x,1+X 1 +x+x e Z [x].

Definition: Divisor of a polynomial

Let F be a field and f ( x ) # 0 and g ( x ) be polynomials in F [ x ]. f( x) is
called a factor or a divisor of g ( x) if there exists h ( x) € F[ x] such that
g(x)="Ff(x)h(x)

We also say that f (x) divides g(x) or g(x) is a multiple of f (x).

We have division algorithm for an integer a and positive integer n,
a=nq+r,0<r<n

We are familiar with division of polynomials with real coefficients.
For example, divide g ( x) =x’-3x*+4x+5by f(x)=x-2

The division is shown here

13




XP—X+2

X—2)X-3x°+4x+5

X—2x?

—x° +4x
—x°+2x
2X+5
2x—4
9

Here quotient q ( x) =X~ x+2 and the remainder r (x) =9
" x3—3x2+4x+5:(x—2)(x2—x+2)+9

=g(x)=q(x)f(x)+r(x).

This division can be extended to polynomials over finite fields.

12

Theorem: Division algorithm

Let f(x)=0andg(x)be polynomialsinF[ x]. Then there exists
unique polynomials q(x) and r(x) belonging to F[x] such that
g(x)=a(x)f(x)+r(x)

where

r(x)=0ordegr(x)<degf(x).

Proof: Given f(x)=0andg(x) eF[x]

Consider the set S = {g (%) —t(x) f(x)[t(x) eF[x]}

If 0 € S, then for some t( x) e F[ x ] we have

9(x)-t(x)f(x)=0

g(x)=t(x)f(x)

Thenq(x)=t(x)andr(x)=0 wehaveg(x)=q(x)f(x)+r(x)

14




If 0 ¢ S, then non-zero elements exists in S and among these elements in S,
we can find an element r ( x ) in S with least degree [by well ordering
principle].

Since r ( x ) #0, the result follows if

degr(x) <degf(x)

If not, let degr ( x) >degf( x)

Letr(x)=a +ax+ax’+...+ax",a=0and
0 1 2 n n

f(x)=b+bx+bx*+...+b x", b #0
0 1 2 m m
n>m
Define
h(x)=r(x)—ab x""f(x . 1 exist i
(x)=r(x)-ab (x) - b #0,b " exist in F]
=a +ax+a xz+...+ax“—ab'1x“'m(b +bXx+bx*+.. +b xm)
0 1 2 n nm 0 1 2 m
=a +ax+axX +-—-+ax" —ab'bx""—abhx""T—abhx""?*~.. —ab'h x"
0 1 2 n nm 0 nm 1 nm 2 nmm

- degh(x)<n=degr(x)
Since r(x) €S, r(x)=g(x)-a(x)r(x)
h(x)=9(x)-aq(x)f(x)-ab™x "f(x)
= g(x)-[a()-ab™x"] 1 (x)
=g(x)-p(x)f(x)
Where p(x)=q(x)-ab*x' "cF[x]
“h(x)eSanddegh(x)<degr(x)
Which is contradiction to the fact that degr ( x ) is minimum.
- degr(x)<degf(x)=n

Where r(x)=0ordegr(x)<degf(x)

15




We now prove the uniqueness

Suppose we also have g (x) =q,( x) f(x) +r(x)

Where r,( x) =0 or degr,( x) <deg f( x)

Then q (x) f(x)+1(x)=a,(x)F(x)+r(x)

[a ()= ()] F () =r(x)-r(x)

If q(x)-q(x)=0, then deg[ q(x)—q,(x)] f (x)=deg f (x)
= deg[ r,(x)—r(x)]=>deg f (x), which is a contradiction
29(x)=a(x)=0=a(x) =a,(x)

Then 3) r(x)-r(x)=0=r(x)=r(x)

Hence in the equation (1) g ( x ) and r ( x ) are unique.

Note: The polynomials q(x) and r(x) in the division algorithm are called the

quotient and remainder in the division of g ( x) by f(x).

When we consider polynomials over a filed F, we can find q( x) and r ( x) by

usual long division method, which you are used to do in school.

13

Example: Consider f(x)=3'+xX+2x+land g(x)=xX+4x+2inZ[ xl.

Find q(x) and r( x) when f( x) is divided by g (x).

Solution: Given f( x) =3x*+x*+2x*+1land g ( x)=x*+4x+2
Since Zis a field, to find f( x ) and r ( x ) when f( x) is divided by g ( x) , we
perform long division, keeping in mind the addition and multiplication are

performed modulo 5.

Z,={01,2, 3,4} is a field.

16




The division is shown here

3x* +4x [12 2(mod5)w
x2+4x+2)3x:+x3:2x:+0x+1 ' 6=1(mod5) ‘
X" +2 X+ X -1= 4(mod5)

AX+ X +0x+1 ~16 1(mod 5)‘

4%° +x°+3x \ 8= 3(mod5)‘

2x+1 L—3=2 modS)J

Therefore, the quotient q ( x ) =3x*+4 x and the remainder r(x)=2x+1

A X+ 22X +1= (x2+4x+2)(3x2 +4x)+(2x+1)

Example: If f ( x) =2x*+5x+ 2,9 ( x) =6 x°+4, then determine q( x) and

r(x)inz,[ x], when f( x)is divided by g ( x).

Solution: Given f( x) =2x"+5x+2, and g ( x) =6x°+4,
Since Z ,={0,1, 2,3, 4,5, 6} is a field, to find f ( x) and r ( x ) when f( x) is
divided by g ( x) , we use long division method keeping in mind addition and

multiplication are done under modulo 7.

The division is shown here

5x°+1 [3052(wmd7)1
6X° +0x+4)2x* +0x° +5x° +0x+2 |20=6(mod7)
2x'+0x°+6X° ~—156(m0d7)'
X T 0 Xt 2 L—255(m0d7)J
6X°+0X+4
5

Therefore the quotient g ( x) =5x“+ 1 and the remainder r ( x) =5

17




so2xX 4B+ 2= (5x2 +1)(6x2 +4)+5

15

Example: If f (x ) =3 +4x+2and g ( x) =6 x"+4x +5x* + 3x + 1, are
polynomials in Z, [x], then find q(x) and r(x) in when g(x) is divided

by f( x).

Solution: Given f( x) =3x*+4x+2 and g ( x) =6x"+4x*+5x"+3x +1,
Since Z ,={0,1, 2,3,4,5, 6} is a field, to find f ( x ) and r ( x) when f ( x) is
divided by g ( x) , we use long division method keeping in mind addition and

multiplication are done under modulo 7.

The division is shown here

2x° +X+6 [ 851(mod7)w
3X* +4x+2)6X" +4x° +5x* +3x +1 ~3=4(mod7) |
6x‘+ x*+3x° 1854(mod7)

3 + x7+3x 24 =3(mod 7)

3+ 4 x2+2x 12=5(mod7)

4X°+4x+1 | -2=5(mod7) |

4x° + 4x+1 —4=3(mod7)

5x+3

Therefore, the quotient q ( x) =2 X+ x+ 6 and the remainder r ( X ) =5x+3

o BX +4X° +5x% +3x+1= (2% + X+ 6)(3X* + 4x+ 2) + (5% + 3)

16

Example: If f (x)=x"+3x"+ X+ X" +2x+2eZ Lx] is divided by (x-1), find

the quotient and remainder.

Solution: Given f ( x ) =X+ 3x*+x*+x*+2x+2and g(x)=x-1

18




Since Z ,={0,1, 2,3, 4,5, 6} is a field, to find f ( x ) and r ( x) when f ( x) is
divided by g ( x) , we use long division method keeping in mind addition and

multiplication are done under modulo 7.

The division is shown here

X'+ 4x+x+3

X—1) X" +3x" + X7+ x* +2X +2 [SEO(modS)]

Therefore, the quotient q ( x ) =x*+4 x’+x+ 3 and the remainder r (x) =0

(x-1) is a factor of f(x)

f(x)=(x"+4+x+3)(x-1)

17

Example: f(x ) =x+5X+2x+6 e Z L x], then write f ( x ) as a product of

first degree polynomials.

Solution:

We know that Z,={0,1,2,3,4,5,6}

Given f( x) =X+5X+2x+6

19




Now f(0)=6=-1(mod 7 ) =0
f(1)=1+45+2+6=14=0(mod7)
- lisaroot of f( x) and so, ( x-1) is a factor of f( x)
f(2)=2°+5x2°+2x2+6=8+20+4+6=38=3(mod7 ) =0
- 2is not a root of f( x) and so, ( x—1) is a factor of f( x)
f(8)=3+5x3"+2x3+6=27+45+6+6=84=0(mod7)
~.3isaroot of f( x) and so, (x-1)is a factor of f( x)
f(4)=4+5x4+2x4+6=64+80+8+6=128=2(mod7 ) =0
- 41is not a root of f( x) and so, ( x—1) is a factor of f( x)
f(5)=5"+5x5"+2x5+6=125+125+10+6=266=0(mod 7)
. 5is a root of f( x) and so, ( x—1) is a factor of f ( x)
f(6)=6+5x6"+2x6+6=216+90+12+6=414=1(mod 7 ) =0

- 61s not a root of f( x ) and so, ( x—1) is a factor of f ( x)

f(x)=(x-1)(x-3)(x-5) in Z,[x].

18

Example: If f(x)=(2x"+1)(5x’ +5x+3)(4x-3)eZ [x], then write f(x) as

a product of a unit and three monic polynomials.

20




Solution:
Given f(x)=(2x"+1)(5x"+5x+3)(4x-3) e Z [x],
We have Z,={0,1,2,3,4,5,6}

To write f( x) as product of three monic polynomials, we have to take out 2

from first factor, 5 from second factor and 4 from third factor.
2 from 2x* + 1

5 from 5x3 + 5x + 2

4 from 4x -3

Now

1=8(mod 7)

3=10(mod7)

~3=4(mod7)

()= (26°+8) (56" +5x-+10) (4 +4)

“2 ()5 (Fexs2)4(xe )

=00 (s 4) (3 x2) (1)

s(e e (K exe2)(xe) [ 20=5(mod7)]

Note: Instead of -3=4 (mod 7 ) in the 34 factor.

21




We may write 3=24 (mod 7))
Then we get f (x) =2 (x*+4)5 (X +x+2)4( x-6)
=40(x" +4)(x*+x+2)(x-6)

=5(x +4) (X’ +x+2)(x-6)

As corollaries of the division algorithm, we get the remainder

theorem and factor theorem.

19

Corollary: The remainder theorem

Let Fbe a field,ac Fand f( x) € F[ x]. Then f( a) is the remainder

when f( x) is divided by ( x-a).

Proof: Givenf(x) eF[x] andaeFandso, (x-a)eF][x]
By division algorithm,

f(x)=q(x)(x-a)+r(x)
Wherer(x)=0ordegr(x)<deg(x-a)=1

~.degr(x)=0

=r( x) =r(a constant), an element is F.
f(x)=a(x)(x—a)+r

Putx=a

22




f(a)=q(a)-0+r=r=r=f(a)

f(x)=q(x)(x-a)+f(a)

So, the remainderis f( a).

20

Corollary: Factor theorem

Let Fbe a field,ac Fand f( x) € F[ x]. Then ais a root of f( x) if and

only if (x—a) is a factor of f ( x).

Proof: Givenf(x) eF[x] andaeF

(x-a)eF[x]

if (x—a)isafactorof f(x),thenf(x)=(x-a)q(x)forsomeq(x)eF[x]
f(a)=(a-a)q(a)=0-q(a)=0

Hence, ais a root of f (x) .

Conversely, let a € F be a root of f( x).

f(a)=0

By remainder theorem, above corollary there exists q ( x ) € F[ x] such that
f(x)=(x-a)q(x)+f(a)

() =(x-2)a(x)

23




(x—a)is a factor of f ( x).

