PH3151 - ENGINEERING PHYSICS (COMMON TO ALL B.E/B.TECH STUDENTS)

REGULATION - 2021

DEPARTMENT OF PHYSICS

MOHAMED SATHAK AJ COLLEGE OF ENGINEERING

CHENNAI - 603103

OBJECTIVES:

- To make the students effectively to achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

Multiparticle dynamics: Center of mass (CM) - CM of continuous bodies - motion of the CM - kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics - rotational kinetic energy and moment of inertia - theorems of M .I moment of inertia of continuous bodies - M.I of a diatomic molecule - torque - rotational dynamics of rigid bodies - conservation of angular momentum - rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum - double pendulum -Introduction to nonlinear oscillations.

UNIT II

ELECTROMAGNETIC WAVES

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNITIII

OSCILLATIONS, OPTICS AND LASERS
Simple harmonic motion - resonance -analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference - Michelson interferometer -Theory of air wedge and experiment.scep Theory of laser characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO2 laser, semiconductor laser-Basic applications of lasers in industry.

UNIT IV

BASIC QUANTUM MECHANICS
Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization -Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V

APPLIED QUANTUM MECHANICS
9
The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL : 45 PERIODS
OUTCOMES: After completion of this course, the students should be able to

- Understand the importance of mechanics.
- Express their knowledge in electromagnetic waves.
- Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
- Understand the importance of quantum physics.
- Comprehend and apply quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ.Press, 2013.
3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.

REFERENCES:

1. R.Wolfson. Essential University Physics. Volume 1 \& 2. Pearson Education (Indian Edition), 2009.
2. Paul A. Tipler, Physic - Volume 1 \& 2, CBS, (Indian Edition), 2004.
3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
4. D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer- Verlag, 2012

UNIT 1

MECHANICS

DEPARTMENT OF SCIENCE AND HUMANITIES

Course Code/Name : PH3151 / ENGINEERING PHYSICS
Regulation : 2021-R

Course Objective:

1. To make the students effectively to achieve an understanding of mechanics.
2. To enable the students to gain knowledge of electromagnetic waves and its applications.
3. To introduce the basics of oscillations, optics and lasers.
4. Equipping the students to successfully understand the importance of quantum physics.
5. To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS

Multi particle dynamics: Center of mass (CM) - CM of continuous bodies - motion of the CM - kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics - rotational kinetic energy and moment of inertia - theorems of M .I -moment of inertia of continuous bodies - M.I of a diatomic molecule torque - rotational dynamics of rigid bodies - conservation of angular momentum -rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum - double pendulum -Introduction to nonlinear oscillations.

After completion of this course, the students should be able to

COs	OUTCOMES	RBT
C103.1	Remember the concepts of Mechanics and understand the Fundamentals of static and dynamics of bodies.	K1
C103.2	Understand the properties of electro Magnetic waves and its practical applications.	K2 \& K3
C103.3	Demonstrate a strong foundational knowledge, and understand the principles of sound, Light and optics with experimental examples.	K2
C103.4	Understand and deduce the basic quantum concepts and equations.	K2
C103.5	Understand the fundamentals of quantum applications	K2

Revised Bloom's Taxonomy

K1- Remembering, K2- Understanding, K3- Applying, K4- Analyzing, K5- Evaluating, K6- Creating

CO-PO Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C103.1	3	2	1									
C103.2	3	2	1									
C103.3	3	2	1									
C103.4	2											
C103.5	1											
Avg	2.4	2	1									

$\overbrace{\text { CM shall be understood }}^{\text {Centre mass (CM) }}$ with the hell of following points
(i) A system consists of many particles with different masses and different position from the reference point.
(ii) The mass of the system is equal to the sum of the mass of each particle in the system.

If the mass of the entire particles of the system is conn--ected at a particular point, then that point is called the centre of mass of the system. CM in a One Dimensional System

Let us consider a fulcrum placed along the x-axis which is not at equilibrium position.

Let $m_{1}, m_{2}, m_{3} \ldots . m_{n}$ be mass of particles.
$x_{1}, x_{2}, x_{3} \ldots . x_{n}$ position of particles from the supporting point

The tendency of a mass to rotate with respect to supp orting point is called moment of mass.

The moment of mass for an element mass m_{n} with respect to the fulcrum can be written as $m_{n} x_{n}$

For the equilibrium system, the total moments is given by

$$
m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}=\sum_{i=1}^{n} m_{i} x_{i}=0
$$

If the total moment is equal to zero, the cM will lie at the supporting point..

But from the figure, the system is not equilibrium, Therefore the supporting point is adjusted to a distance ' x '. to get balanced system.

unbalanced state

Balanced state
under equilibrium

$$
\begin{array}{r}
\text { Enol } \Rightarrow \sum_{i=1}^{n} m_{i} x_{i}-\sum_{i=1}^{n} m_{i} x=0 \\
\sum_{i=1}^{n} m_{i} x=\sum_{i=1}^{n} m_{i} x_{i}
\end{array}
$$

The system should be moved to a distance of x in order to attain the balanced position.

CM in a Three Dimensional System:
Consider a three dimensional
System.
Here,
$m_{1}, m_{2}, m_{3} \ldots . \rightarrow$ Masses of particle
$r_{1}, r_{2}, r_{3} \ldots . \rightarrow$ Distance of particle from origin

Centre of mass along x-axis

$$
x=\frac{\sum m_{i} x_{1}}{\sum m_{i}}
$$

Centre of mass along y-axis

$$
y=\frac{\Sigma m_{i} y_{i}}{\Sigma m_{i}}
$$

centre of mass along z-axis

$$
\mathbb{Z}=\frac{\sum m_{i} z_{i}}{\sum m_{i}}
$$

Centre of mass of the system in a three dimensional system is

$$
\vec{r}_{c m}(x, y, z)=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\cdots+m_{n} \vec{r}_{n}}{m_{1}+m_{2}+m_{3}+\cdots \cdot+m_{n}}
$$

$$
r_{c_{m}}=\frac{\sum_{i=1}^{n} m_{i} \overrightarrow{r_{i}}}{\sum_{i=1}^{n} m_{i}}
$$

where $\overrightarrow{r i}=x_{i} \vec{i}+y_{i} \vec{j}+z_{i} \vec{k}$

The motion of the centre of mass is nothing but the force required to accelerate the system
of particles with respect to the centre of mass.
Let $F \rightarrow$ External force acting on the system of particles along x-axis
CM along x-axis will be

$$
x_{c o m}=\sum_{i} \frac{m_{i} x_{i}}{m_{i}}
$$

$$
x_{c m} \sum m_{i}=\sum m_{i} x_{i}
$$

Since $S m_{i}=M$

$$
\begin{align*}
& \sum m_{i}=M \tag{1}\\
& M x_{c m}=m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\cdots \\
& \text { we get -(1) }
\end{align*}
$$

Differenting we get

$$
\begin{aligned}
& \text { eventing we get } \\
& M \frac{d x_{c m}}{d t}=m_{1} \frac{d x_{1}}{d t}+m_{2} \frac{d x_{2}}{d t}+\cdots \cdot \\
& \text { again we get }
\end{aligned}
$$

Differentiating again we get

$$
\begin{align*}
& M \frac{d^{2} x_{c m}}{d t^{2}}=m_{1} \frac{d^{2} x_{1}}{d t^{2}}+m_{2} \frac{d^{2} x_{2}}{d t^{2}}+\cdots \tag{2}\\
& a=\frac{d^{2} x}{x^{2}}
\end{align*}
$$

Since acceleration $a=\frac{d^{2} x}{d t^{2}}$

$$
\begin{equation*}
M a_{c m}=m_{1} a_{1}+m_{2} a_{2}+m_{3} a_{3}+\cdots \tag{3}
\end{equation*}
$$

According to Newton's second law

$$
\begin{aligned}
& F=m a \\
\therefore(3) \Rightarrow & F_{c m}=F_{1}+F_{2}+F_{3}+\cdots \\
& F_{c m}=\sum_{i} F_{i}
\end{aligned}
$$

The force acting on the centre of mass is equal to sum of forces acting on the system of particles.
$\overbrace{\text { Consider a rigid }}^{\text {Rotational body }}$ rotating about an axis $x x^{\prime}$
$\omega \rightarrow$ Angular velocity Constant $v \rightarrow$ Linear velocity.
Here, the velocity ' v ' varies with radial distance fromaxis $\times x$ ' $v_{1}, v_{2}, v_{3} \ldots$ be linear velocities of particles of masses $m_{1}, m_{2} \ldots$
$r_{1}, r_{2}, r_{3} \ldots$ Distance of particles

$$
\begin{aligned}
& \text { K.E of particles } \\
& \text { of mass } m_{1}
\end{aligned}=\frac{1}{2} m_{1} v_{1}^{2}
$$

$$
\begin{aligned}
& \text { K.E of particles } \\
& \text { of mass } m_{2}
\end{aligned}=\frac{1}{2} m_{2} v_{2}^{2}
$$

$\left.\begin{array}{c}\text { Total K.E of all } \\ \text { particles }\end{array}\right\}=\frac{1}{2} m_{1} 0_{1}^{2}+\frac{1}{2} m_{2} 9_{2}^{2}+\cdots$ particles ${ }^{2}$,

The relation between linear velocity and angular velocity is given by

$$
v_{i}=r_{i} \omega
$$

\therefore Ear (1) becomes
Total $K \cdot E=\frac{1}{2} m_{1} r_{1}^{2}, \omega^{2}+\frac{1}{2} m_{2} r_{2}^{2} \omega^{2}+\cdots+\frac{1}{2} m^{2} r_{1}^{2} c^{2}$
Total K.E $=\frac{1}{2}\left[\Sigma m_{i} r_{i}^{\prime 2}\right] \omega^{2}$
The moment of inertia of body about the $x x^{\prime}$ axis is given by

$$
I=\sum m_{i r_{i}^{2}}^{2}
$$

$$
\therefore \text { Eqn (2) } \Rightarrow \quad K \cdot E=\frac{1}{2} I \omega^{2}
$$

The above can represents kinetic energy of the particles in a rigid body.