21

Example: What is the remainder when f( x) =X+ 2x+x+2x+3 € Z[ x]
5

is divided by (x-1)?

Solution: Given f( x) =x"+2x+ X+ 2x+3.
When f( x) is divided by ( x-1), the remainder is f (1).

f(1)=1+2+1+2+3=9=4(mod5) the remainder is 4 in Z,.

22

Example: What is the remainder when f(x)=2x+x"+2x+3 e Z[ x] is
5

divided by (x-2)?

Solution: Given f(x) =2x+x+2x+3and Z= {01, 2 3,4}.

When f( x) is divided by ( x-2), the remainder is f(2).

f(2)=2-2°+2°+2-2+3=27=2(mod5) the remainder is 2 in Z .

23

Example: What is the remainder when f(x)=x"+x"+x"+x"+1 is

divided by g ( x) =x-1is Z,[x].

Solution: Given f( x) =x*+x"+x*+x*+1land g(x)=x-1
The remainder when f( x) is divided by g ( x) is f (1).
f(1)=1+1+1+1+1+1=6=0(mod2)

Since the remainder is 0,

24




(x-1) is a factor of f ( x).

24

Theorem: If f (x)e F[x] isofdegree n>1 then f (x) hasatmost n roots

if F.

Proof: Given f( x) e F[ x ] is of degree n where n> 1. We prove the theorem

by induction on n. If n=1, thenf(x):ax+b,a,beF,a¢0.

Clearly b or —a'beF and f (—a‘lb) = a(—a‘lb)+ b=-b+b=0.
a

- f(x) has (at least) one root in F.

If c,, c,in F are two roots of f ( x ) , then

f(c,)=0=ac,+b=0
And

f(c,)=0=ac,+b=0

ac,+b=ac,+ b= ac,=ac,

Since F is a field, it is an integral domain and so cancellation laws hold.
ac,=ac,= C,=C,

Therefore there is exactly one root of F for

f(x)=ax+ba=0

25




Now assume that the theorem is true for all polynomials of degree k(> 1) in
F[x]
1.e., any polynomial of degree k >1 has at most k roots in F.

consider a polynomial f ( x) of degree k+1.
if f( x) has no roots in F, then the theorem is true.
Otherwise, let r € F be a root of f( x).
f(r)=0
Therefore by factor theorem f( x)=(x-r)g(x),where g( x) is of degree k.

Hence by induction hypothesis, g ( x) has at the most kroots in F.and r e F

is a root of f ( x).
Hence f( x) has at most k + 1 roots.

Hence by first principle of induction, the theorem is true for all n> 1.

Irreducible Polynomials

Let F be a field and f(x) € F[x] is of degree > 2. We call f(x) is reducible over F
if there exist g(x), h(x) € F[x] such that f(x) = g(x) h(x), where deg g(x) > 1 and
deg h(x) > 1. If f(x) is not reducible, then we call it irreducible (or prime) over

F.

In other words, f(x) is irreducible over F'if one of g(x) or h(x) is of degree 0 (or

a non-zero constant).

26
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Test whether the polynomial f(x) = 2x2+ 4 is irreducible over Z, @, R
and C.

Solution:

Given f(x) = 2x2+ 4 = 2(x2+ 2)

Since 2 is constant polynomial in Z[x] whose degree 1s 0 and x2+ 2 € Z[x].
Now 2x2+4=0=x2+2=0= 2= -2 = x =+ i\2

The roots do not belong to Z, Q and R. But iV2 and — iV2 belong to C.

Hence f(x) = 2x2+ 4 is reducible over C.

26 Is f(x) = x2+ 1 in Z|[x] irreducible over Z?

Solution:

Given f(x) = x2+ 1 in Z[x].

Now x2+1=0=x2=-1=>x=%1

.. the roots i, — i do not belong to Z. Hence f(x) = x2+ 1 is irreducible over Z.
27

Let f(x) = x3+ x2+ x + 1 € Z2[x]. Is it reducible or irreducible? If

reducible find the other factor.

Solution:

Given flx) = x3+ x2+ x + 1 € Zo[x] and Z2= {0, 1}

f0)=0+0+0+1=1=0 ..01isnota rootin Zs.

fA)=1+1+1+1=4=0(mod 2) .. 11s aroot in Zo.
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Hence (x — 1) is a factor of f(x) in Zsz[x]. .. f(x) is reducible.

x?+1
X—1)X+x +x+1
xX=x?
Xx+1
x—1

0

S fl) =2+ 1) (k- 1)

Test the polynomial x2+ x + 4 € Zi1[x] is irreducible over Zi1.

Solution:

Let f(x) =x2+x +4 € Zu[x] and Z11={0, 1, 2, 3, 4, 5,6, 7, 8, 9, 10} is a field,

since 11 is a prime. f(x) = x2+ x + 4 1s a polynomial of degree 2 in Z11[x].
We search for an element a € Zi1 such that f(a) = 0. We have
f0O)=0+0+4=4%0(mod 11)

fA)=1+1+4=6=—5(mod 11) #0

f2)=22+2+4=10=-1 (mod 11) =0

f3)=32+3+4=16=5 (mod 11) #0

f(4)=42+4+4=24=2(mod 11) #0

f(6)=52+5+4=34=1(mod 11) #0

f(6)=62+6+4=46=2 (mod 11) #0

f(H=72+T7+4=60=5 (mod 11) #0
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f(8) =82+ 8 +4="76=10 (mod 11) %0
f(9) =92+ 9 +4=94=6 (mod 11) 0
£(10) =102+ 10 +4 =114 =4 (mod 11) 20

.. there is no root in Z11. Hence f(x) is irreducible over Zi;.

29

Find two non-zero polynomials f(x) and g(x) in Z12[x] such that f(x)g(x)
=0.

Solution:

We know Z12=10, 1, 2, 3,4, 5,6, 7, 8,9, 10, 11}
Consider f(x) = 3x% € Zi2[x] and g(x) = 4x + 8 € Z12[x].
We know f(x) and g(x) are non-zero polynomials. But
f(x) g(x) =3x2(4x + 8) =12 x3+ 24x2=0+0=0

f(x) g(x) 1s a zero polynomial in Zi2[x].

30

Find two non-zero polynomials f(x), g(x) in Z7[x] such that f(x)g(x) # 0.

Solution:

We know Z7={0, 1, 2, 3, 4, 5, 6}. Let f(x) = 2x2+ 4x + 1 and g(x) = 6x3be two

non-zero polynomials in Z7[x].
f(x)g(x) = 2x2+ 4x + 1) 6x3
= 12x5+ 24x* + 6x° Since 12 =5 (mod 7) and 24 = 3 (mod 7)

= 5x5+ 3xt+ 6x3% 0.

29
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Reducibility Test

Let F be a field and f(x) € F(x). Then

(i) If f(x) is of degree 1, then f(x) is irreducible.

(ii) If f(x) is of degree 2 or 3, then f(x) is reducible iff f(x) has a root in

F.

Proof:

@)

(i)

Let f(x) =ax + b, a # 0 in Flx].
Suppose f(x) is reducible, then there exist g(x), h(x) € F[x] such that
f(x) = g(x)h(x), where 1 < deg g(x) < deg f(x) and 1 < deg h(x) < deg
f(x)
soax+ b =gx) hix)
.. deg (ax + b) = deg g(x) + deg h(x)
= 1 =deg g(x) + deg h(x)
This 1s impossible, since deg g(x) + deg A(x) > 2
.. f(x) 1s irreducible over F.
Let f(x) € F[x] be of degree 2 or 3.
Suppose f(x) 1s reducible over F, then f(x) = g(x) h(x) for some g(x),
h(x) € Flx], where 1 < deg g(x) < deg f(x) and 1 < deg h(x) < deg f(x).
Since deg f(x) = deg g(x) + deg A(x) and deg f(x) = 2 or 3, we have deg
g(x) + deg h(x) = 2 or 3.
.. at least one of g(x) and A(x) has degree 1.
Letdegg(x)=1=g(x) =ax+b,a=0.
Now —a1b € F and g(—a1b) = a(—a1b) + b
=—(a.a))b+bd
=—b+b=0
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.. —a1b 1s a root of g(x). Hence —a1b is a root of f(x) in F. So f(x) has
a root in F.

Conversely, let f(x) have a root a € F.

Then (x — a) is a factorof f(x). [By factor theorem]
f(x) = (x — a) ).

Hence f(x) is reducible over F.

Greatest common divisor (g. c. d)

Let F be a field and f(x), g(x) € F[x]. A greatest common divisor (g. c. d) of f(x)

and g(x) 1s a non-zero polynomial d(x) such that

(1) d(x) divides f(x) and g(x)
(1)  if e(x) 1s a divisor of f(x) and g(x), then c(x) divides d(x).
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Find the g. c. d of x*+x*+2x*+x+ 1 and x*- 1 over Q.

Solution:

Letf(x)=x*+x*+2x2+x+landg(x)=x>-1

and deg g (x) < deg f (x)

Divide f ( x) by g ( x) by division algotithm successively.
x+1

x3—1) X +x3+2x%+x+1

x* =X

XC+2x2+2x+1

-1

2X2+2x+2

S =(x+D(XP-1)+(2x2+2x+2),deg(2 x2+2x+2) <deg(x*—1)
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1 1
Z x-=
2 2
2x2+2x+2) % -1
X+ X2+ X
-x2-x-1
-x2-x-1

0
x3—1:(i—1_\(2x2+2x+2) +0
L2 2
:(x—l)(x2+x+1)

. The last non-zero remainder is x 2+ x + 1, which is the g.c.d

Characteristic of a Ring

Characteristic of a ring R 1s the least positive integer n such thatna=0 Vv a
€ R and we write char(R) = n. If no such positive integer exists, then R is said

to have characteristic 0.
For example,

1. The ring (Z3, +, ¢) has characteristic 3.
InZ3 =10, 1, 2}, 1+1+1=23(1)=0 (mod 3)
2+2+2=3(2)=0 (mod 3)
3(a)=0Va e Zs.
.. Characteristic is 3. That is Char(Zs) = 3.
More generally, characteristic of the ring (Zy, +, ®) is n.
2. (Z, +, ¢) and (Q, +, ®) are rings.
For any a € Z (or Q), there is no positive integer n such that na = 0.

.. chat(Z) = 0 and char(Q) =0
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Theorem: The characteristic of a field (F, +, o) is either 0 or a prime

number.

Proof:

Let (F, +, o) be a field.

If char(F) = 0, then there is nothing to prove.

If char(F) # 0, then let char(F) = n.

To prove n is a prime.

Suppose n is not prime, then n = pg, where 1 <p<n,1<qg<n.
1.e., p and q are proper factors of n.

Since char(F) = n, we have na =0V a € F.

Take a =1, thenn ¢1 =0 (1 is identity of F)
=(pg)i=0=(p2)(qk) =0

]
l{ (PA)el=1+1+1+. +1=(1+1+1+..+1)(1+1+1+..+1) ||

L pg terms

p terms q terms J
Since F'is a filed, F'is an integral domain and so, it has no divisor of zero.
ceitherp-1=0o0rq-1=0

Since p and q are less than n, it contradicts the definition of characteristic of

F.

. n1s a prime number.
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Theorem: The number of elements of a finite field is P», wher Pis a

prime number and n is a positive integer.

Proof:
We know for a prime p, Zp is a field having p elements and char(Zp) = p, since
pa=0VaeZp.

Consider the polynomial f (x) =xP = xin Z [X]

Now f'(x) = p”xpn‘l—l

Since char(Z ;) =p, char(Z ,[x]) =pandpg(x) =0V g(x) € Z,[x].

Hence px"n‘1:0:>p”xz"1=0
f'( x) = -1, a constant polynomial.

Hence f ( x) and f '( x) have no common root.

Hence f ( x) has no multiple roots. ..the roots of f ( x) are all distinct.

If K is the smallest extendsion field containing all the roots of f ( x).

i.e., K is the splitting field of f (x). Then f (x) has p" distinct roots in K.

In K, let F be the set of all elements satisfying f ( x).
ie. Fz{ae K:aP =a}

Hence F has only p" elements.

We now prove F is a field.

Leta, b e F.Thenapn:aandbp:bn.

(ab)pn _aP b —abeF

(a+b)pn —af + p”Clapn 4 p"C aP 2%+ ..+ hP
Since char(K ) =p,p"Ca® "b"'=0,r=1,2,3..

.'.(a+b)p :apn +bpn —a+beF

Similarly, (a - b)pn —a-beF
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.. Fis asubfield of K. Hence F is a field having p" elements.

Congruence Relation in F[x]

Definition: Let s(x) € F[x] and s(x) # 0 and f(x), g(x) € F[x]. We say that f(x)
1s congruent to g(x) modulo s(x) and write f(x) = g(x) (mod s(x)) if s(x) divides

f(x) — g(x).

Le., f(x) — g(x) = q(x) s(x) for some q(x) € F[x].

Definition: Ideal of a ring
Let (R, +, ¢) be a ring. A non-empty subset I of a ring is called an ideal of R, if

(1) foralla,b el, wehavea—-b el

(1) forallr € Rand a € I, we have ar, ra € 1.

Example: For any positive integer n, the subset nZ = {0, £n, +2n, ... } is the

ring (Z, +, ¢) is an ideal of Z.

Note: An ideal is always a subring, but a subring is not an ideal. Ideal is

something more than a subring.

For example, (Z, +, o) is a subring of (Q, +, ®), but is not an ideal, because

if we take 2 € Z and 2 € Q, then L. 2 =259_: A

Definition: Factor ring

Let I be an ideal of the ring R. Then the set {r + I : r € R} is a ring under

addition and multiplication defined as
(a+Dh+b+Dh=a+b+1 and (a+D)-b+D=ab+1 Va,beR.

This ring is called factor ring or quotient ring and is denoted by R/I.
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Definition: Principal ideal

An ideal generated by single element a is called a principal ideal and is

denoted by <a>. Thus <a>={ra : r € R}.

Then quotient ring is R/<a>

Let F=Z ,, p is a prime and f(x) be an irreducible polynomial of degree n over
z  the "M
© ({TW)

f(x).

is a field having p" element, < f (X)> is the ideal generated by

35

Construct a field consisting of four elements.

Hint: Using the irreducible binary polynomial x* + x + 1]
[ g y poly

Solution:

Consider zZ,={0,1}
f(X)=x*+x+1e Z[x]
f0O)=0+0+1=1+0
f()=1+1+1=3=1(mod2)=0
. f(x) is irreducible over Z,.

401 _ Z[X]
(f(x) <x2+x+1>

is a field having 22 = 4 elements.

To find the four elements

Consider g (x) € Z,[ x]Jand x,+ x+1 € Z [ X].
2
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By division algorithm,

g(x) = q() (¢ +x +1) + r(x)
whereeither r(x) = 0 or deg r(x) < deg(x* + x +1) = 2
degr(x)=0orl.
Hence r(x) = ax + b, where a, b € Z,
Since g(x) = q(x)(x® + x+1) +r(x)
g(x) —r(x) = q(x)(x* +x+1)
g(x) = r(x) mod(x? + x +1)

[9(0] =[r (%]
So, to find the equivalence classes mod(x? + x +1),
it is enough to find the possible values of r(x)=ax+b
Ifa=0,b=0=r(x)=0
Ifa=0,b=1=r(x)=1
Ifa=1,b=0=r(x)=x
Ifa=1,b=1=r(x)=x+1
.. the equivalence classes are [0],[1],[ X].[ x + 1]

.. the 4 elements of the field 2, [x] are[0],[1],[x],[x +1].

<x2+x+1>
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In the above example, find [x]_l

Solution:

Z,[x]

1s a field having the four
<x2 + X+ 1>

In the above example, we have proved
elements[0], [1], [x], [x+1] . The non-zero elements [1],[x], [x+1] form a group
Z,[x]

because __"2"-  is a
<x2 + X+ 1>

under multiplication, field. We write

[1]1=1,[X]=x[x+1]=x+1.

o 1 X x+1
1 1 X x+1
X X x+1 1
x+1 x+1 1 x

Xex=x2% = XX+ D=x2+x= (X +1)e(x+1) = x2 +2x+1
1 1 =x2+0x+1 [since 2=0(mod?2)]
X*) X*+x+1 X2+% ) x2+x+1 i1
NG X 2+ X =
X+1 1 1

x2+1) X2 +x+1

x2+1

X

Since 1 is the identity element, we see that x ¢ (x + 1) = 1.

. inverse of xis x + 1. Hence [x]™* =[x +1] .
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Inz [Sx ] ,s(x)=x*+x+2.Show that s(x) is irreducible over zZ and

construct that the field Z;1X]
(s(x))

What is the order of this field?

Solution:

Consider Z,={0,1, 2}
s(X)=x2+x+2¢€ Z[x]
s(0)=0+0+2=2=%=0
s(1)=1+1+2=4=1(mod 3) # 0
S(2)=4+2+2=8=2(mod 3) =0
.. S(x) is irreducible over Z,.

zZIx _ Zd

< > < > is a field having 32 = 9 elements.
s(x) X2+ X+2

To find the nine elements

Consider g (X) € Zs[ xJand x,+x+2 € Z[X].

3

By division algorithm,
g(x) = q(x)(E + X +2) + r(x)
whereeither r(x) = 0 or deg r(x) < deg(x* + x +1) = 2
degr(x)=0orl.
Hence r(x) = ax + b, where a, b € Z,
Since g(x) =q(X)(x* +x+2)+r(X)

g(x) —r(x) =g (x)(x* + x+2)
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g(x) = r(x) mod(x* + x +2)
[ 9(x] =[r (0]

So, to find the equivalence classes mod(x? + x + 2),
it is enough to find the possible values of r(x)=ax+ Db
Ifa=0,b=0=r(x)=0
Ifa=0,b=1=r(x)=1
Ifa=0b=2=r(x)=2
Ifa=1b=0=r(x)=x
Ifa=1b=1=r(x)=x+1
Ifa=1,b=2=r(xX)=x+2
Ifa=2,b=0=r(x)=2x
fa=2,b=1=r(x)=2x+1
Ifa=2,b=2=r(x)=2x+2
.. the equivalence classes are [0],[1],[2],[ X].[ x + 11.[ x + 2],[2 X],[2 x +1],]2 X + 2]

.. the 9 elements of the fieldﬁ are[O],[1L[2].[ X].[ x + 1],[ x + 2],[2 x],[2 x + 1],[2 x + 2].

(s(0)

Hence the number of elements = 9.
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MOHAMED SATHAK A.J.COLLEGE OF ENGINEERING
MAB8551- Algebraand Number Theory
NOTES
UNIT-111 DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS

Division algorithm — Base — b representations — Number patterns — Prime and composite
numbers — GCD — Euclidean algorithm — Fundamental theorem of arithmetic — LCM.

DIVISIBILITY:

An integer b is divisible by an integer ‘a’ (a # 0) if there is an integer x such that b=ax and we write it as
alb.If b is not divisible by a, then we write it as a{b.

Theorem:

1. Prove the following:

(1).alb implies a|bc for any integer

Proof:

Given a|b by definition b=ax ..... (1) for some integer x
Multiply (1) by c

= bc =acx
= bc =a(cx), wherez=cx an integer
bc=az = a|bc

(2).alb and b|c = a|c for any integer
Proof:
Assume that a/b and b/c

alb = b=ax [I{1)for some integer x
blc= ¢ = by [I{2)for someinteger y
Substitute (1) in (2),

c=(ax)y =a(xy) =az, where z = xy is an integer

=alc
(3).ab and a|c = 4 (bx+cy) for any integerx & y

Proof:




By definition, b=axi, where xi is an integer.
Multiply both side by x, bx=a x x1....(1)

Assume that a|c then ¢ = ay,, for someinteger y,
cy = ayy, [I(2)

Adding (1) and (2)

bx+cy =axx, +ayy, =a(xx, +yy,) =az, where z = xx, +yy, i1s an integer
= a|(bx+cy)

(4).alb and b|a = a=1%b

Proof:

Given a|b by definition b=ax .....(1) for some integer x

bla = a=by [I{2) for some integer y

Multiply (1) and (2),

ab=(ax)(by)

=1=xy

= x=1 & y=1or x=-1 y=-1
=a=*b

(5).If m#0, a]bp = ma|mb

Proof:

Given alb by definition b=ax .....(1) for some integer x.
Multiply (1) both sidesbym, m#0

mb=max = ma|mb

Assume that ma|mb

by definition, mb=max for some integer x

b=ax

=alb




THE DIVISION ALGORITHM:

Let a be any integer and b be a positive integer. Then there exist unique g and r such that

a=bld+r, where 0<r<b, and where a is dividend, b is divisor, q is quotient and r is remainder.
Proof:

Existence Part

Let S ={a—bn: nlJZ and a—anO}

Then, first we prove that S is non-empty.
Case(i): Let a =0 Then a —b(0) =a =0 with 0JZ.By the definition S, a[JS. Hence S is non-empty.
Casel(ii):

Let a <0 since b is a positive integer b =1
Hence ab<a, since a <0
=a-bld =20, withalZ.

By the definition of S, a—-bLaIS.
Thus in both cases Scontains atleast one element. So Sisa non —empty subset of W.
Therefore, by the well ordering principle, S contains a least element r.

Since r S, aninteger q exists such that r=bq, where r 20

To show that r<b:
We will prove by contradiction.
Assume r2b. Then r=b=0. But r—=b=(a~bg)-b=a-b(g+1).

Since a—b(gq+1) is of the form a—bn and is 20, a=b(g+1)0S
= r—=b0S. Since b >0, r—b <r. Thus r —b is smaller than rand is in S.
This contradicts our assumption of r, So r <b.

Thus, there are integers q and r such that a =b g +r, where 0<r <bh.

Uniqueness Proof:

Let there be two sets of integers ¢,r andg',r' such that




Assume that g =2 ¢', from (1) and (2)
bq+r=bq'+r':>b(q—q')=r'—r ————— 3
with r'-r<b —----—- )

since r'<b and r<b

Assume that ¢ >¢'. Then g—¢g'=1. Since b >0.b(qg—q')=2b.
Hence from (3) r'=r = b, contradicts (4).
0g#q' hence q=q',Therefore, from (3) 0 =r'-r=r=r'

Thus, the integers q and r are unique.

i.e., There exist unique integers g and r such that

a=bld+r, where 0<r<b

Examples:

Find the quotient and the remainder

1. when 207 is divided be 15 : 207 =1503+12, g =13 and r =12
2. when -23 is divided by 5 :

-23=5 [ﬂ—4) + (—3), the remainder however,can never be negative.

so —23 written as —23 =5[(-5)+2, where 0<r <5 (r =2). Thus ¢ =-5,r =2

The Pigenhole Principle.

If m pigeons are assigned to n pigenholes where m>n, then atleast two pigeons must occupy the same
pigenhole.

Proof:

Suppose the given conclusion is false. That is no two pigeons occupy the same pigeonhole. Then every
pigeon must occupy a distinct pigeonhole, son = m, which is a contradiction. Thus, two or more pigeons

must occupy some pigeonhole.

1. Let b be an integer=> 2. Suppose b+1 integers are randomly selected. Prove that difference of two of

them is divisible by b.
Proof:

When an integer is divisible by b, the possible remainder is one of 0, 1, 2... b-1. They are totally b.
Therefore, when b+1 integers are divisible by b, by the Pigeonhole principle at least 2 of these b+1 integers,
say x and y, leave the same remainder.




ie., x=bg +r and y=bq, +r

= x—y=b(g,~q,) =b|(x~y).