Theorem of Moment of Inertia,
The moment of inertia of various bodies shall be Calculated by using the following theorems.

1. Parallel axis theorem
2. Perpendicular axis theorem

Parallel axis theorem: \rightarrow
Theorem:-
It states that the M.I with respect to any axis is equal to the sum of moment of inertia with respect to a parallel axis passing through the CM and the product of mass and square of the perpendicular distance between the parallel axes.

Proof

Let $M \rightarrow$ Mass of body.
$G \rightarrow$ Centre of mass
$A A^{\prime} \rightarrow$ Rotational axis
$X x^{\prime} \rightarrow$ Axis passing through ar
$x \rightarrow \perp^{r}$ distance between $A A^{\prime}$ $\& x x^{\prime}$

Consider a particle of mass mi_{i} located at a distance r_{i} from the $x x^{\prime}$ axis
M.I of this particle about $x x^{\prime}$ is

$$
d I_{x x^{\prime}}=m_{i} r_{i}^{2}
$$

M.I of the entire body with respect to $x x^{\prime}$ axis is

$$
\begin{equation*}
I_{x x^{\prime}}=\sum d I_{x x^{\prime}}=\sum m_{i} r_{i}^{2}- \tag{1}
\end{equation*}
$$

wi y
M.I of the body about AA'

$$
\begin{array}{r}
I_{A A^{\prime}}=\sum d I_{A A^{\prime}}=\sum m_{i}\left(r_{i}+x\right)^{2} \\
I_{A A^{\prime}}=\sum m_{i}\left(r_{i}^{2}+2 r_{i} x+x^{2}\right) \\
I_{A A^{\prime}}=\sum m_{i r_{i}^{2}}+\sum 2 m_{i} r_{i} x+ \\
+\sum m_{i} x^{2} \tag{2}
\end{array}
$$

Substituting ign (1) in egg (2) we gel

$$
\begin{equation*}
\therefore I_{A A^{\prime}}=I_{x x^{\prime}}+2 x \text { Emir }+M x^{2} \tag{3}
\end{equation*}
$$

Where $M=\sum m_{i}$
According to $C M$ of rigid body

$$
\begin{gathered}
\\
\\
\\
\\
\\
I_{A A^{\prime}}=I_{x x^{\prime}}+M x^{2}
\end{gathered}
$$

This eqn represents the eqn for parallel axis theorem.

Perpendicular Axis theorem:-
Theorem:-
It states that the MI of a thin plane body about an axis perpendicular to the thin plane surface is equal to the sum of the MI of a thin plane about two two \perp^{r} axes lying in the surface. of the plane.

Let $M \rightarrow$ Mass of the body $x x^{\prime}, y y^{\prime}, z z^{\prime} \rightarrow$ Three mutually \mathcal{L}^{r} axes
$0 \rightarrow$ Common point of 3 axes.
$y y^{\prime}, z z^{\prime}$ are parallel to surface $x x^{\prime}$ is \perp^{r} to surface.

Consider a particle of mass mi_{i} located at a distance r_{i} from the point ' 0 '.

The moment of inertia of entire body about $x x^{\prime}$ is given by

$$
\begin{equation*}
I_{x x^{\prime}}=\sum m_{i} r_{i}^{2} \tag{1}
\end{equation*}
$$

From the figure, we can write

$$
\begin{equation*}
r_{i}^{2}=y_{i}^{2}+z_{i}^{2} \tag{2}
\end{equation*}
$$

Substituting eqn (2) in eqn(1) we have

$$
\begin{align*}
& I_{x x^{\prime}}=\sum m_{i}\left[y_{i}^{2}+z_{i}^{2}\right] \\
& I_{x x^{\prime}}=\sum m_{i} y_{i}^{2}+\sum m_{i} z_{i}^{2} \tag{3}
\end{align*}
$$

We know that
M.I of plane about $Y Y^{\prime}$ axis is

$$
I_{y y^{\prime}}=\sum m i y_{i}^{2}
$$

M.I of plane about $z z^{\prime}$ axis is

$$
I_{z z^{\prime}}=\sum m i z_{i}^{2}
$$

\therefore Eqn (3) becomes

$$
I_{x x}{ }^{\prime}=I_{y y^{\prime}}+I_{z z^{\prime}}
$$

This equation represents the equation for perpendicular axis theorem.
M.I of a Diatomic Molecule:

Let us consider a rigid diatomic molecule containing two atoms of masses m_{1} and m_{2} Separated by a distance ' x :

Let $\begin{aligned} 0 & \rightarrow C M \text { of the system } \\ x_{1}, x_{2} & \rightarrow \text { Distance of two atoms }\end{aligned}$ from the point ' 0 '.

From fig, we have

$$
\begin{equation*}
x=x_{1}+x_{2} \tag{1}
\end{equation*}
$$

Since the system is balanced with respect to the CM, we have

$$
\begin{equation*}
m_{1} x_{1}=m_{2} x_{2} \tag{2}
\end{equation*}
$$

From can (1), $x_{2}=x-x_{1}$
Substituting eqn (3) in eqn (2) we have

$$
\begin{gather*}
m_{1} x_{1}=m_{2}\left(x-x_{1}\right) \\
m_{1} x_{1}=m_{2} x-m_{2} x_{1} \\
m_{1} x_{1}+m_{2} x_{1}=m_{2} x \\
x_{1}\left(m_{1}+m_{2}\right)=m_{2} x \\
x_{1}=\frac{m_{2} x}{m_{1}+m_{2}} \tag{4}
\end{gather*}
$$

From en (1) we have $x_{1}=x-x_{2}$
Substituting eau (5) in eqn (2) we get

$$
\begin{align*}
& m_{1}\left(x-x_{2}\right)=m_{2} x_{2} \\
& m_{1} x-m_{1} x_{2}=m_{2} x_{2} \\
& m_{1} x_{2}+m_{2} x_{2}=m_{1} x \\
& x_{2}\left[m_{1}+m_{2}\right]=m_{1} x \\
& x_{2}=\frac{m_{1} x}{m_{1}+m_{2}} \tag{b}
\end{align*}
$$

M.I of a diatomic molecule about an axis passing through the CM is given by

$$
I=m_{1} x_{1}^{2}+m_{2} x_{2}^{2}
$$

Substituting eqn (4) \& (6) in eqn(7) we get

$$
\begin{aligned}
& I=m_{1}\left[\frac{m_{2} x}{m_{1}+m_{2}}\right]^{2}+m_{2}\left[\frac{m_{1} x}{m_{1}+m_{2}}\right]^{2} \\
& I=\frac{x^{2}}{\left(m_{1}+m_{2}\right)^{2}}\left[m_{1} m_{2}^{2}+m_{2} m_{1}^{2}\right] \\
& I=\frac{x^{2} \cdot\left(m_{1} m_{2}\right)}{\left(m_{1}+m_{2}\right]^{2}}\left[m_{1}+m_{2}\right] \\
& I=\frac{m_{1} m_{2}}{m_{1}+m_{2}} x^{2}
\end{aligned}
$$

Since $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is called the reduced mass of the system, eqn(8) can be writtenas

$$
I=\mu x^{2}
$$

This an represents M.I of Diatmoic molecule

Rotational Energy state of a Rigid?
Diatomic molecule :3)
Let us consider a rigid diatomic molecule having two atoms of masses m_{1} and m_{1} connected by a weightless rod of lengit ' x '.

Let $\omega \rightarrow$ angular velocity of rotating diatomic molecule.
$\theta \rightarrow$ centre of mass.
The $K \cdot E$ of diatomic molecule is

$$
\begin{equation*}
K E=\frac{1}{2} \pi \omega^{2} \tag{1}
\end{equation*}
$$

The angular momentum of a rotating body is

$$
\begin{align*}
& L=I \omega \\
& \omega=\frac{L}{I}
\end{align*}
$$

Substituting eqn (2) in eqn(1)

$$
\begin{align*}
& K E=\frac{1}{2} I \frac{L^{2}}{I^{2}} \\
& K E=\frac{1}{2} \frac{L^{2}}{I} \\
& K \cdot E=\frac{L^{2}}{2 I} . \tag{3}
\end{align*}
$$

M.I of inertia of rotating diatomic molecule is

$$
\begin{equation*}
I=\mu x^{2} \tag{4}
\end{equation*}
$$

Where μ is the reduced mass
Substituting equation (4) in eqn (3) we get

$$
K E=\frac{L^{2}}{2 \mu x^{2}}
$$

En (5) represents the classical equation for $K \cdot E$ of arigid diatomic molecule, in which att the energy levels are continuous for all possible valves of ' L '.

But according to quantum mechanics, the energy levels are discrete.
\therefore Based on quantum theory, The angular momentum ' L ' is given by

$$
\begin{equation*}
L=\sqrt{J(J+1)} \hbar \tag{b}
\end{equation*}
$$

Where $J \Rightarrow$ Total angular mom. quantum number

$$
J=0,1,2,3 \cdots \cdot
$$

Substituting eqn (6) is eqn (5) we have,

$$
\begin{equation*}
K \cdot E=\frac{[\sqrt{J \in J+1]} \hbar]^{2}}{2 \mu x^{2}} \tag{7}
\end{equation*}
$$

(i.) $E_{J}=\frac{J(J+1) \hbar^{2}}{2 \mu x^{2}}$

En (7) represents the rotational ${ }_{\alpha}^{k \cdot E}$ diatomic molecule quantum mechanically.
(i) when $J=0, E_{0}=0$
(ii) When $J=1$.

$$
E_{1}=\frac{\hbar^{2}}{\mu x^{2}}
$$

(ii) When $J=2$

$$
\begin{aligned}
& E_{2}=\frac{2(3) \hbar^{2}}{2 \mu x^{2}} \\
& E_{2}=\frac{3 \hbar^{2}}{\mu x^{2}} \\
& E_{2}=3 E_{1}
\end{aligned}
$$

The general equation for finding energy states of a diatomic molecule is given by

$$
E_{J}=\frac{J(J+1)}{2} E_{1}
$$

From the above results, we can confirm that rotational KE of rigid diatomic molecule is quantized and discrete.

Torsional Pendulums
A circular metallic disc is suspended using a then wire that executes torsional oscillation is called torsional pendulum.

In torsional pendulum upper end is fixed and lower end is connected to the centre of a heavy circular disc

The restoring couple Set up in the wire by applying a twist $=c \theta$
where $\theta \rightarrow$ Angle of rotation

$C \rightarrow$ couple per unit twist
But applied couple $=I \frac{d^{2} \theta}{d t}$
Where $\frac{d^{2} \theta}{d t^{2}} \rightarrow$ Angular Momentum
$I \rightarrow$ Moment of inertia
In equilibrium
Applied couple $=$ Restoring Couple

$$
\begin{align*}
& I \frac{d^{2} \theta}{d t^{2}}=c \theta \\
& \frac{d^{2} \theta}{d t^{2}}=\frac{c}{I} \theta \tag{3}
\end{align*}
$$

Since, the acceleration is directly proportional to angular displacement, the motion of the disc is simple Harmonic Motion.
$\left.\therefore \begin{array}{l}\text { Time period of } \\ \text { tine oscillation }\end{array}\right\} T=2 \pi \sqrt{\frac{\text { Displacement }}{\text { Acceleration }}}$

$$
\begin{align*}
& T=2 \pi \sqrt{\frac{\theta}{\operatorname{CQ} / T}} \\
& T=2 \pi \sqrt{\frac{I}{C}} \tag{4}
\end{align*}
$$

Determination of Torsional Rigidity:

* The disc is rotated through a Small angle and set it free
* The time taken for 20 complete oscillation is noted. From this, the period of I oscillation is found.
* The diameter and mass of the disc are measured.

We know that

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{I}{C}} \tag{5}
\end{equation*}
$$

Squaring on bothsides

$$
\begin{equation*}
J^{2}=4 \pi^{2} \cdot \frac{I}{c} \tag{6}
\end{equation*}
$$

Substituting couple per unit twist $c=\frac{\pi n r^{4}}{2 l}$ in ear (6) we get

$$
T^{2}=4 \pi^{2} \cdot I \times \frac{2 l}{A \pi r^{4}}
$$

Rearranging, the above eq

$$
n=\frac{8 \pi I l}{T^{2} r^{4}}
$$

Where $I=\frac{M R^{2}}{2}$
$M \rightarrow$ Mass of the disc
$R \rightarrow$ Radius of the disc.

Double Pendulum:-
It consists of two pendulums in which one pendulum is attached to the other pendulum. If the motion is small then the pendulum behaves as a simple pendulum. If the motion is large then it behaves as a chaotic system.

Description:--8
Consider a double pendulum Suspended to a point ' 0 '.
$m_{1} \rightarrow$ mass of pendulum -1
$m_{2} \rightarrow$ mass of pendulum -2
$l_{1} \rightarrow$ length of pendulum -1
$l_{2} \rightarrow$ length of pendulum-2
$\theta_{1} \rightarrow$ Angle of pendulum-1 during oscillation.
$\theta_{2} \rightarrow$ Angle of pendulum-2 during oscillation.

Let us derive the expressions for the displacement, velocity, acceleration, kinetic energy.

Displacement:-
Let $x_{1} \rightarrow$ Displacement of pendulum -1 along x axis
$x_{2} \rightarrow$ Displacement of pendulum-2 along x axis.
$y_{1} \rightarrow$ Displacement of pendulum-1 along yaxis
$y_{2} \rightarrow$ Displacement of pendulum -2 along yaxis.

From figure (i)

$$
\begin{align*}
& \sin \theta_{1}=\frac{x_{1}}{l_{1}} \\
& x_{1}=l_{1} \sin \theta_{1} \tag{1}
\end{align*}
$$

From figure (ii)

$$
\begin{aligned}
\cos \theta_{1} & =\frac{-y_{1}}{l_{1}} \\
y_{1} & =-l_{1} \cos \theta_{1}-
\end{aligned}
$$

From figure (iii)

$$
\begin{align*}
& \sin \theta_{2}=\frac{x^{\prime}}{l_{2}} \\
& x^{\prime}=l_{2} \sin \theta_{2} \tag{3}
\end{align*}
$$

From figure (iv)

$$
\begin{align*}
& \cos \theta_{2}=\frac{-y^{\prime}}{l_{2}} \\
& y^{\prime}=l_{2} \cos \theta_{2} \tag{4}
\end{align*}
$$

Displacement of pendulum-2 along x-axis is given by

$$
\begin{align*}
& x_{2}=x_{1}+x^{\prime} \\
& x_{2}=l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2} \tag{5}
\end{align*}
$$

Displacement of pendulum-2 abng y-axis is given by

$$
\begin{align*}
& y_{2}=y_{1}+y^{\prime} \\
& y_{2}=-l_{1} \cos \theta_{1}-l_{2} \cos \theta_{2} \tag{6}
\end{align*}
$$

Egns (1),(2), (5) (6) represents the displacement at various positions of the double pendulum.

Velocity:
The velocity is the derivative with respect to time of the position.

$$
\frac{d x_{1}}{d t}=l_{1} \cos \theta_{1} \dot{\theta}_{1}
$$

(ie)

$$
\begin{aligned}
& v_{x_{1}}=l_{1} \cos \theta_{1} \dot{\theta}_{1} \\
& v_{y_{1}}=l_{1} \sin \dot{\theta}_{1} \dot{\theta}_{1} \\
& v_{x_{2}}=l_{1} \cos \theta_{1} \dot{\theta}_{1}+l_{2} \cos \theta_{2} \dot{\theta}_{2} \\
& v_{y_{2}}=l_{1} \sin \dot{\theta}_{1} \dot{\theta}_{1}+l_{2} \sin \dot{\theta}_{2} \dot{\theta}_{2}
\end{aligned}
$$

The above eqns represents the velocity at various positions of the double pendulum.
Kinetic Energy:
K.E of the system is

$$
\begin{aligned}
& T=\sum_{i=1}^{2} \frac{1}{2} m_{i}\left[v_{x i}^{2}+v_{y i}^{2}\right] \\
& T=\frac{1}{2} \Sigma \\
& T=\frac{1}{2} m_{1}\left[v_{x_{1}}^{2}+v_{y_{1}}^{2}\right]+\frac{1}{2} m_{2}\left[v_{x_{2}}^{2}+v_{y_{2}}^{2}\right)
\end{aligned}
$$

Substituting the expressions for respective velocities, we get

$$
\left.\left\lvert\, \begin{array}{r}
T=\frac{1}{2} m_{1}\left[l_{1}^{2} \cos ^{2} \theta_{1} \dot{\theta}_{1}^{2}+l_{1}^{2} \sin ^{2} \theta_{1} \dot{\theta}_{1}^{2}\right]+ \\
\frac{1}{2} m_{2}\left[\left(l_{1} \cos \theta_{1} \dot{\theta}_{1}+l_{2} \cos \theta_{2} \dot{\theta}_{2}\right)^{2}+\right. \\
\left.\quad\left(l_{1} \sin \theta_{1} \dot{\theta}_{1}+l_{2} \sin \theta_{2} \dot{\theta}_{2}\right)^{2}\right]
\end{array}\right.\right]
$$

This eau represents the kinetic energy of the double pendulum.

Potential Energy:
P.E of the system is

$$
V=m_{1} g y_{1}+m_{2} g y_{2}
$$

Substituting expressions for y_{1} and y_{2} we get

$$
\begin{aligned}
& y_{1} \text { and } y_{2} \text { we } g e t \\
& V=-m_{1} g l_{1} \cos \theta_{1}-m_{2} g\left(l_{1} \cos \theta_{1}+l_{2} \cos \theta_{2}\right)
\end{aligned}
$$

This en represents the potential energy of the double pendulum.

Moment of inertia of a circular Disc
Let us find the moment of inertia of a circular disc with rotating axis at various positions
Position-1
Rotating axis is passing through The CM and I^{r} to the disc plane.

Let $R \rightarrow$ Radius of Circular Disc $M \rightarrow$ Mass of dis C
Assume the disc consists of large no. of small rings. Let $d m$ and $d r$ be mass and thickness of one of the rings.

MI of a small ring is given by

$$
\begin{equation*}
d I=(d m) r^{2} \tag{1}
\end{equation*}
$$

Mass of the small ring (dm) with radius ' γ ' is given by

$$
d m=\sigma \times 2 \pi r+d r
$$

$$
\begin{equation*}
d m=\sigma 2 \pi r d r \tag{2}
\end{equation*}
$$

We know that the surface mass density

$$
\sigma=\frac{\text { Mass }}{\text { Area }}=\frac{M}{\pi R^{2}}
$$

Substituting eqn (3) in eqn (2) we get

$$
\begin{align*}
& d m=\frac{M}{\pi R^{2}} 2 \pi r d r \\
& d m=\frac{2 M}{R^{2}} r d r \tag{4}
\end{align*}
$$

Substituting eau (4) in eau (1)

$$
\begin{align*}
& d I=\frac{2 M}{R^{2}} r d r \cdot r^{2} \\
& d I=\frac{2 M}{R^{2}} r^{3} d r \tag{5}
\end{align*}
$$

Integrating eon (5) witt hin the limits O to R, we will get total MI of disc.
(e)

$$
\begin{align*}
& \text { disc. } \\
& \int d I=\int_{0}^{R} \frac{2 M}{R^{2}} r^{3} d r \\
& I=\frac{2 M}{R^{2}}\left[\frac{r^{4}}{4}\right]_{0}^{R} \\
& I=\frac{2 M}{R^{2}} \cdot \frac{R^{4}}{4} \tag{b}\\
& I=\frac{M R^{2}}{2} \text {-(b) }
\end{align*}
$$

Evan (6) gives MI of circular disc when the rotating axis is passing through the CM,
ring $\int_{\text {Rotating axis at the edge of }}$ the disc and \perp^{γ} to the disc plane.