Hence difference of two of them is divisible by b.

Inclusion-Exclusion Principle:
Let A and B be finite sets. Then

|40 B =|A|+[B|~|An B]

o

i=1

If A1,Az,...An are finite sets, then

1<i<n 1<i<js<n <i<j<ks<n

QAf‘=Z|Ai|_ 2 ‘AiﬁA,‘+l > ‘Al.nAjnAk A (D™

Problem:

1. Find the number of positive integer <2076 and divisible by neither 4 or5.

Soln:

Let A ={x0ON /x<2076 anddivisible by4}, B ={xON /x <2076 anddivisible by 5}
then|A O B|=|A|+|B|-|A n B|

=12076/4 |+ 2076/5|-| 2076/20 |

=519+415-103 =831

Thus, among the first 2076 positive integer, there are 2076-831=1245 integers not divisible by 4 or 5.

2. Find the number of positive integers in the range 1976 through 3776 that are divisible by13.
Soln:

The number of positiveintegers <1976 that are divisible by 13= {%} = [152] =152

The number of positiveintegers <3776 that are divisible by 13= [%} = [290.46] =290

[J The number of positiveintegers1976 to3776 that are divisible by 13
=290-152+1
=139 [~ 1976 is included in the list of numbers divisible by 13]

3. Find the number of positive integer’s < 3000 and divisible by 3, 5, or 7.
Soln:
Let A,B,C be the set of numbers < 3000 and divisible by 3, 5,7 respectively.

Required |A UBO C|

By inclusion and exclusion principle, we get
ADOBOC|=S, =8, +5,

Now




A= {@} =[1000] =1000
|B] :{@} =[600] = 600

C|= [@} =[428.57] =428

S, =|A|+|B|+|C| =1000 +600 +428 = 2028

AnB|= 5000 =[200] =200
[ 3%5
|AnC|= 5000 =[142.85] =142
[ 3%7
|BnC|= 5000 =[85.71] =85
L 5%7
S, =|A nB|+|An C|+|Bn C|=200+142+85 =427
Now S3:|AanC|:[ 5000 }:[28.57]:28
3x5x7

|IAOBOC|=S,-S, +S, =2028-427+28 =1629

4. Prove that n’+nis an even integer, where n is arbitrary integer.

To prove:

p(n) =n’ +n is an even integer

p(1) =1° +1=2is an even number

We assume that the result is true for all k, k be the arbitrary number. = p(k) =k” +k is aneven integer

consider p(k+1) = (k+1)" +(k +1)
=k +2k +1+k+1=(k’ +k)+(2k +2) = Even number

hence p(n)=n’ +n is even integer [ n.

5. Show that for any integer n, n’>-n is divisible by 2 and n>-n is divisible by 6

Soln:
n’-n=n(n-1) Itis two consecutive number. So it is divisible by 2

To Prove: n’-n is divisible by 6

n’-n=n(n*-D=n@ -Dn*+) =n(n-Dn+D(n*+1) =(n-Dn(n+)[#n" +1)

Now, as we know that product of 3consecutive natural numbers is always divisible by3and that of 2
consecutive natural numbers is always divisible by2 so this expression is always divisible by6.

6. Show that 30|n°-n, where n is an arbitrary integer
Soln:




First we prove n’-n isdivisible by 6
n’-n=n(n*-D=n@ -’ +) =n(n-Dn+Dn*+1) =(n-Dn(n+D)#n* +1)
Now, as we know that product of 3consecutive natural numbers is always divisible by3 and that of 2

consecutive natural numbers is always divisible by2 so this expression is always divisible by6.
Now to prove divisibility by5,First we write the factorisation as under

n(n—1)(n+1)(n’ +1)=n(n—1)(n+1)((n2 —4)+5)
=n(n-Dn+D((n-2)(n+2)+5)
=n(n-1)(n+D(n-2)n+2)+5n(n—1)(n+1)

We see that second term is divisible by 5and first term is also divisible byS5 as it is product of 5 consecutive
natural numbers.Hence the given expression is divisible by 5x6=30.

Hence the proof.
7. If the sum of the cubes of three consecutive integers is a cube &, prove that 3|k

Soln:

Let n, n+1, n+2 be the three consecutive integers.
Given n’ +(n+1)"+(n+2) is a cube k’

= n’+n’+3n° +3n+1+n’ +3n’ 2+3n2° +2° =k’
=3n’+9n° +15n +9 =K’

=3(n+3n’ +5n +3) =k’

=3k’ =3 |kkk

Since 3 is a prime, 3|k

Base-b representation:
The expression a,b" +a, b*" +....+ab+a, is the base-b representation of theinteger N.

Accordingly, we write N = (ak Ay alao)h inbaseb.

For example, (345) =3(10)" +4(10) +5(10)

10

(345), =3(8)" +4(8) +5(8) =165

Hexadecimal Expansion:

The base 16 expansion of an integer is called its hexadecimal expansion. Hexadecimal Expansion uses the
sixteen digits 0,1,2,3,...9,A,B,C,D,E,and F. Where the letters A to F represent the digits 10 to 15 respectively
(in decimal notation).




Problem:

1. Express (101011111), in base 10.

Soln:

(101011111), =1(2%)+0(27) +1(2°) +0(2°) +1(2°) +1(2°) +1(2*) +1(2") +1(2°)
=256+64+16+8+4+2+1=351

2. Express (3AB0E)16 in base ten.

Soln:

We know A=10,B=11,E=14

(3ABOE)16 =3(16*)+ A(16*) +B(16°) +0(16") + E(16")
=3(16") +10(16°) +11(16*) +0(16") +14(16")
=196608 +40960 + 2816 +14 = 240398

3. Express 1776 in the octal system.

Soln:

1776=222(8)+0

222=27(8)+6

27=3(8)+3

3=0(8)+3

1776 =(3360),

4. Find the value of the base b so that 144,=49.
Soln:

144p=49 = 1xb> +4xp' +4xp" =49
=b’+4b+4=49

=b*+4b-45=0

= (b+9)(b-5)=0

since b# -9,

Ob=5

Number Patterns:




Consider the following number patter,

19+2=11
129+3=111
1239 +4 =1111
123419 +5=11111

In general,

123..m)0O + (n+1)=111...11

n+1 ones

1. Add two more rows to the following pattern, and write conjecture formula for the n'row:
99+7=88

98 9 +6 =888
9879 +5 = 8888
9876 (9 +4 = 88888

987659+ 3 = 888888
Soln:

The next two rows of the given patterns are,
9876549 +2 = 8888888

98765439 +1=88888888
The general pattern is

98765.....10—-n) 9 + (8 —n) = 888.....88
%K_J

(n+l) Eights
2. Consider the number pattern
10°-10+1=91
10 -10* +1=9901
10° -10° +1=999001
10° —10* +1=99990001

Conjecture a formula for then" rowof thispattern and establish the validity of the formula.

Soln:

n" row is:10* —=10" +1 =999 M9 000 [0 1
—

n times (n-1) times

LHS: 10 =10" +1=10" (10" —1)+1
=10"(999 (0) +1
H_/

n times




=999 1M 000 M0 + 1
_

n times n zeros

=999 M9 000 L0 1
—_—

n times (n-1) zeros

Prime and Composite Numbers:

A positive integer p>1 is called a prime number if its only positive factors are a and p. If P>1 is not a
prime, then it is called a composite number.

1. Theorem (Euclid): There are infinitely many primes.
Proof:
We prove by contradiction method.

Assume that there are only n primes p,, p,,..., p, where n is prime

Now consider the integer

m=p p,p,....p,

Since m >1, by theorem, every integer n = 2 has a prime factor..] m has a prime factor p.

Butnone of the primes p,, p,.,p,,..., p, dividlem

For,if p,m and since p, | p, [p, [p, ..., p,
we get p, |m—p, [p, [p, ..., p, = p, |1, which isnot trueand hence a contradiction.

O ptm

So,we have a prime p which is not in the list of n primes. Thus, we have n+1 primes p,, p,,p,,.... P, P,
Which contradicts the assumption there are only n primes.

So, our assumption of finiteness is wrong. Hence the number of primes is infinite.

2. Theorem: Every integer n = 2 has a prime factor.

Proof:

We prove the theorem by strong principle of induction on n.

If n=2, then the statement is true. Since 2 is a prime and 2 is a factor of 2.

Assume the statement is true for all integers upto k, k>2.

To prove it is true for k+1:

If k+1 is a prime, then k+1 is a prime factor of k+1.

If k+1 is not a prime, then k+1 must be a composite number.

So, it must have factor d, whered < k . Then by the induction hypothesis, d has a prime factor p.

Since p | d and d | k+1, we have p | k+1. So p is a factor of k+1.
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Hence by second principle of induction the statement is true for every integer >1

[lEvery integer n =2 has a prime factor.

3. Every composite number n has a prime factor< L«/HJ

Proof:
Given n is a composite number.

Then there exist positive integer a and b such that n=ab, where 1<a<n, 1<b<n.

We will prove a<~/n or b<+/n.

Suppose a >+/n and b>n
Then alb>+/n@/n =n
=alb>n

which is impossible, either a < L\/HJ or b< L\/HJ

we know that every positive integer =2 has a prime factor.

Any such a factor a or b is also a factor of a Xb=n

So 'n' must have a prime factor < L\/H J

Theorem:

Let p,,p,......p, be the primes < L\/HJ.Then the number of prime <n is

ﬂ(n)=n—1+ﬂ(\/ﬁ)—2{p£iJ+Z{%ij—Z{ . J+...+(-1)"i<j;_<r{;J

i i<j i<j<c| P pjpk b; pj Py----P,

Problem:

1. Show that 101 is a prime.
Soln:

Given number is 101.

First we find all prime < LlOlJ =10.

The primes are 2,3,5,7. Since none of these are a factor of 101.So 101 is prime number.

2. Determine if 1601 is a prime number.

11




Soln:
We know that if n has no prime factors < L\/Z J , then n is a prime consider prime number < L\/1601J = prime

number < 40 (approx.)
= 2,3,5,7,11,13,17,19,23,29,31 and 37 and which are not factors of 1601
Therefore, 1601 is a prime

3. Find the number of primes <100

Soln:

Here n=100, and +100 =10
Primes which are less than or equal to 10 are:2,3,5,7.

Then the number of prime <100 is

71(n) :n—1+n(\/ﬁ)—2{p£J+Z;LLpJJ—Zip;pky+(—1)jzkli‘ppjﬁ“
o0 =100-1 4 m{s0) - 52 5|+ 97 J+| 7

ol 2o o] 2o || || e || e |

o e [t

=99+4~{50+33+20+14} +{16 +10+7+6+4+2} ={3+2+1+0} +0
=103-117+45-6
=25

4. Find the smallest prime factor of 129.

Solution:
Here n=129, and L\/129 J =11

Primes which are less than or equal to 11 are:2,3,5,7,11.

24129 and 3|129Hence the smallest prime factor of 129 is 3.

1. Theorem:
For every positive integer n, there are n consecutive integers that are composite numbers.

Proof:
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Consider the n consecutive integers
(n+1)+2, (n+1)+3,....., (n+1)+(n+1) Where n=1.

Let 2<k<n+l1

Then k|(n+1)!and always k|k
= k|[(n+1)t+k |, for every k =2,3,..(n+1)

=2|[(n+1)2].3|[ (n+1) 3], (R + 1) (n+1) 1+ (n +1) ]
= (n+1)!+ 2, (n +1)!+ 3,y (n+1)!+ (n +l) are n consecutive integer which

are composite numbers.