Let $X x^{\prime} \& A A^{\prime}$ are parallel and both are perpendicular to disc: surface
Based on the parallel axis theorem

$$
I_{A A^{\prime}}=I_{x x^{\prime}}+M R^{2}
$$

using ean (6) we can write

$$
I_{x x^{\prime}}=\frac{1}{2} M R^{2}
$$

Substituting eau (8) in eqn(7) we get

$$
\begin{align*}
& I_{A A^{\prime}}=\frac{1}{2} M R^{2}+M R^{2} \\
& I_{A A^{\prime}}=\frac{3}{2} M R^{2}-9
\end{align*}
$$

Eqi (a) represents the MI, when the rotational axis is at the edge of the disc.
Position-3
Rotating axis is passing through the diameter of the disc
Let $Y Y^{\prime} \rightarrow$ Rotating axis, passing through the diameter.
$x x^{\prime} \rightarrow 1^{\gamma}$ axis to the surface.
Based on \mathcal{L}^{γ} axis theorem

$$
\begin{equation*}
I_{x x^{\prime}}=I_{y y^{\prime}}+I_{z z^{\prime}} \tag{10}
\end{equation*}
$$

For Circular Disc

$$
I_{z z^{\prime}}=I_{y y^{\prime}}
$$

(10) $\Rightarrow I_{x x^{\prime}}=2 I_{y y^{\prime}}$

$$
\begin{aligned}
& \text { Mass }(\mathrm{dm})=\begin{array}{c}
\text { Surface } \\
\text { density }
\end{array} \begin{array}{c}
\text { Cir. of } \\
\text { thering }
\end{array} \text { Thickos of the Position-2 } \\
& \text { Position-3 }
\end{aligned}
$$

$$
I_{y y^{\prime}}=\frac{I_{x x^{\prime}}}{2}
$$

We know $I_{x x^{\prime}}=\frac{1}{2} M R^{2}$

$$
\begin{align*}
\therefore I_{y y^{\prime}} & =\frac{\frac{1}{2} M R^{2}}{2} \\
I_{y y^{\prime}} & =\frac{1}{4} M R^{2} \tag{II}
\end{align*}
$$

Egn (II) represents MI, when the rotational axis is passing through the diameter of the disc.

Rotating axis at the edge of disc and parallel to disc plane

Let $Y Y^{\prime}$ and $A A^{\prime}$ axes are $11{ }^{\prime}$ to each other and also 11 to disc surface
Based on the "11 axis theorem

$$
\begin{equation*}
I_{A A^{\prime}}=I_{y y^{\prime}}+M R^{2} \tag{12}
\end{equation*}
$$

Substituting eqn (11) in eqn (12) we get

$$
\begin{align*}
& I_{A A^{\prime}}=\frac{1}{4} M R^{2}+M R^{2} \\
& I_{A A^{\prime}}=\frac{5}{4} M R^{2} \tag{13}
\end{align*}
$$

En (13) represents the MI When the rotational axis at the edge of the disc and $11{ }^{l}$ to. the plane.

UNIT 2

ELECTROMAGNETIC

THEORY

Maxwell's Equations)
The Maxwell's equations are used to explain the fundmental relations between electric and magnetic fields.

The formulated Maxwell's equations are
Fan (1): $\nabla \cdot \vec{D}=e \quad$ (Gauss law for alec)
Ean (2): $\nabla \cdot \vec{B}=0 \quad$ (Gauss law for $m y$
Eqn (3) : $\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ (Faraday (aw)
En (4): $\nabla \times \vec{H}=\vec{J} * \frac{\partial \vec{J}}{\partial t}$ (Ampere law)
Derivations of Maxwell's Equations:
Maxwells first equation from electric Gauss law

Let $s \rightarrow$ surface of dielectric medium
$V \rightarrow$ Volume of dielectric medium.
$Q \rightarrow$ Total change of dielectric
$e \rightarrow$ charge density.
According to Gauss law, for electric field we can write

$$
\begin{align*}
& \oint_{s} \vec{E} \cdot d s=\frac{Q}{\varepsilon_{0}} \\
& \oint \varepsilon_{0} \vec{E} \cdot d s=Q \tag{1}
\end{align*}
$$

We know Displacement vector

$$
\vec{D}=\varepsilon \vec{E}
$$

Since $\varepsilon=\varepsilon_{0} \varepsilon_{r}, \vec{D}=\varepsilon_{0} \varepsilon_{r} \vec{E}$
For Air $\varepsilon_{r}=1$

$$
\begin{equation*}
\therefore \vec{D}=\varepsilon_{0} \vec{E} \tag{2}
\end{equation*}
$$

Substituting eqn(3) in can (1) we get

$$
\begin{equation*}
\oint_{s} \vec{D} \cdot d s=Q \tag{3}
\end{equation*}
$$

Total charge Q interns of volume is given by

$$
\begin{equation*}
Q=\oint_{V} e d v \tag{4}
\end{equation*}
$$

Comparing eqn(3) \& eqn(4) we have

$$
\begin{equation*}
\oint_{s} \vec{D} \cdot d s=\oint_{v} e \cdot d v \tag{5}
\end{equation*}
$$

Eqn (5) Represents Maxwell's $1^{\text {st }}$ equation in integral form.
Differential Form:
Applying Gauss divergence theorem to LHS of eau (5) we get

$$
\begin{equation*}
\oint_{s} \vec{D} \cdot d s=\oint_{v} \vec{\nabla} \cdot \vec{D} d s \tag{6}
\end{equation*}
$$

From ens (5) \& (6) we can write

$$
\begin{equation*}
\oint_{v} \vec{\nabla} \cdot \vec{D} d s=\oint e \cdot d v \tag{7}
\end{equation*}
$$

Two volume integrals are equal of these integrands are equal.

$$
\oint<\quad \vec{\nabla} \cdot \vec{D}=P
$$

Eqn (8) represents the Maxwell's $1^{\text {st }}$ equation in differential form.
(ii)Maxwell's second equation form
magnteic Gauss law
According to Gauss law for magnetic field, the net magnetic flux through any closed surface is equal to zero.

$$
\begin{equation*}
\text { (il) } \phi=0 \tag{9}
\end{equation*}
$$

We know that the magnetic flux (Q) in terms of magnetic induction (B) is

$$
\begin{equation*}
\oint=\oint \vec{B} \cdot d s \tag{ID}
\end{equation*}
$$

Comparing eqns (9) \forall (10) we get

$$
\oint \vec{B} \cdot d s=0
$$

Ean (II) represents Maxwell's second equation in integral form.
Differential form:- -
Using Gauss' Divergence theorem on eqn(II) we get

$$
\begin{equation*}
\oint_{S} \vec{B} \cdot d s=\oint_{V} \vec{\nabla} \cdot \vec{B} d v=0 \tag{12}
\end{equation*}
$$

Here the surface bound volume is an arbitrary, therefore eqn (12) holds good only if the integral vanishes

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=0 \tag{3}
\end{equation*}
$$

Eqn (13) represents the Maxwell's $2^{\text {nd }}$ ear in differential form.

Maxwell's third equation from es
Faraday's law
According to Faraday's law

$$
\begin{equation*}
\varepsilon m f=-\frac{d \phi}{d t} \tag{14}
\end{equation*}
$$

$\varepsilon m f \rightarrow$ Electro Motive force $\phi \rightarrow$ Magnetic flux.

Whet
EMF in terms of electric field (E)

$$
\begin{equation*}
\varepsilon=\oint_{l} \vec{E} \cdot d l \tag{15}
\end{equation*}
$$

The magnetic flux unity in terms of magnetic induction (B)

$$
\begin{equation*}
\phi=\oint_{s} \vec{B} \cdot d s \tag{16}
\end{equation*}
$$

Substituting the ens (15), (16) in ieqn (4) we get

$$
\begin{aligned}
& \text { get } \\
& \oint_{l} \vec{E} \cdot d l=-\frac{d\left(\oint_{s} \vec{B} \cdot d s\right)}{d t}
\end{aligned}
$$

Since ' B ' alone changes with time we can write,

$$
\oint_{l} \vec{E} \cdot d l=-\oint_{s} \frac{d \vec{B}}{d t} \cdot d s
$$

Egn(17) represents the Maxwell's $3^{\text {rd }}$ egn in integral form.
Differential form:-
Apply stoke's theorem to LHS of en (ii) we can write

$$
\oint_{l} \vec{E} \cdot d l=\oint_{s} \vec{\nabla} \times \vec{E} d l
$$

Comparing the eqns (17) 4 (8) we get

$$
\begin{equation*}
\oint_{l} \vec{E} \cdot d l=\oint_{S} \vec{\nabla} \times \vec{E} d l \tag{9}
\end{equation*}
$$

When surface is an arbitrary, the integral must vanish.
\therefore Ear (9) becomes

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial \vec{E}}
$$

Ear (20) represents the Maxwell's $3^{\text {rd }}$ eau in differential form.
(iv) Maxwell's fourth equation from

Ampere's Law
From Ampere's circuit law,

$$
\begin{equation*}
\oint_{l} \vec{H} \cdot d \vec{l}=I \tag{21}
\end{equation*}
$$

We know, the relation between the current and current density is given by

$$
\begin{equation*}
I=\oint_{s} \vec{J} \cdot d \vec{s} \tag{22}
\end{equation*}
$$

Substituting eqn (22) in eqn (20) we get

$$
\oint_{l} \vec{H} \cdot \overrightarrow{d l}=\oint_{s} \vec{J} \cdot d \vec{s}
$$

By stoke's theorem
LHS of
(23) $\Rightarrow \oint_{l} \vec{H} \cdot \overrightarrow{d l}=\oint \nabla \times \vec{H} \cdot d s$

Comparing eqn (23), \& (4) we have

$$
\oint \vec{\nabla} \times \vec{H} \cdot d s=\oint \vec{J} \cdot \overrightarrow{d s}
$$

As the surface is arbitrary, integral must vanish.
(25) $\Rightarrow \vec{\nabla} \times \vec{H}=\vec{J}$

Apply Gauss divergence theorem on both sides of eqn (26) we get

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{H})=\vec{\nabla} \cdot \vec{J}
$$

From vector identity $\vec{\nabla} \cdot(\vec{\nabla} \times H)=0$

$$
\therefore \quad \vec{\nabla} \cdot \vec{J}=0
$$

But according to eq of Continuity

$$
\begin{align*}
& \vec{\nabla} \cdot \vec{J}+\frac{\partial P}{\partial t}=0 \\
& \vec{\nabla} \cdot \vec{J}=-\frac{\partial P}{\partial t}
\end{align*}
$$

(ie) $\vec{\nabla} \cdot \vec{J}=0$ only if $\frac{\partial e}{\partial t}=0$
From egn (28) we know charge density is constant. Therefore Ampere's ear is valid for steady state conditions and invalid for time varying fields.
\therefore By adding current density I_{D} to equation (26), the equation will be valid for all conditions.

$$
\begin{equation*}
\text { (i) } \vec{\nabla} \times \vec{H}=\vec{J}+\vec{J}_{d} \tag{29}
\end{equation*}
$$

Taking divergence on bothsides

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{H})=\vec{\nabla} \cdot\left(\vec{J}+\vec{J}_{d}\right)
$$

Using vector identity

$$
\begin{gathered}
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{H})=0 \\
\therefore \vec{\nabla} \cdot \vec{J}+\vec{\nabla} \cdot \overrightarrow{J_{d}}=0
\end{gathered}
$$

Here $\vec{\nabla} \cdot \vec{J}=-\frac{\partial e}{\partial t}$

$$
\therefore-\frac{\partial P}{\partial t}+\vec{\nabla} \cdot \vec{J}_{d}=0
$$

$$
\vec{\nabla} \cdot J_{d}=\frac{\partial P}{\partial t}
$$

From $1^{\text {st }}$ en $\nabla \cdot D=e$

$$
\begin{align*}
\therefore \vec{\nabla} \cdot J_{d} & =\frac{\partial(\vec{\nabla} \cdot \vec{D})}{\partial t} \\
\vec{\nabla} \cdot \overrightarrow{J_{d}} & =\vec{\nabla} \cdot \frac{\partial D}{\partial t} \\
\vec{J}_{d} & =\frac{\partial D}{\partial t} \tag{30}
\end{align*}
$$

Substitute eqn (30) in eqn (29)

$$
\begin{equation*}
\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial D}{\partial t} \tag{31}
\end{equation*}
$$

En (31) represents the Maxwell's fourthegn in differential eq.
 free space

Let us consider a plane electromagnetic wave which propagates in vacuum. Let the permeability $\left(\mu_{0}\right)$ and the permitivity $\left(\varepsilon_{0}\right)$ in free space are constant and conductivity is zero.

Also charge density $e=0$
The Maxwell's equation for free space shall be written as

$$
\begin{align*}
& \vec{\nabla} \cdot \vec{E}=0 \tag{-}\\
& \vec{\nabla} \cdot \vec{B}=0 \tag{2}\\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{3}\\
& \vec{\nabla} \times \vec{B}=\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}
\end{align*}
$$

The wave equation in terms of electric field in free spaces

Taking curl on both sides of ign (3), we get

$$
\begin{align*}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=\vec{\nabla} \times\left[-\frac{\partial \vec{B}}{\partial t}\right] \\
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=-\frac{\partial}{\partial t}[\vec{\nabla} \times \vec{B}] \tag{5}
\end{align*}
$$

Substituting ear (4) in eqn(5) we get

$$
\begin{align*}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=-\frac{\partial}{\partial t}\left[\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial \vec{t}}\right] \\
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=\varepsilon_{0} \sigma_{0} \frac{\partial^{2} E}{\partial t^{2}} \tag{6}
\end{align*}
$$

Using vector identity

$$
\begin{equation*}
\vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=\vec{\nabla}[\vec{\nabla} \cdot \vec{E}]-\nabla^{2} \vec{E}- \tag{7}
\end{equation*}
$$

Comparing eqns (6) (7) we get

$$
\begin{aligned}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}] \\
& \vec{\nabla}[\vec{\nabla} \cdot \vec{E}]-\vec{V}^{2} E=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}}
\end{aligned}
$$

From en (1) $\vec{\nabla} \cdot \vec{E}=0$

$$
\begin{array}{r}
\therefore \vec{\nabla}(0)-\nabla^{2} E=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}} \\
\nabla^{2} E-\varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}}=0 \text {-(8) }
\end{array}
$$

Eau (8) represents the wave eqn in terms of electric field in free space
Wave equation in terms of magnetics Field in frae Space:

Taking curl on bothsides of egn (4) we get

$$
\begin{align*}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=\vec{\nabla} \times\left[\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}\right] \\
& \vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=\varepsilon_{0} \mu_{0} \frac{\partial(\vec{J} \times \vec{E})}{\partial t} \tag{6}
\end{align*}
$$

Substituting eqn (3) in eqn (9) we get

$$
\begin{align*}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=\varepsilon_{0} \mu_{0} \frac{\partial}{\partial t}\left[-\frac{\partial \vec{B}}{\partial t}\right] \\
& \vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} B}{\partial t^{2}} \tag{10}
\end{align*}
$$

Using vector identity, we can write

$$
\begin{equation*}
\vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=\vec{\nabla}(\vec{\nabla} \cdot \vec{B})-\nabla^{2} \vec{B} \tag{II}
\end{equation*}
$$

Comparing ens (10) \& (11) we get

$$
\begin{equation*}
\vec{\nabla}(\vec{\nabla} \cdot \vec{B})-\nabla^{2} \vec{B}=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} B}{\partial t^{2}} \tag{12}
\end{equation*}
$$

Substituting eqn (2) in eqn (12) we get

$$
\begin{align*}
& \vec{\nabla}(0)-\nabla^{2} \vec{B}=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} B}{\partial t^{2}} \\
& \nabla^{2} B-\varepsilon_{0} \mu_{0} \frac{\partial^{2} B}{\partial t^{2}}=0 \tag{13}
\end{align*}
$$

Eau (13) represents the wave eqn interns of the magnetic field in free space.

Plane Electromagnetic waves in non-condercting medium.

The Maxwell's equations for a linear isotropic and homogeneous dielectric medium take the form as follows

$$
\begin{align*}
& \vec{\nabla} \cdot \vec{E}=0 \tag{1}\\
& \vec{\nabla} \cdot \vec{B}=0 \tag{2}\\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{3}\\
& \vec{\nabla} \times \vec{B}=\varepsilon \mu \frac{\partial \vec{E}}{\partial t} \tag{4}
\end{align*}
$$

Wave equation interms of electric field in dielectric medium.

Taking curl on bothsides of equation (3) we get,

$$
\begin{align*}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=\vec{\nabla} \times\left[-\frac{\partial \vec{B}}{\partial t}\right] \\
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=-\frac{\partial}{\partial t}[\vec{\nabla} \times \vec{B}] \tag{5}
\end{align*}
$$

Substituting ear (4) in ear (5) we get

$$
\begin{align*}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=-\frac{\partial}{\partial t}\left[\varepsilon_{0} \mu \frac{\partial E}{\partial t}\right] \\
& \vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=-\varepsilon \mu \cdot \frac{\partial^{2} \vec{E}}{\partial t^{2}} \tag{b}
\end{align*}
$$

Using vector identity we get

$$
\begin{equation*}
\vec{\nabla} \times[\vec{\nabla} \times \vec{E}]=\vec{\nabla}[\vec{\nabla} \cdot \vec{E}]-\vec{\nabla} \vec{E} \tag{7}
\end{equation*}
$$

Comparing (b) $\forall(7)$ we get

$$
\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\nabla^{2} E=-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

From eqn(1) $\vec{\nabla} \cdot \vec{E}=0$

$$
\begin{align*}
\therefore & \vec{\nabla}(0)-\nabla^{2} E=-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& \overrightarrow{ } E-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0 \tag{8}
\end{align*}
$$

Eau (8) represents the wave equation interms of electric field in a dielectric medium.
Wave equation interns of magnetic) field in dielectric Medium.)