2. Obtain six consecutive integers that are composite.

Soln:
By theorem, for every integer n, there are n consecutive integers that are composite numbers. Then
the six consecutive composite numbers are
(n+1)+2, (n+1)+3,(n+1)+4, (n+1) 5, (n+1)+6, (n+1)1+7
put n =6
[ The six consecutive composite numbers are 5042,5043,5044,5045,5046, and 5047

3. Prove that any prime of the form 3k+1 is of the form 6k+1.

Soln.:
Let the prime p=3k+1, then k must be even.

[if k is odd, then 3k is odd =3k+1 is even = 3k+1 is not prime]
U k=2k', then p=3(2k")+1=06k'+1.
Hence any prime of the form 3k+1 is of the form 6k+1.

4. Show that product of k consecutive integers is divisible by k!

Proof:
Let (n + 1) , (n + 2) , DI[I]]]I(n + k) be the k' consecutive integer.

Product of 'k' consecutive integer = (n + 1) (n + 2) [I]]]]ID]jn + k)

n!
:E(n+l)(n+2) D]]]]]]]ﬂn +k)
_(n+k)
n!
ki(n+k)!
k! n!
Hence the product of k consecutive integers is divisible by k!

Product of k' consecutive integer= =k! n+rC =Integer
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Greatest Common Divisor(GCD)

Definition:

The greatest common divisor of two integer a and b,not both zero, is the largest positive integer that
divides bots a and b. It is denoted by gcd (a,b) or (a,b).

For example, (3,15)=3,(12,18)=6,(-15,20)=5

Since (a,-b)=(-a,b)=(-a,-b)=(a,b)we confine our discussion of gcd to positive integers.
Definition:

A positive integer d is the ged of integers a and b if

(i). d|a and d|b

(ii).If c|a and c|b, then c|d,where c is a positive integer.

Relatively Prime:

If (a,b) =1, then the integers a and b are said to be relatively prime.

1. (Euler) Prove that the GCD of the positive integers a and b is linear combination of a &b.
Proof:

LetS be the set of positive linear combination of a and b; thatis S :{ma +nb/ma+nb>0,m,n DZ}

To show that S has a least element:
Since a >0, a =1Ld+0[BLS, S is nonempty. So, by the well-ordering principle,

S has a least positive element d.
To show that d = (a,b):
Since d belongs to S, d =aa+ Bb for some integer a and f.
(1).First we will show that d/a and d/b:
By the division algorithm, there exist integers q and r such that a =dg +r,
where 0 < r <d. Substituting for d.
r=a—-dq
=a- (a'a + ,Bb) q
= (1 —a’q)a + (—,Bq)b
This shows 1 is a linear combination of a and b.
If r>0, then rJS. Since r <d, r is less than the smallest element in S.
Which isa contrdiction. So r =0;thus, a =dq, so dla.

Similarly, d|b. Thus d is common divisor of a and b.
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(2).To show that any positive common divisior d' of a andb is <d:
Since d'|a, and d'|b =d'|(aa + Bb)
that is d'|d.So d'<d.
Thus, by parts (1) and (2), d =(a,b)
2.Two positive integer a and b are relatively prime if and only iff there are integers a and f§ such that
aa+ [b=1.
Proof:
Assume that a and b are relatively prime, then (a,b)=1

We know that, there exist integer o and 3 such that

(a,b) = aa+Lb
= l=aa+[b

Conversely, assume that there exist integers o and B such that aa+Sb=1.

Let d=(a,b). Then d|a and d|b.

=d|(aa+fb)=d|l =d=1
= (a,b)=1 = a and b are relatively prime.

3.1f d=(ab), then | £, 2 | =1
d’d
Proof:

Since d is gcd of a and b = d is positive integer

d=(a,b) = there exist integers o and B such that d=aa+[b

~1-e(o(2)

= by the above theorem % andg are relatively prime

4. If (a,b)=1=(a,c) then (a,bc)=1
Proof:

(a,b)=1= there exist integers o and B such that aa+fb=1-----(1)
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(a,c)=1 = there exist integers ) and O such that ya+dc=1 —————
Using (2) in (1),

aa+ Bb() =1
aa+ [b(ya+oc) =1
Qaa + [yab+obc=1

(a +,8yb) a+(,85) bc=1 = (a,bc)=1

5. Prove that (¢,  —b)=1if and only if (a, b)=1
Proof:
Let(a, b) =1

Then there exist integer 1 and m such that
la+mb=1

la+ma+mb—ma=1

(I+m)a-m(a—-b)=1

(I +m)a+(-m)a-b)=1 = (a,a-b)=1

Conversely, let(a,a —b) =1. To prove: (a,b) =1

Then there exist integer a and £ such that

aa+ fB(a-b)=1

aa+ fa-LFb=1

(a+B)a+(=pPb=1 = (a,b)=1

Hence the proof.

6. If d:(a,b) and d'is any common divisorof a and b, then d/d.

Proof:
Since d:(a,b) , J a and B such that d =aa + Sb.
also since d' is common divisor of a&b.[ d'|a &d'|b

= d'|(ca+pb); so d|d.

Problem:

1. Find the GCD of 1819 & 3587.
Soln:

16




(3587,1819) =1x1819+1768
(1819,1768) =1x1768 +51
(1768,51) =34x51+34
(51,34) =1x34+17
(34,17)=2%x17+0

U gedof 1819,3587 is 17

2. Find the GCD of a+b,a” - b".
GCD(a+b,a’-b*)=GCD(a+b,(a=b)(a+b))=a+b

3.1f (a,4) =2 & (b,4) =2show that (a+b,4) =2

Soln.:

(a,4)=2=gcd of (a,4)=2=2/a but 4+a 0 a=2k, and k is odd
(b,4)=2=>gcd of (b,4)=2=2/b but 4+b0b =21, and [ is odd
a+b=2k+21=2(k+1)=2(even) =2(2m) = 4m
O4/a+b=gcd(a+b,4)=4

3. Evaluate by apply Euclidean Algorithm(2076,1776)

Solu.:

By successive application of division algorithm, we get:
2076 =10776 +300

1776 =51300+276

300 =11276+24

276 =11124+12

24=202+1

Since the last nonzero remainder is (2076,1776) =12

4. Apply Euclidean Algorithm and express (4076, 1024) as a linear combination of 4076, 1024.
Soln.:

By successive application of division algorithm, we get:
4076 =31024 +1004

1024 =10004 +20
1004 =50[20+4
20=504+0
Since the last nonzero remainder is (4076, 1024) =4

17




(4076,1024) = 4 =1004 —50 20
=1004 -50(1024 -101004)
=510004 - 501024
=51(4076-3[1024) -50 1024
=5103076+(-203) 1024

S. Apply Euclidean Algorithm to express the gcd of (1976, 1776) as a linear combination of 1976, 1776.
Soln.:

By successive application of division algorithm, we get:

1976 =10776 +200
1776 =8[200+176
200=1076+24
176 =7.24+8
24=3[8+0

Since the last nonzero remainder is (1976,1776) =8

(1976,1776) =8 =176 - 724
=176 ~7(200~100176)
=8076~-7[200
=8(1776 -8 [200) -7 [200
=80776~ 71200

=80776-71(1976 -1.1776)
=79.1776-71.1976
=79.1776 +(=71).1976

Hence the gcd is a linear combination of numbers 1976,1776.

6. Using recursion, evaluate (15,28,50).
Soln.:
(15,28,50) =(15,50,28)
((15.50).28)
(5,28) =1
1is the GCD (15,28,50)
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7. Using recursion, evaluate (18, 30, 60, 75, 132).
Soln:

(18,30,60,75,132)

((18.30,60,75),132)
(((18.30.60).75).132)

=((((18.30),60),75),132)
=(((6.60).75).132)
=((6.75),132) =(3,132) =3

Fundamental Theorem of Arithmetic:

Statement:
Every integer n=2 either is a prime or can be expressed as a product of primes. The factorization into
primes is unique except for the order of the factors.

Proof:
First, we will show by strong induction that n either is a prime or can be expressed as a product of primes.

Then we will establish the uniqueness of such a factorization.
Let P(n) denote the statement that n is a prime or can be expressed as a product of primes.

(i) To show that P(n) is true for every integer n>2:
Since 2 is a prime, clearly P(2) is true.

Now assume P(2), P(3),.....P(k) are true; that is every integer 2 through k either is a prime or can be
expressed as a product of primes.

If k+1 is a prime, then P(k+1) is true. So suppose k+1 is composite. Then k+1 = ab for some integers a and b,
where 1 < a, b < k+1. By the inductive hypothesis, a and b either are primes or can be expressed as products
of primes; in any event, k+1=ab can be expressed as products of primes. Thus, P(k+1) is also true.

Thus by strong induction, the result holds for every integer n =2

(ii) To Establish the Uniqueness of the Factorization:

Let n be a composite number with two factorization into primes; " = p,p, Hp, = g,q, HIg,

I<i,j<r

we will show that r = s and every Pi equals some 9/, where > that is, the primes 41°%2>-4; are a

permutation of the primes 717> b,
Assume, for convenience that " S S-gince PP p, = g,q, MY, p,/q,q, W4, = p, =g, for some i.

Dividing both sides 71, we get: P>P = 49>+ 9i-19 -4,
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Now, p, divides the RHS, so p, =g, for some j. cancel p, form both sides:
DserP, =49 4914 -9 919,

Since " =5 continuing like this, we can cancel 7 with some 9¢This yields a 1 on the LHS at the end. Then
the RHS cannot be left with any primes, since a product of primes can never yield a 1; thus, we must have

| 4. 's by now.

exhausted al therefore, r = s and hence the primes 992> are the same as the primes

p,p, U, in some order. Thus, the factorization on n is unique, except for the order in which the primes as
written.

Note:

(i). Every composite number n can be factored into primes. Such a product is the prime power
decomposition of n.

(ii). If the primes occur in increasing order, then it is called a Canonical decomposition.
Problem:

1. Using canonical decomposition of 168 and 180 find their GCD.
168=2°3[7 180=2°3"3
GCD =(168,280) =23 =12

2. Find the canonical decomposition of 2° —1

2 -1=(2) -1 =(2-1)(2°+2° +1) = @’ =" =(a-b)(a* +ab+b*)
=(7)(73)

Least Common Multiple (LCM):

The least common multiple of two positive integers a and b is the least positive integer divisible by both a
and b; it is denoted by [a,b].

Problem:

1. Using canonical decomposition of 1050 and 2574.
Soln.:

1050 =2x3x5x%x7

2574 =2x3*x11x13

[1050,2574] = 2x3* x5* x 7 x11x13 = 450450

2. Using canonical decomposition of 168 and 180 find their GCD and LCM.
Soln.:

168=2"30 180=23'(3
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GCD =(168,280) =23 =12
LCM =[168,280] =2° 3* 37 = 2520

3. Find the canonical decomposition of 23!
Soln.:
The prime dividing 23! are 2,3,5.7,11,17,19,23

The power of 2 dividing 23! are = [%} + { 23} + [ 23} + { 23}

2] 2] [2*
=11+5+2+1
=19

The power of 3 dividing 23! are = [?} + {?}
=7+2
=9
The power of 5 dividing 23! are = ? +[§}
=4+0=4
. 23]
The power of 7 dividing 23! are = El =3
- 23]
The power of 11 dividing 23! are = 11 =2
. [23]
The power of 13 dividing 23! are = 3 =1
- 23]
The power of 17 dividing 23! are = Il =1
. [23]
The power of 19 dividing 23! are = T =1
- 23]
The power of 23 dividing 23! are = = =1

[ The canonical form of 23!= 2" [3° [5*[7° 01* 0307 19123
Relation between GCD and LCM:

Theorem:
ab

(10)

Prove that the product of gcd and lem of any two positive integers a and b is equal to their products.

Let a and b be positive integers. Then [a,b] = (or)
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Proof:

Let a =p“p2....p%, b=p/p%....p> be the canonical decomposition of a and b. Then

..... n

[(1 b] pmax ay.b} Iznax{aQ by} pmax{an b}
(a b) mm{“l bl}pgliﬂ{%bz} ..... anin{an by}
— [Cl b] (Cl b) max{al b }+min{ay, bl}prznax{az br}+min{ay by} pmax{an ,bn} +min{an ’bn}

..... n

pal+b1paz+b2 ..... pfln"'b
_ n b by
=(p{ps2....o ) (pp22 .0l )
=ab
Hence [ab] ( ll)))
a
Problem:

1. Using (252, 360) compute [252, 360].
Since GCD of (252,360) =36

[a,6] = 92 = [252, 360]=22223%0 = 955
(a,b) 36

2. For positive integer n, find (n,n+1) and [n,n+1]

Soln.:

Since n and n+1 are the two consecutive integer. For any two consecutive integers are relatively primes. So
(n, n+1)=1.

By formula, [a b] ab _n(n+l) = n’+n
(a b) 1

3. Find a positive integer a, if [a, a+1] =132.

Soln.:

We know that [a,b] = —~ ————- (1)

W) b)
Since LCM of [a, a+1]=132 & GCD of (a,a+1)=1

Xa+1
(1) =132 2%302 +a-132=0=> a=-12,11  Since a is positive integer, a = 11
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MOHAMED SATHAK A.J.COLLEGE OF ENGINEERING
MAS8551- ALGEBRA & NUMBER THEORY
NOTES

UNIT-1V LINEAR DIOPHANTINE EQUATIONS AND CONGRUENCES

Linear Diophantine Equation
The linear Diophantine equations are the simplest class of Diophantine equations.
The general form of a linear Diophantine equation (LDE) is two variables x and y is

ax+by =c, where a,b,careintegers.

Theorem

The linear Diophantine equation ax+by =c is solvable if and only if d|c, whered =(a,b). If

X,. Y, is a particular solution of the linear Diophantine equation, then all its solutions are given by

x=xo+[gjt and y= yo—(gjt, tezZ

Proof:

Assume the linear Diophantine equation ax + by = c is solvable.
To prove d|c

If x=a, y=/ isasolution, then ca+ fb=c

Since d =(a,b),d|aand d|b
= d|aa+pb
= djc

1. Determine whether the LDE 2x+3y +4z =5 is solvable?

Solution:

Thegcd(2,3,4) =1
i.e.,(2,3/4)=1and 1/5
The given LDE is Solvable.

2. Find the general solution of the LDE 15x+ 21y =39

Solution:
15x+21y =39 = a=15b=21 c¢=239.
d=(1520)and d/39=d =3

So, the given LDE is solvable.




15x +21y =39

= 5x+7y=13-——————— @
then (5,7)=d =1

-.d /13

a=5b=7,d=1

We find x, =-3, y, =4 is a solutionof (1) is

b a
X=X°+Ht and y=y0—at, tezZ

x=—3+zt and y=4—§t, tez
1 1

x=-3+7t and y=4-5t, teZ

3. Find the general solution of the LDE 6x+8y+12z =10

Solution:
Given the LDE is 6x+8y+12z=10 —————— @

Here a =6,a, =8 a, =12, ¢c=10
- (a.a,8)=(6,812)=2and c=10
d=(aa,a)=2
Since 2|10, d |c
So, the given LDE is solvable.
Since 8y +12z is a linear combination of 8and 12, it must bea multiple of (8,12) =4
8y+12z=4U——————— (2)
)= 6X+4u=10——————— ©)
First we solve the LDE (3) in two variables x and u
Here a=6b=4,c=10
(a,b)=(6,4)=2
d=(a,b)=2 and c=10
Since 2|10, d |c
So, the given LDE (3) is solvable.

We find x, =1, u, =1is a solutionof (3) is




b a
X=x,+—t and u=u0—at, teZ

x=1+ft and u=1—§t, teZ
2 2

Xx=1+2t and u=1-3t, teZ
Substituting for u in (2), we get
8y +12z =4(1-3t)

Since d:(a
8

b
j: 4 and 4=2.8+(-1).12 is a linear combination of 8 and 12.

Multiplying by (1—3t), we get
4(1-3t) =2(1-3t).8+(-D)(@-3t).12
=(2-6t).8+(-1+3t).12
.. a solution of (2) is
y,=2—-6t and z,=-1+3t, teZ

So, the generalsolution of (2) is

b.. a. .,
y:yo+at and z=zo—at, t'e”Z

y=2—6t+%t' and z=—1+3t—%t', t'eZ

y=2-6t+3t' and z=-1+3t-2t', t'eZ
Thus the general solution of (1) is

X=1+2t,y=2-6t+3t', z=-1+3t-2t', t'eZ

Congruence modulo m
If an integer m (= 0) divides the differencea—b, we say that a is congruent to b modulo m.

(i.e) a=b(mod m).

4. Solve the congruence 4x =5(mod 6).

Solution:




4x =5(mod 6)

Here a=4,b=5 m=6
(a,m)=(4,6)=2

= 245 (ie) (a,m) +b

.. The congruence has no solution.

5. Show that n*+ n = 0(mod 2) for any positive integer n.
Proof:

a=b(modk)=a-b=km, mez
a—Db isdivisible by k

n=even =2m
n’+n=(2m)* +(2m)

=4m’ +2m
=2(2m* +m)

n’+n is divisible by 2

n=odd=2m+1

n’+n=(2m+1)*+(2m+1)
=4m’ +4m+1+2m+1

=4m’ +6m+2

=2(2m’ +3m+1)
n’+n is divisible by 2
= n*+n=0(mod2)

6. Let a=b(modm)and c=d (modm), then prove that ac =bd (modm).

Solution:
Sincea=b(mod m) and ¢ =d (mod m),
a=b+Im and c=d +km forsome inegers | and m.
Then ac—bd =(ac—bc)+ (bc—bd)
=c(a—b)+b(c—-d)
=clm+bkm
=(cl +bk)m
Soac =bd (mod m)




7. Let a=b(modm)and c=d (modm), then prove that a+c=b+d (modm).
Solution:

Sincea=b(mod m) and ¢ =d (modm),

a=b+Imand c=d +km forsome inegers landm.

Then a+c=(b+Im)+(d-+km)
=(b+d)+(I+k)m
=b-+d (modm)

8.If ac =bc(modm)and (¢, m) =1, then prove that a =b(modm).

Solution:

Suppose ac = bc (mod m), where (c,m) =1.

Thenm|(ac—bc) =m|c(a—Db).

we know that : If aandbare relatively prime,andif a|bc, thena|c.
But(m,c) =1, m|(a-Db),(i.e)a=b(modm)

Complete residue system.

Aset x,x,,...., x, IS @ complete residue system mod m if for integer y, there is one and only one x,

such that y = x, (modm) -

9. Solve x"+1=0(mod7)
Solution:
The complete residue system (CRS) is {0,1, 2,3,4,5, 6}

But 4=-3 (mod7)
5=-2(mod7)

6=-1(mod7)

The CRS is {0,+1,+2,+3}
The CRS does not satisfy the congruence x*> +1=0(mod 7)
.. The given congruence has no solution.

10.Find the remainder when 16 is divided by 7.

Solution:

First reduce the base to its least residue




16 =2(mod 7).
Weknow that If a =b(mod m),thena" =b" (mod m) for any positiveinteger n

16% =2% (mod 7).
Now express a suitable power of 2congruent modulo 7 to a number lessthan?7,

2°=1(mod?7)

253 = 23(17)+2
= (23 )17 .22
=1".4(mod 7)
=4(mod 7)

S016% = 4(mod 7), by the transitive property.
Thus, when16% is divided by 7, the remainder is4.

11. Find the remainder when 14+ 24 3H....+300! is divided by 13.

Solution:
For divisibility by 13, we consider mod 13.

Forr >13, r! will contain 13 as a facor.
- r1=0(mod13)

14243444 ... +12+.....4+ 300!
=14 24+ 34+ 4. +12+ 0+ 0+ (mod13)
=12 34+4H......+12!(mod 13)
=1+2+6+24+120+....+12!(mod13)

But 2+24=26=0(mod13)

51=120=3(mod13)

6!=5!6 =3.6(mod13)
=18(mod13)
=5(mod13)

71=617=5.7(mod13)
= 35(mod13)
=9(mod13)

8!1=718=9.8(mod13)
=72(mod13)
=7 (mod13)




91=819 =7.9(mod13)
= 63(mod13)
=11(mod13)
10!'=9110=11.10(mod13)
=110(mod13)
=6(mod13)

111=10"11=6.11(mod13)
=66(mod13)
=1(mod13)

121=11112 =1.12(mod13)
=12(mod13)

I+ 20344 +12+.....+300!=1+6+0+3+5+9+7+11+6+1+12(mod13)
=61(mod13) =9 (mod13)
.. theremainderis9when1+24-34-44+......+12.....+ 300! isdivided by13.

12. Find the remainder when 3**" is divided by 17 using modular exponentitation.

Solution:
¥ =9(mod17); 3*=-4(mod17); 3’ =-1(mod17); 3 =1(mod17)
3% =1(mod17); 3* =1(mod17);
3% =1(mod17)
53 =3%3%30303
=1.1.1.13.3 (mod 17)
=5(mod17)
Thusthe desired remainder is5.

13. Find the remainder when 3* is divided by 7.

3 =2(mod7)
(3%)* =2°(mod 7)=1(mod 7)
3*=1(mod7)
-3 =(3°).3
=1°.3 (mod 7)
=3(mod7)

Thus the remainderis 3.




14. Prove that 4 + 10n = 1(mod 25).
Solution:

47" +10n =1(mod 25)
proof by mathematical induction

=n=0
(4°+0)-1=1-1=0

=0 isdivisible by 25
statement is true for n=0.
n=1 (4°+10)-1=25

= 25 isdivisible by 25

statement is true for n=1.
Assume that the statement is true for n=k

(ie), 4% +10k —1= 25|
Consider  4°** +10(k +1) -1
=4*16+10k +10-1

=16(251 —10k +1) +10k +9
=16(251)—-160k +16+10k +9

=16(251) 150k + 25
=25(161 — 6k +1)
=25(y)

4% +10(k +1) —1is divisibleby 25
Statement is truefor n=k +1

By principle of mathematical induction,
Statement s true for all n.

15. Find the remainder when (n* +n+41)*is divisible by 12.
Solution:

First notice that product of four consecutive integers is divisibleby12,
@ie),(n=Yn(n+1)(n+2) =0(mod12)
(n* +n+41)* =(n* +n+5)? (mod12)




=(n*+2n° +11n* +10n + 25) (mod12)
=n(n’+2n* —n-2)+1 (mod12)
=n[n*(n+2)—(n+2) |+1 (mod12)
=n((n+2)(n* -1) +1 (mod12)
=(n-)n(n+1)(n+2)+1 (mod12)

=1 (mod12)

Thuswhen (n* +n+41)%is divided by12, the remainderis 1.

16. Compute the remainder when 3°*" is divisible by 25.

Solution:

We have to find the remainder when 3*is divisible by 25.
We have 3° = 9(mod 25)
3* =92 =81=6 (mod 25)
3 =6° =36 =11 (mod 25)
3 =11 =121 =21 (mod 25)
3% =21% =16 (mod 25)
3% =16° =6 (mod 25)
3% =6* =11 (mod 25)
Q4T _ 128164132416141241
=3%3* 3% 3°3" .33
3** =11.6.16.21.6.9.3 (mod 25)
=11 (96) (21) (54)3 (mod 25)
=11 (-4) (=4) (4) 3 (mod 25)

=44.48 (mod 25)




=(—6) (-2) (mod 25)
=12 (mod 25)

. the remainder is 12 when 3*' is divisible by 25.