Taking curl on both sides of equation (4)

$$
\begin{align*}
& \vec{\nabla} \times(\vec{\nabla} \times \vec{B})=\vec{\nabla} \times\left[\varepsilon \mu \frac{\partial \vec{E}}{\partial t}\right] \\
& \vec{\nabla} \times(\vec{\nabla} \times B]=\varepsilon \mu \frac{\partial}{\partial t}[\vec{\nabla} \times \vec{E}] \tag{0}
\end{align*}
$$

Substituting eau (3) in eqn (9)

$$
\begin{align*}
& \vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=\varepsilon \mu \frac{\partial}{\partial t}\left[-\frac{\partial \vec{B}}{\partial t}\right] \\
& \vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=-\varepsilon \mu \frac{\partial^{2} B}{\partial t^{2}} \tag{10}
\end{align*}
$$

Using vector identity, we can write

$$
\begin{equation*}
\vec{\nabla} \times[\vec{\nabla} \times \vec{B}]=\vec{\nabla}[\vec{\nabla} \cdot \vec{B}]-\nabla^{2} B \tag{11}
\end{equation*}
$$

From (10) \&(11)

$$
\vec{\nabla}[\vec{\nabla} \cdot \vec{B}]-\nabla^{2} B=-\varepsilon \mu \frac{\partial^{2} B}{\partial t^{2}}
$$

From eqn (2) $\vec{\nabla} \cdot \vec{B}=0$

$$
\begin{array}{r}
\therefore \vec{\nabla}(0)-\nabla^{2} B=-\varepsilon \mu \frac{\partial^{2} B}{\partial t^{2}} \\
\\
-\nabla^{2} B=-\varepsilon \mu \frac{\partial^{2} B}{\partial t^{2}} \tag{12}\\
\nabla^{2} B-\varepsilon \mu \frac{\partial^{2} B}{\partial t^{2}}=0
\end{array}
$$

Egn (12) represents the wave equation in terms of mag-field in a dielectric medium.

Energy content in electromag
waves is the sum of time -noetic waves is the sum of time average of the energy density in electromagnetic waves due to electric field and magnetic field.

$$
\left.\left\lvert\, \begin{array}{cc}
\text { Tot Energy } \\
\text { content in } \\
\text { Em waves }
\end{array}\right.\right\} \left.=\begin{array}{cc}
\text { Energy content Energy Contend } \\
\text { due to elect } t \text { due to mag } \\
\text { field } & \text { field. }
\end{array} \right\rvert\,
$$

Energy content due to electric fiebl. Wat, Energy density due to olectric field

$$
\begin{equation*}
U_{E}=\frac{1}{2} \varepsilon_{0} \vec{E}^{2} \tag{2}
\end{equation*}
$$

Substituting the solution of wave equation in sloe form
(i) $\vec{E}=\vec{E}_{0} \sin (k r-\omega t)$ in eqn(2) we get

$$
U_{E}=\frac{1}{2} \varepsilon_{0} \vec{E}_{0}^{2} \sin ^{2}(k z-\omega t)
$$

Let us take the time avg of energy density to find the energy content.
(c)

$$
\begin{aligned}
& u_{E}=\frac{1}{T} \int_{0}^{T} \frac{1}{2} \varepsilon_{0} \vec{E}_{0}^{2} \sin ^{2}(k \gamma-\omega t) d t \\
& u_{E}=\frac{1}{2} \varepsilon_{0} E_{0}^{2} \frac{1}{T} \int_{0}^{T} \sin ^{2}(k r-\omega t) d t \\
& \text { Here } \frac{1}{T} \int_{0}^{T} \sin ^{2}(k r-\omega t) d t=\frac{1}{2} \\
& \therefore u_{E}=\frac{1}{2} \varepsilon_{0} E_{0}^{2}-\frac{1}{2}
\end{aligned}
$$

$$
\begin{equation*}
\text { Energy } u_{E}=\frac{1}{4} \varepsilon_{0} E_{0}^{2} \tag{3}
\end{equation*}
$$

Eqn (3) represents the energy Content in electromagnetic waves due to electric field.
Energy Content due to the magnetics Field
We know that energy density dice to magnetic field.

$$
\begin{equation*}
U_{B}=\frac{1}{2 \mu_{0}} \vec{B}^{2} \tag{4}
\end{equation*}
$$

The solution of eqn in sine form is

$$
\begin{aligned}
\vec{B} & =\vec{B}_{0} \sin (k r-\omega t) \\
\therefore U_{B} & =\frac{1}{2 \mu_{0}} \vec{B}_{0}^{2} \sin ^{2}(k r-\omega t)
\end{aligned}
$$

Let us balce the time average of energy density to find energy content

$$
\begin{aligned}
& u_{B}=\frac{1}{T} \int_{0}^{T} \frac{1}{2 \mu_{0}} \frac{\vec{E}_{0}^{2}}{c^{2}} \sin ^{2}(k \gamma-\omega t) d t \\
& \quad\left[\because \vec{B}_{0}=\frac{\vec{E}_{0}}{C}\right] \\
& u_{B}=\frac{1}{2 \mu_{0} c^{2}} \vec{E}_{0}^{2} \frac{1}{T} \int_{0}^{T} \sin ^{2}(k r-\omega t) d t
\end{aligned}
$$

$\operatorname{since} \frac{1}{T} \int_{0}^{T} \frac{1}{2 \mu_{0}} \frac{\vec{E}_{0}^{2}}{c}$
Since $\frac{1}{T} \int_{0}^{1} \sin ^{2}(k r-\omega t) d t=\frac{1}{2}$
and $\varepsilon_{0}=\frac{1}{\mu_{0} c^{2}}$ we can write
the above equation as
Energy $u_{B}=\frac{1}{2} \varepsilon_{0} \vec{E}_{0}^{2} \frac{1}{2}$.

$$
\begin{equation*}
u_{B}=\frac{1}{4} \varepsilon_{0} \vec{E}_{0}^{0} \tag{5}
\end{equation*}
$$

En (5) represents the energy content in electromagnetic waves due to magnetic field.
Total energy content due to bolt fields:-

Substituting egn (3) and (4) in en (1) we get

Total Energy Content

$$
\begin{align*}
& u=\frac{1}{4} \varepsilon_{0} \vec{E}_{0}^{2}+\frac{1}{4} \varepsilon_{0} \vec{E}_{0}^{2} \\
& u=\frac{1}{2} \varepsilon_{0} \vec{E}_{0}^{2}
\end{align*}
$$

Egn (6) represents the total energy content in electromagnetic wave due to electric and magnetic field.

Intensity of Electromagnetic waves:
The magnitude of time average of poynting vector is called intensity of electromagnetic wave.

Derivation:-
Wkt the poynting vector

$$
\vec{S}=\vec{E} \times \vec{H}
$$

(or) $\vec{S}=|\vec{E}||\vec{H}| \sin \theta \hat{A}$
Here $\theta=90^{\circ}$
$C \because \vec{E} \& \vec{H}$ are normal to each offer)

$$
\begin{equation*}
\therefore \vec{S}=|\vec{E}||\vec{H}| \hat{n} \tag{1}
\end{equation*}
$$

Since $|B|=\mu_{0}|H|$ or $|\vec{H}|=\frac{|\vec{B}|}{\mu_{0}}$
(1) $\Rightarrow \vec{S}=|\vec{E}|\left|\frac{\vec{B}}{\mu_{0}}\right| \hat{n}$

Solutions of wave eqn in sine form are given by

$$
\begin{align*}
& \vec{E}=\vec{E}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t) \tag{3}\\
& \vec{B}=\vec{B}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t)
\end{align*}
$$

Substituting eau (3) (4) in eqn (2) we get

$$
\begin{align*}
& \quad \vec{s}=\vec{E}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t) \cdot \frac{\vec{B}_{0}}{\mu_{0}} \sin (\vec{k} \cdot \vec{r}-\omega t) \hat{n} \\
& \vec{s}=\frac{\vec{E}_{0}}{\mu_{0}} \cdot \frac{\vec{E}_{0}}{c} \hat{n} \sin ^{2}(\vec{k} \cdot \vec{r}-\omega t) \quad\left[\because B_{0}=\frac{E_{0}}{c}\right]
\end{align*}
$$

(or) $\vec{S}=\frac{E_{0}^{2}}{\mu_{0} c} n \sin ^{2}[\vec{k} \cdot \vec{r}-\omega t]$
\therefore The time average of poynting vector shall be written as

$$
\begin{aligned}
& \vec{S}_{\text {Time ave }}=\frac{1}{T} \int_{0}^{T} \frac{E_{0}^{2}}{\mu_{0} c} h \sin ^{2}(\vec{K} \cdot \vec{\gamma}-\omega t) d t \\
& \vec{S}_{\text {Tine Ave }}=\frac{E_{0}^{2}}{H_{0} c} \hat{N} \cdot \frac{1}{T} \int_{0}^{T} \sin ^{2}(\vec{k} \cdot \vec{\gamma}-\omega t) d t
\end{aligned}
$$

Since $\frac{1}{T} \int_{0}^{T} \sin ^{2}(\vec{k} \cdot \vec{\gamma}-\omega t) d t=\frac{1}{2}$

$$
\begin{align*}
\vec{S}_{\text {Time ave }} & =\frac{E_{0}^{2}}{\mu_{0} c} \hat{n} \frac{1}{2} \\
\vec{S}_{\text {Time ave }} & =\frac{1}{2} \frac{E_{0}^{2}}{\mu_{0 c}} \hat{n} \tag{L}
\end{align*}
$$

We know that $\frac{1}{c}=\sqrt{\varepsilon_{0} \mu_{0}}$

$$
\begin{align*}
(b) \Rightarrow \quad \vec{S}_{\text {Time Ave }} & =\frac{E_{0}^{2} \sqrt{\varepsilon_{0} \mu_{0}}}{2 \mu_{0}} \hat{n} \\
\vec{S}_{\text {Time Ave }} & =\frac{E_{0}^{2}}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \hat{n} \tag{7}
\end{align*}
$$

Intensity (or) magnitude of time average of poynting vector is given

$$
I=|\vec{s}|=\frac{E_{0}^{2}}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}
$$

since $\eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$ (or) $\frac{1}{\eta_{0}}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$

$$
\begin{equation*}
I=\frac{E_{0}^{2}}{2 \eta_{0}} \tag{8}
\end{equation*}
$$

Eau (8) represents the intensity of electromagnetic waves.