17.Find the remainder when 3* is divided by 17 using modular exponentitation.
Solution:
3 =9(mod17); 3*=-4(mod17); 3’ =-1(mod17); 3*°=1(mod17)
3% =1(mod17); 3* =1(mod17); 3*° =1(mod17)
o3 o3 3R ge gy
=1.1.1.13.3 (mod 17)
=5(mod17)
Thus the desired remainder is5.

18.Find the remainder when 16% is divided by 7.

Solution:
First reduce the base to its least residue
16 =2(mod 7).
Weknow that If a =b(mod m),thena" =b" (mod m) for any positiveinteger n
16> =2% (mod 7).
Now express a suitable power of 2congruent modulo 7 to a number lessthan?7,
2°=1(mod?7)
253 = 23(17)+2
= (23 )17 .22
=1".4(mod 7)
=4(mod7)
S016% = 4(mod 7), by the transitive property.
Thus, when16% is divided by 7, the remainder is4.

19.Prove that p is a prime iff (p — 1)! +1 = 0(mod p).
Proof:

Suppose p is notaprime then p= p,p,
where 1< p, & p,< p-1

10




since 1< p, < p,—1, we find p, is a factor of (p—-1)!
(ie) p/(p-D! Alsop,/p

we are given (p—-1)+1=0(mod p)

Lp/(p=-Di+1

~op/(p=Di+1

Thus p,/(p-D!'+1 & p,/(p-1)!
p./[(P-DH1]-(p-1)!

~op/1

which is not possible - p, >1

Hence p must be prime.

Linear Congruence

A congruence of the form ax =b(modm), where m is a positive integer and a,b are integers and x

is a variable, is called a linear congruence.

Chinese remainder theorem.

Let m,m,,...,m denote r positive integers that are relatively prime in pairs and let a,a,,....,a,

be any r integers. Then the congruence x=a (mod m), i=12,.....,r have common solution.

State and prove Chinese remainder theorem.

Let m,m,,...,m denote r positive integers that are relatively prime in pairs and let a,a,,....,a

r

be any r integers. Then the congruence x=a (mod m), i=12,.....,r have common solution.
Proof:
First we prove the existence of the solution

Let n=m.m,.m,...m,

=

Letn =—,i=123,..,k

3>

Since m,.m,.m,...m_ are pairwise relatively prime
(n,m)=1 i=123,...,k
Also  n =0(modm,), i # j
1.First we construct a solution to the linear system.
Since (n,,m ) =1, the congruence n.y, =1(modm,) has a unique solutiony,, i =12,3,....,K

11




Let x=any, +any,+..... +a.ny,

Now, we will show that xis a solution of the system of congrunces.
Since n, =0(modm,) for i =k, all terms except the k™ term in this are
congruent to 0 modulo m,

Since n, y, =1(modm, ), we see thatx=an,y, =a_(modm),for k =1,2,3,...,n

Thus x satisfies every congruence in the system.
Hence x is a solution of the linear system.

2. Next toshow that the solution is unique modulo n=m_.m,....m,.
Let X, X, be two solutions of the system
To prove X, = X, (modn)

Since x, =a,(modm,) and x,=a,(modm,), j=1273,...,K
we have x —X, =0(modm,)
= m, [x, —X, for every j

Since m,,m,,...,m, are pairwise ralatively prime,
LCM[m,m,,...m]=m,m,,...m | X —X,

= n|x —x, = X =X, (modn)

Hence the solution is unique mod m,m,,...,m,.

20. Use the Chinese remainder theorem to solve x =1(mod 3), x =2(mod 4), x =3(mod 5).
(OR)
Find the least positive integer that leaves the remainder 1 when divided by 3, 2 when divided by
4 and 3 when divided by 5.
Solution:
Given system is x =1(mod 3)
X =2(mod 4)
x =3(mod 5)
Herea =1, a,=2, a,=3
m=3m,=4 m =5
We find m,,m,,m, are pairwise relatively prime

Let n=mmm, =3.45=60

and nl:1:3.4.5:

m 3

20

12




n, :1: 3.4.5:15
m, 4

n, :1: 3.4.5:12
m 5

1.Wefind y,,y,,y, from the congrunces

ny, =1(modm,)
n,y, =1(modm,)
n,y, =1(modm,)

We have ny, =1(modm,),
20y, =1(mod 3),
Since 20.2 =40 =1(mod3), we see y, =2 is a solution

We have n,y, =1(modm,),
15y, =1(mod 4),
Since 15.3=45=1(mod4) , we see y, =3 is a solution

We have n,y, =1(modm,),
12y, =1(mod5),
Since 12.3=36=1(mod5), we see y, =3 is a solution

2. Then solution is X=any, +any,+any, (modn)
x=1.20.2+2.15.3+3.12.3 (mod 60)

= x = 40+90+72(mod 60)
= x =238(mod 60)
= x =58 (mod 60)

.. 58is the unique solution (mod 60)
.. thesolution of the systemis x =58 (mod 60) anditis the uniquesolution.

21. Solve the congruence x=1(mod4), x=0(mod3), x=5(mod 7).

Solution:
Herea, =1 a,=0, a, =5
m=4m,=3 m,=7
m=m_.m,.m,
=4.8.7
=84

13




m_84 5 M _B84_og M_8_ 4
m 4 m, 3 m, 7
ﬂ,mlj=(21,4) -1
m,
ﬂ,mZJz (28,3)=1
mZ
ﬂ,m3]=(12,7) _1
m3
we knowthat
m
(F]bj =1(modm,)
i
m
For m = (—jbl =1(mod m,)
ml
(21)b, =1(mod 4)=4/21b -1
= 21b —1=4k, Kk is an integer
21b, =1+4k
b = 1+ 4k
21
put k=5 Db =1
m
For m, = [—J b,=1(modm,)
m2
(28)b, =1(mod 3) =3/ 28h, -1
= 28b, —1=3k, k is an integer
28b, =1+3k
b, = 1+3k
28
putk=9, b,=1
m
Form,= (—jbs =1(modm,)
m3

(12)b, =1(mod 7)=7/12h, -1

14




= 12b, -1="7k,, Kk, is an integer
12b, =1+7K,

m m m
=| —ab +—ab, +—ap, [(mod
(mlaiﬁmzazﬁmga“J(mo m)

:[(21><1><1) +(28x0x1) + (12><5><3)](m0d 84)

=(21+180) (mod 84)
=201(mod84)

22. Determine whether the system
x=3(mod10); x=8(mod15); x=5(mod84) has a solution and findthemall if it exists.
Solution:

The first congruence x =3(mod10) is equivalent to the simultaneous congruences
X = 3(mod 2) ------- (1)
x=3(mod5) -------- 2

The congruence x =8(mod15)is equivalent to,

x=8(mod3)————— 3)

x=8(mod5)————— 4)

The congruence x =5(mod84)is equivalent to,
x=5(mod 3)————— (5)

x=5(mod4) ————— (6)

x=5(mod7)————— (7)

The congruence (1) & (6)

x=3(mod 2)

x=5(mod 4) reducesto x=1(mod4)————— (8)

15




The congruence (3) &(5)

x=8(mod 3)

x =5(mod 3) reducesto x=2(mod3)————— 9)
The congruence (2) &(4)

x =3(mod5)

x =8(mod5) reducesto x =3(mod5)————— 20)
From (7) = x=2(mod 7) ————— 11

we have solve the congruence of (8),(9), (10) &(11)

Herea =1, a,=2, a,=3, a,=5
m=4m,=3, m,=5 m,=7

m=m_.m,.m,.m,

=4.3.5.7
=420
M 105, ™ 140, ™ —g4, ™ _ 60
ml mZ m3 m4
we knowthat
(ﬂ]bj ~1(modm)
mj
m
Form = [—j b, =1(modm,)
1
(105)b, =1(mod 4) =4 /105b, -1
= 105b, —1=4k,, Kk, is an integer
105b, =1+4k
_1+4k
S 105
put k =26, b =1
m
For m, = (F) b, =1(modm,)
(140)b, =1(mod 3)=>3/140b, -1
= 140b, -1=3k,, Kk, is an integer

140b, =1+3k,

16




_1+3k,
2140

put k, =93, b, =2

For m, = [ﬂ]ba =1(modm,)
3
(84)b, =1(mod5)=5/84b, -1
= 84b, —-1=5k,, Kk, is an integer
84b, =1+ 5k,
b, - 1+ 5k,
84
m
For m, = [—J b, =1(mod m,)
m4

(60)b, =1(mod 7)=>7/60b, —1

= 60b, -1=7k,, kK, is an integer
84b, =1+7Kk,
b _1+7k,

! 84
put k, =17, b, =2

By chinese remainder theorem,

X= g(%]aibi (mod m)

m m m m
=|—abh +—ab +—ab +—ahb, [(modm
[mlall m2a22 a33 m 44]( )

m3 4

z[(105><1><1) +(140%x2x2) + (84x3x4) + (60x5x% 2)] (mod 420)
=(105+560-+1008 + 600) (mod 420)

= 2273(mod 420) =173 (mod 420)

17




2x2 linear system

A 2x2linear system is asystemof linear congruencesof the form,

ax+by =e(modm)

cx+dy = f(modm)

Asolution of the linear system is a pair x = x,(mod m), y = y, (mod m) that satisfies
both congruences.

Theorem

The linear system of congruences ax+by =e(modm)and cx+dy = f (modm) has a unique

solution if and only if (A,m) =1, where A=ad —bc(modm).

23. Verify that the linear system 2x+3y=4(mod13) and 3x +4y =5 (mod 13) has a unique solution
modulo 13.

Solution:

We know that the system has a unique solution modulo m if and only if (A,m)=1

23

A=ad —bc=
ad—ue=ly

=-1=12(mod 13).

Since (12,13)=1

Therefore the system has a unique solution modulo 13.

24.Solve the linear system

5x+6y =10(mod13)
6x—7y=2(mod13).

Solution:

5x+ 6y =10(mod13)
6x—7y=2(mod13)
—a=5b=6,c=6,d=-7,e=10,f =2.
m=13, A=ad —bc

=-35-36

=—71(mod13) = 7(mod13)

(A,m)=(13,1) =1.
Hence unique solution.

18




5 10
=A" mod13) - ——————— 2
Yo 6 2 ‘ ( ) (2)

AA™ =1(mod13)
7A™ =1(mod13)
= A" =2(mod13)

=

X, = A™(-=70-12)(mod13) = 2(-70-12)(mod 13)
=—-8(mod13)
= 5(mod13)

2)=

y, =A™ (10-60)(mod13) = 2(-50)(mod13)
=2.2(mod13)
= 4(mod13)

. x=5(mod13)

y=4(mod13).
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MOHAMED SATHAK A.J. COLLEGE OF ENGINEERING
MAS8551- Algebra and Number Theory
NOTES
UNIT-V CLASSICAL THEOREMS AND MULTIPLOCATIVE FUNTIONS

Wilson Theorem:
1. State and prove Wilson’s Theorem
Statement:
If p is prime, then (p — 1)! = -1 (mod p).
Proof :
We have to prove (p — 1)! =-1 (mod p)
Whenp =2, (p— 1! =(2-1)! =1=-I(mod 2).
So, the theorem is true when p = 2.
Now let p > 2 and let a be a positive integer such that 1 <a <p — 1.
Sincepisaprimeanda<p, (a, p) = 1.
Then the congruence ax = 1 (mod p) has a solution a' congruence modulo p.
aa'=1(mod p), where 1 <a'<p-1
: a, a' are inverses of each other modulo p.
Ifa' =a, thena.a =1 (mod p)
= a’—1=0-(mod p)
~oplad=l= pl@-1)(a+1)
= pla-1 or pla+1l
Sincea<p,ifp|a+1thena=p- 1.
Ifpla-1thena-1=0=>a=1-
= a=lor p-1 if a=a'
i.e., 1andp -1 are their own inverses.
If @' # a, excluding 1 and p — 1, the remaining p — 3 residues 2, 3, 4, ..., (p — 3), (p — 2) can be
grouped into PT—3 pairs of the type a, a' such that aa'=1 (mod p)

Multiplying all these pairs together we get, 2-3-4...(p—3)(p—2)=l (mod p )
=12-3-4...(p2)(p-1)=p-1modp)
(p-1)!'= -1(modp) (Since p-1=-1(mod p))
Hence the theorem.
This can be rewritten as (p — 1)! + 1 =0 (mod p)

= plp-Dr+l,
which is the result suggested by Wilson.

np)!
2. Let p be a prime and n any positive integer. Prove that (l—p?] =(-1)" (modp)
nlp

Proof:
First, we can make an observation. Let a be any positive integer congruent to 1 modulo p.
Then by Wilson’s theorem , a(a+1)...(a+ (p—2)) =(p—1)!=-1(mod p)
In other words, the product of the p-1 integers between any two consecutive multiples of p is
congruent to -1 mod p.
Then (D! (np)!

n'p"  p.2p.3p...(np)




n

=T [(r-1)p+1]..[(r-1)p+(p-1)]

r=1

= 11(p 1) (mod )

= rﬁ:l (=1)(mod p) = (-1)" (mod p)

Fermat’s Little Theorem:
1. State and prove Fermat’s little theorem.
If p is a prime and a is any integer not divisible by p, then a"* =1(mod p)
Proof:
Given p is a prime and a is any integer not divisible by p
When an integer is divided by p, the set of possible remaindersare 0,1, 2, 3, ....p -1
Consider the set of integers 1-a,2-a,3-a,....(p-1)-a -------------- 1)
Suppose ia = 0(mod p), then p / ia.
But p#a - p /i, which is impossible, since i <p.
ia #0(mod p) fori=1,2,..p -1
So, no term of (1) is zero.
Next we prove they are all distinct
Suppose ia = ja(mod p), where 1<ij<p-1.
Then (i —j)a = O(modp) =p /(i —j) a
Since p/a, p/ijandi,j<p= /i—-j /<p.
L 1-]=0=i=j(modp)
i#j =ia#ja.

This means, no two of the integers in (1) are congruent modulo p.
.. The least residues (or remainders) of the integers a, 2a, 3a, ...,(p —1)a modulo p are the same as the
integers 1, 2, 3, ...,p — 1 in some order.

So, their products are congruent modulo p.

a.2a-3a..p-Da=1-2-3... (p-1)(modp)

= [-:2:3..(p =) a P-1=({p —1)(mod p)
= (p =N!'aP-1 = (p-1)I(mod p)
= aP-1=l(modp) (since pL(p-1))
The result a"* = I(mod p) is equivalent to a® = a (mod p).

2. Find the remainder when 24™* is divided by 17

Solution.
We have to find the remainder when 241947 is divided by 17.
Here a=24, p=17

We know 17 is a prime & 17124
.. By Fermats theorem, 2417-1 = 1(mod 17)
= 2416 =1(mod 17)
(2416)** =1"*(mod 17)
= 241936 = 1(mod 17)
Now 241947 = 241936+11= 241936 .2411



242 = 576=-2(mod 17)
(242)? = (=2)*(mod 17)
= 244 =4(mod 17)
(244)? =4*(mod 17)
= 248 = 16(mod 17)
=—|(mod 17)
2411 = 248.242.24 = (-1)( -2). 7(mod 17)
= 14(mod 17)
241947 = 14(mod 17)
= 14(mod 17)
.. The remainder is 14 when 241947 is divided by 17.
Euler’s Theorem:
1. State and prove Euler’s theorem.
Let m be a positive integer and a be any integer such that (a, m) = 1.
Then a®™ =1(mod m).
Proof :
Given m is a positive integer and a is any integer such that (a, m) = 1.
Let ry, 1y, ...,r oam) be all the positive integers < m and relatively prime to m.
Since ri—rj<m,clearly r; #r; (mod m) ifi# j
Consider the products ary, ars, ...,arem)
Since (a, m) = 1,ar; # arj (mod m) if i # j
we find ary, ary, ...,.arem mod m are distinct.
We now prove (ari, m) =1
For, suppose (ar;, mf> 1, then let p be a prime factor of (ar;, m) =d.
p|aand m
= p|aor prri andp|m.
Ifp | r;and p | m then, (ri,m) # 1, a contradiction.
If p la and p | m, then p | (a, m) = (a,m)# 1, which is again a contradiction.
(ari,m) =1, i=1,2,3,...,0(m)

. the ®(m) least residues ary, ar, ...,.arem modulo m are distinct and relatively prime to m.
So, they are the same as integers ry, Iy, ...,Fom), in some order modulo m.
.. their product ar- ary- ... -arem) = - o ... -Fom) (Mod m)

= deom) 't - N2, from) =rilf.. I om) (mod m)
Since each rj is relatively prime to m, (rirz.. rom), m) =1
We get a ®™ = 1(mod m)

2. Using Euler’s theorem, find the remainder when 245* is divided by 18.
Solution.
We have to find the remainder when 2451040 is divided by 18.
Here a=245=5-72and m=18=32-2, (a,m)=1
Hence by Euler’s theorem,
a *™ = 1(mod m)= 245 *™ = 1(mod m)

(18) = 9(3.2)= p(3").0(2) =3 (1—3.1:6

oo 245° =1

But
(mod18)



-, (245°) =1 (mod18)
245°% = 1(mod18)
2451040 — 2451038+2 — 24510382452

But 245=11(mod18)

2452 =11% (mod 18)
=121 (mod 18)
=13 (mod 18)
2451040 = 1 - 13 (mod 18)
=13 (mod 18)
.. The remainder is 13 when 2451040 is divided by 18.

— el e2 ek
If M=P17P2"-P™ s the canonical decomposition of a positive integer n then derive the

formula for the phi function ¢(n) and use it to find ¢(6860)
Proof:

ey _ e _ el —né(1_1
To prove : If p is prime and e any positive integer then prove that o(p)=p—p Pd=3)
o(p°) = number of positive integers <p° and relatively prime to it

e e
= {number of positive integers <P }{ number of positive integers <P
and not relatively prime to it}

The number of positive integers < Pis P* (because they are 1, 2, 3, ..., P")

The number of positive integers < peand not prime to it are the various multiples of p.
They are P 2p, 3p, ..., (P°H)p

el
The number of such numbers = P

ey _ne_nel_ nper1_ 1
Hence #(P) =P —p " =p (1-7)

since P(P) =P =P =pPU-9) g, multiplicative function,
@(n) = (p; P;-..p) = (P (P3)...0( ;)
= p =3P (=) -
= PPz P =)A= (-5
—n-2)1-2)..0-+
To find #(6860).
9(6860) = p(2*).0(5).0(7%)

=2° (1—1j4.73(1—£j=252
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Euler phi function:
Let ?*N =N e 3 function defined by
o(1)=1and
for n>1 @(n)=the number of positive integer < n and relative prime to n.




1. Prove that Euler phi function is multiplicative:

Proof:

Let m and n be positive integers such that (m, n) = 1.

To prove g(mn) = p(m) ¢(n)

Arrange the mn integers 1, 2, 3, ..., mn in m rows of n numbers each.
1 m+1l 2m+1 3m+1 ... (n-I)m+1

2 m+2 2m+2 3m+2 .. (n-1)m+2
3 m+3 2m+3 3m+3 .. (nh—-1)m+3

rm+r 2m+r 3m+r .. (n=-D)m+r

rth row M 2m 3m 4dm nm

Let r be a positive integer < m such that (r, m) > 1.

We will now show that no element of the rth row in the array is relatively prime to mn.
Letd=(r,m). Thend | randd | m=d |km +r for any integer k

This means d is a factor of every element in the rth row.

Thus, no element in the rth row is relatively prime to m and hence to mn if (r, m) > 1.

In other words, the elements in the array relatively prime to mn come from the rth row
only if (r, m) = 1.

Since r < m and relatively prime to m, we find there are ¢@(m) such integers r and have ¢(m)
such rows.

Now let us consider the rth row where (r, m) = 1.

The elements in the rthrow are r, m+r, 2m+r, ..., (N-1)m +r.

When they are divided by n, the remainders are 0, 1, 2, ..., n - 1 in some order of which ¢(n) arc
relatively prime to n.

Therefore, exactly @(n) elements in the rth row are relatively prime to n and hence to mn.
Thus there are ¢(m) rows containing positive integers relatively prime to mn and each row
contain @(n) elements relatively prime to it.

Hence the array contains ¢(m) ¢(n) positive integers < mn and relatively prime to mn.

That is ¢(mn) = ¢(m) @(n).

Hence ¢ is multiplicative function.

e
2. If p is prime and e any positive integer then prove that (p(p ) P . Also show that
(p(n)=g when n = 2K
Proof:

?(P*) = number of positive integers < P* and relatively prime to it

e e
= {number of positive integers < P }-{ number of positive integers = P
and not relatively prime to it}

The number of positive integers < Pis P* (because they are 1, 2, 3, ..., P")



The number of positive integers < peand not prime to it are the various multiples of p.
They are P 2P 3P, - (P p

el
The number of such numbers = P

o(p°)=p°—p"

<p(n)=D when n = 2¥
To prove that

Hence

Given n=2"
1 1 n
oM =p2)=2¢1-=|=2¢.= = —
om=0@2)=2(1-3 )25 -
P11
3. Find the primes p forwhich P isasquare.
Solution:
2p‘1—1: )
1 4 2
Suppose P for some positive integer n. Then 2P -1=pn

Clearly both p and n must be odd.
Let p=2k+1 for some positive integer k.

2k 2
Then 2~ —1=pn
= (@-)E +)=pn’
k k 2 k 2
suppose (2" ~Dis a perfect square, (2 —D=r" = 2" =r"+1
2Pt 9% _ (k)2 :(rz +1)2
Since r>1 and is odd, r = 2i + 1 for some integer i > 0.
Then r2 = (2i + 1)2 has to be an odd number.
Butr2 + 1= 2k = r2 + 1 has to divide 2.
=r2+1=1or2.
=r=0or 1
r=0, 2°*'=(0*+1)*=1
r=1, 2 =1*+1)°=4
k
Suppose (2°+1) js 5 perfect square
(2"+1)=s* = 2"=5*-1
2t =(s+1)" (s 1)’
Then both s -1 and s+1 both must be the factors of 2

s-1=1or 2, & s+l1=1or 2
=5=0,1,20r 3

If s=0; 2"*=(0+1)°(0-1)" =1= p=1

= p=0 which is not possible

= p=3

which is not possible

_1- op1_ 211V —
If s=1 27" =(1+1) (1-1) =0 which is not possible

_ 9. op1_ 206 _1)2 _
If s=2 277 =(2+1)"(2-1) _gwhich is not possible



If s=3 2°'=(3+1)°(3-1) =2 = p=7

Thus p must be 3 or 7
Tau function:
Let n be a positive integer then
t(n) denotes the number of positive factors of n that is t(n)= Zl

d/n
Sigma function:

Let n be a positive integer then o(n) denotes the sum of the positive factors of n that is

o(n) = Zd

d/n
Problems:
1. Evaluate T(18) and t(23)

Solution:
The positive divisors of 18 are 1,2,3,6,9,18 so that T(18) =6

23 being a prime , has exactly two positive divisors so 1(23) =2
2. Evaluate ©(12) and o(28)

Solution:
The positive divisors of 12 are 1,2,3,4,6,12 so that 9(12) =1+2+3+4+6+12=28
The positive divisors of 28 are 1,2,4,7,14,28 so that 9(28) =1+2+4+7+14+28=56
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