Momentum of Electromagnetic wave:
The effective mass will be taken into account for finding the momentum of the electromagnetic wave interms of
(i) Energy and
(ii) Poynting vector
(i) Momentum in terms of energy:

We know $E=m c^{2}$
III the energy ' u ' with effective mass of electromagnetic radiation can be written as

$$
\begin{align*}
& u=m c^{2} \\
& m=\frac{u}{c^{2}} \tag{2}
\end{align*}
$$

Wet the momentum of particle with mass ' m ' and velocity ' v ' is

Substituting eqn (2) in (3) we get
Momentum $p=\frac{u}{c^{2}} v$
If the electromagnetic wave, which is travelling along Z axis with velocity c is represented by $c \hat{k}$, then eqn (4) becomes,

$$
\begin{align*}
& \vec{p}=\frac{u}{c^{2}} c \hat{k} \tag{5}\\
& \vec{p}=\frac{u \hat{k}}{c}
\end{align*}
$$

Magnitude of momentum

$$
\begin{equation*}
p=\frac{u}{c} \tag{7}
\end{equation*}
$$

Eqn (7) represents the momentum of electromagnetic waves in terms of energy. ' u '.
(i) Momentum in terms of Poynting Vector We know the poynting vector

$$
\begin{equation*}
\vec{S}=(\vec{E} \times \vec{H})=u c \hat{K} \tag{8}
\end{equation*}
$$

(or) $u \hat{k}=\frac{\vec{s}}{c}$
Substituting eau (8) in (b) we get

$$
\begin{align*}
& \vec{p}=\frac{1}{c} \frac{\vec{s}}{c} \\
& \vec{p}=\frac{\vec{s}}{c^{2}}
\end{align*}
$$

Since $c^{2}=\frac{1}{\varepsilon_{0} \mu_{0}}$

$$
\begin{align*}
& \text { (9) } \Rightarrow \vec{P}=\varepsilon_{0} \mu_{0} \vec{S} \\
& \text { (or) } \vec{P}=\varepsilon_{0} \mu_{0}[\vec{E} \times \vec{H}]
\end{align*}
$$

En (10) represents the momentum per unit volume of the EM waves in terms of poynting vector

Radiation Pressure of EM wave:-)
Definition:-
When the electromagnetic wave Strike the surface, then a force will appear due to the change of momentum. The amount of pressure exerted per unit area on the surface due to the force is called radiation pressure.
$\overbrace{}^{\text {Derivation:- }}$
Whet
the momentum vector

$$
\vec{p}=\frac{u \vec{k}}{c}
$$

\therefore The magnitude of momentum

$$
\begin{equation*}
p=\frac{u}{c} \tag{1}
\end{equation*}
$$

Similarly, we know
poynting vector $\vec{s}=u c \vec{k}$
\therefore The magnitude of energy flow of poynting vector

$$
\begin{equation*}
s=u c \tag{2}
\end{equation*}
$$

According to poynting, theorem, the electromagnetic energy passing normal to the surface per unit area and unit time is given by

$$
\begin{equation*}
S=\frac{u}{A t} \tag{3}
\end{equation*}
$$

$A \rightarrow$ Area,
$t \rightarrow$ time
Comparing eau (2) \& (3)

$$
\begin{aligned}
u c & =\frac{u}{A t} \\
c & =\frac{1}{A t}
\end{aligned}
$$

$$
\begin{equation*}
\frac{1}{c}=A t \tag{4}
\end{equation*}
$$

Substituting eqn (4) in eqn (1) we get

$$
\begin{equation*}
p=u A t \tag{5}
\end{equation*}
$$

According to Newton's law, the force acting on the surface is given by

$$
\begin{equation*}
F=\frac{p}{t} \tag{b}
\end{equation*}
$$

Substituting the eqn (5) in eau (b)

$$
\begin{align*}
& F=\frac{u A t}{t} \\
& F=u A \tag{7}
\end{align*}
$$

Whet, the radiation pressure $P_{r a d}$ exerted on the surface is given by

$$
\begin{equation*}
P_{\text {rad }}=\frac{F}{A} \tag{8}
\end{equation*}
$$

Substituting the eqn (7) in (8) we get

$$
\begin{align*}
P_{\text {rad }} & =\frac{U A}{A} . \\
P_{\text {rad }} & =U \tag{9}
\end{align*}
$$

From eqn (9) we can say that the radiation pressure of em wave is equal to the energy of the striking electromagnetic wave.
Reflection and Transmission of \rightarrow EM waves from arn-condurcring Medium to vacuum \Rightarrow

Consider an EM wave travel from a non-conducting to vacuum.

One part of the incident wave is reflected into same medium at interface and anolter part is transmitted into next medium.

$\varepsilon_{1}, \varepsilon_{0} \rightarrow$ Permitivily of noncone. medium \& vacuum.
$\mu_{1}, \mu_{0} \rightarrow$ Permeability of non-Cons- medium \& vacuum
E_{i}, $\mathrm{Er} \rightarrow$ Elec. field vectors of incident \& reflected waves
$\mathrm{H}_{i}, \mathrm{H}_{\mathrm{r}} \rightarrow$ Mag. field vector of incident \& reflected waves

We can write

$$
\begin{align*}
& E_{i}+E_{r}=E_{t} \tag{1}\\
& H_{i}+H_{r}=H_{t} \tag{2}
\end{align*}
$$

$i \rightarrow$ Represents incident wave $r \rightarrow$ Represents reflected wave $t \rightarrow$ Represents transmitted wave.

Transmission co-efficient (T)
Let $\eta_{1} \rightarrow$ intrinsic impedance of non-cond. medium.
$\eta_{0} \rightarrow$ intrinsic impedance of vacuum.

Whit

$$
\begin{align*}
& \eta_{1}=\frac{E}{H} \Rightarrow H=\frac{E}{\eta_{1}} \tag{3}\\
& \eta_{0}=\frac{E}{H} \Rightarrow H=\frac{E}{\eta_{0}} \tag{4}
\end{align*}
$$

using eqn (3) \& (4) eqn (2) can be written as

$$
\frac{E_{i}}{\eta_{1}}-\frac{E_{r}}{\eta_{1}}=\frac{E_{t}}{\eta_{0}}
$$

-re sign indicates that the reflected wave travels in the opposite direction to that of the incident wave.

$$
\begin{align*}
\frac{1}{\eta_{1}}\left(E_{i}-E_{r}\right) & =\frac{E_{t}}{\eta_{0}} \\
E_{i}-E_{r} & =\frac{\eta_{1}}{\eta_{0}} E_{t} \tag{5}
\end{align*}
$$

Adding eau (1) \& eau (5) we get

$$
\begin{align*}
& E_{i}+E_{Y}+E_{i}-E_{Y}=E_{t}+\frac{\eta_{1}}{\eta_{0}} E_{t} \\
& 2 E_{i}=\left[1+\frac{\eta_{1}}{\eta_{0}}\right] E_{t} \\
& E_{i}=\frac{1}{2}\left[\frac{\eta_{0}+\eta_{i}}{\eta_{0}}\right] E_{t} \\
& E_{t}=\frac{2 \eta_{0}}{\eta_{0}+\eta_{1}} E_{i} \tag{b}\\
& \frac{E_{t}}{E_{i}}=\frac{2 \eta_{0}}{\eta_{0}+\eta_{1}}
\end{align*}
$$

Transmission coefficient is the ratio of the intensity of the transmitted wave (I_{t}) to the intensity of the incident wave $\left(I_{i}\right)$
(6) $T=\frac{I_{t}}{I_{i}}$

WK $I=\frac{E_{0}^{2}}{2 \eta_{0}}$
Intensity of transmitted $\left.\begin{array}{c}\text { wave }\end{array}\right\} I_{t}=\frac{E_{t}^{2}}{2 \eta_{0}}$ Intensity of incident $\left.\begin{array}{r}\text { wave }\end{array}\right\} \quad I_{i}=\frac{E_{i}^{2}}{2 \eta_{1}}$ Substituting ears (9) \& (10) in (8)

$$
T=\frac{E_{t}^{2} / 2 \eta_{0}}{E_{i}^{2} / 2 \eta_{i}}
$$

$$
\begin{equation*}
T=\frac{\eta_{1}}{\eta_{0}}\left[\frac{E_{t}}{E_{i}}\right]^{2} \tag{II}
\end{equation*}
$$

Substituting eqn (7) in (ii) we get

$$
\begin{align*}
& T=\frac{n_{1}}{\eta_{0}}\left[\frac{2 n_{0}}{n_{0}+n_{1}}\right]^{2} \\
& T=\frac{4 n_{0} n_{1}}{\left(n_{0}+n_{1}\right)^{2}} \tag{12}
\end{align*}
$$

Eau (12) represents transmission Coefficients.
Reflection coefficient (R).
Substituting eau (b) in eau (1) we get

$$
\begin{align*}
E_{i}+E_{Y} & =\frac{2 \eta_{0}}{\eta_{0}+\eta_{1}} E_{i} \\
E_{Y} & =\frac{2 \eta_{0}}{\eta_{0}+\eta_{1}} E_{i}-E_{i} \\
E_{Y} & =\left[\frac{2 \eta_{0}}{\eta_{0}+\eta_{1}}-1\right] E_{i} \\
E_{Y} & =\left[\frac{2 \eta_{0}-\eta_{0}-\eta_{1}}{\eta_{0}+\eta_{1}}\right] E_{i} \\
E_{Y} & =\left[\frac{\eta_{0}-\eta_{1}}{\eta_{0}+\eta_{1}}\right] E_{i} \\
E_{Y} & =\frac{\eta_{0}-\eta_{1}}{\eta_{0}+\eta_{1}} \tag{13}
\end{align*}
$$

The reflection coefficient is the ratio of intensity of the reflected wave (I_{γ}) to the intensity of the incident wave (t.)

$$
\begin{equation*}
\text { (e) } R=\frac{I_{r}}{I_{i}} \tag{14}
\end{equation*}
$$

Intensity of Reflected $\left.\begin{array}{c}\text { wave }\end{array}\right\} I_{R}=\frac{E_{\gamma}^{2}}{2 \eta_{1}}$

Substituting eqn (10) Δ (5) is ian (14)

$$
\begin{align*}
& R=\frac{E_{r}^{2} / 2 \eta_{1}}{E_{i}^{2} / 2 \eta_{1}} \\
& R=\left[\frac{E_{r}}{E_{i}}\right]^{2} \tag{16}
\end{align*}
$$

Substituting eqn (13) in (16)

$$
\begin{equation*}
R=\frac{\left(\eta_{0}-\eta_{1}\right)^{2}}{\left(\eta_{0}+\eta_{1}\right)^{2}} \tag{17}
\end{equation*}
$$

Eon (17) Represents Reflected Coefficient.

The sum of $T+R:-$

$$
\begin{aligned}
& T+R=(12)+(17) \\
& \therefore T+R=\frac{4 \eta_{0} \eta_{1}}{\left(\eta_{0}+\eta_{1}\right)^{2}}+\frac{\left(\eta_{0}-\eta_{1}\right)^{2}}{\left(\eta_{0}+\eta_{1}\right)^{2}} \\
&=\frac{4 \eta_{0} \eta_{1}+\eta_{0}^{2}+\eta_{1}^{2}-2 \eta_{0} n_{1}}{\left(\eta_{0}+\eta_{1}\right)^{2}} \\
&=\frac{\left(\eta_{0}^{2}+\eta_{1}^{2}+2 \eta_{0} \eta_{1}\right.}{\left(\eta_{0}+\eta_{1}\right)^{2}} \\
& T+R=\frac{\left(\eta_{0}+\eta_{1}\right)^{2}}{\left(\eta_{0}+\eta_{1}\right)^{2}} \Rightarrow 1 \\
& \therefore T+R=1
\end{aligned}
$$

(i) The sum of the reflection and transmission coeffient is equal to one.

UNIT 3

OSCILLATIONS,
 OPTICS, LASER

Total Internal Reflection
When a light wave is Completely reflected while it travels from one medium to another medium, then this phenomenon is called, total internal veflection

$$
\phi<\phi_{c}
$$

$$
\text { Fig } 1
$$

travels
Let the light wave passes denser medium torarer medium case (i)

When the angle of incidence
(ф) is less than the critical angle
(dc) (c) $\phi<\phi_{c}$, the ray is
refracted in to raver medium. Fig(1)
case(ii)
When $\phi=\phi_{c}$, the ray passes along the medium of separation as shown in fig (2), so that the angle of refraction is 90°. This angle ϕ_{c} is called as critical angle.

Case (iii)
When $\phi>\phi_{C}$, the ray is totally reflected into the denser medium itself as shown in fig(3)

From Snell's law

$$
n_{1} \sin \phi_{c}=n_{2} \sin 90^{\circ}
$$

$$
\sin \phi_{c}=\frac{n_{2}}{n_{1}}
$$

Critical angle $\phi_{c}=\sin ^{-1}\left[\frac{n_{2}}{n_{1}}\right]$
Conditions for Total. Internal Reflector:-
Condition 1:
Light should travel from denser medium to rarer medium.
(ie) $n_{1}>n_{2}$.
Condition 2:
The angle of incidence at the interface should be greater than the critical angle.
(ie) $\phi>\phi_{c}$.
Interference:-
When two light waves Super impose, then the resultant amplitude or intensity in the region of superposition is different than the amplitude of individual waves.
Condition for Constructive interference:-
(i) Wares are in phase and have phase differences of $0,2 \pi, 4 \pi \cdots$
(ii) Path difference $=n \lambda$, when $n=0,1,2$.

Thus if the path difference between the two waves. is equal to the integral multiple of wave len it (λ), then. Constructive interference occurs.

Condition for destructive interference
(i) Waves are in out of phase and have phase differences of $\pi, 3 \pi, 5 \pi \cdots \cdot$
(ii) Path difference $=\frac{(2 n+1)}{2} \lambda$
where $n=0,1,2,3$.
Thus, if the part difference between the two waves is equal to the odd integral multiple of $\frac{\lambda}{2}$. then destructive interference occurs.

Michelson Interferometer:-Principle:-

Producing interference patter by splitting a light beam into two parts and then recombining them after they have travelled different optical paths.

Constructions.
It consists of a movable mirror M_{1} and a fixed mirror M_{2} both are highly polished.

* Two glass plates G_{1} (beam splitter) and G_{2} (compensatory glass plate) are placed parallel to each other between the
mirrors at an angle of 45°.
* The rear side of glass plate G_{1} is semi-silvored to make it as partially reflective grass plate Such that splitting occurs and the light from a source is equally rofected and transmitted by x. In this way division of amplitude takes place.

Working:

* Monochromatic light from source falls on the beam splitter glass plate G..
* Since G_{1} is partially polished some part of the light gets reflected and some. part of the light get transmitted producing two perpendicular beams of equal intensity.
* The Reflected light move towards. M_{1} and transmitted light move towards M_{2} through the glass plate G_{2}.
* M_{1} and M_{2} reflect the beams back towards the beam splitter ' d ' between the mirrors M, and G_{1} the virtual mirror M_{2}^{\prime}, the pall * The ray refloctod from M, is transmitted through the beam splitter to the screen and the ray reflected from M_{2} is reflected again by the beam splitter to the screen.
* Because both beams originate from the same point on the source, they are coherent and therefore interface with each other
* An interference pattern of dark and bright frrirings or fringes are observed on the viewing screen at S.
Theory?
Fringes are formed by the light reflected from mirror M_{1} and M_{2} which is equivalent to light reflected from upper and cower surface of the air film formed between mirror M_{1} and M_{2}^{\prime}, the virtual image of mirror M_{2}.

Since the two interfering beams of light were split from the same initial beam, they were initially in phase.

For a given separation of difference (Δ) is given abs

$$
\Delta 2 d=n \lambda
$$

Where n is an integer, P_{a} isth difference between the two rays can be varied by moving M.'

The two waves will interface Constructively or destructively as per the following conditions of pals difference. Δ.
(i) $\Delta=O$ (no pats difference, no interference pattern)
(ii) $\Delta=\frac{2 n \lambda}{2}=n \lambda$ (construchue inter--ference-Bnght Fringe
(iii) $\Delta=\frac{(2 n+1)}{2}$. (Destructive interference -Dark Fringes)

Types of fringes:
The fringes formed by the air film may be circular, curved or straight.
Circular Fringes:
When M_{1} and M_{2}^{\prime} are parallel to each other, then circular fringes can be observed.

Curved Fringes?
When M_{1} and M_{2}^{\prime} are inclined to each other, the film enclosed is wedge shaped. Then curved fringes can be observed.

Straight Fringes:
W_{1} th M_{1} and M_{2}^{1} intersect, Straight line fringes are obtained

Determination of waveleng(t) from circular Fringes:-)

For a given separation of d between M_{1} and M_{2}^{\prime} the path difference is given by

$$
\begin{equation*}
2 d=n \lambda \tag{1}
\end{equation*}
$$

When M_{1} is moved a distance x, each fringe moves to the position previously occupied by an adjacent fringe. Let m be the number of fringes passing a given point as M_{1} is moved

The palt difference after moving the mirror is given as

$$
\begin{align*}
& 2(d+x)=(m+n) \lambda \tag{2}\\
& 2 d+2 x=m \lambda+n \lambda \tag{3}
\end{align*}
$$

Substituting eqn (1) in eqn(3)

$$
\begin{aligned}
n \lambda+2 x & =m \lambda+n \lambda \\
2 x & =m \lambda \\
\lambda & =\frac{2 x}{m}
\end{aligned}
$$

Applications:

* It detected the existence of waves and confirmed the space-time distortion * It is used in optical coherence tomography.
* It is used in fiber optics.

Theory of Air Wedge \& Experiment:
A thin film having zero thickness at one end and progressively increasing thickness at the other end is called a wedge.

This air wedge can be used to find the wavelength of the incident light. More importantly it can be used to measure the size of very small objects.

The arrangement for observing interference of ught in a wedge -Shaped airfoilon is shown in figure,

When light falls on wedge shaped thin film, it gets partly reflected from top of the air film, then transimitted through the air film. The trans--milted beam again reflected at bottom of the air film.

The wedge angle is very small, and the two reflected rays interfere Constructively or destructively producing alternate bright and dark fringes.

Consider points G and F, where the glass-to-glass distances across the air wedge are $\frac{\lambda}{2}$ and λ respectively.

At point G, there is both transmission and reflection. The reflected ray from top of the air film (ray 1) and the the ray reflected from bottom of the air film have varying path difference. (ie) "Ray 2 " travel:' more distance than "ray 1"

By the time ray 2 lines up with ray 1, it has travelled two widths of GB or one wavelength.

Thus the path difference between ray 1 and rays is one wavelength and ray 1 and ray 2 interfere destructively, since they are 180° pat of phase.

These similar phenomenon occurs at point ' F '.
Let us consider the triangles $\triangle A B G$ and $\triangle A D E$,
By the property of similar triangle we have for the first dark fringe

$$
\begin{align*}
& \frac{x_{1}}{L}=\frac{\lambda / 2}{t} \\
& x_{1}=\frac{\lambda L}{2 t} \tag{1}
\end{align*}
$$

Sin $111 l^{l y}$, for the second dark fringe, let us consider the triangles $\triangle A C F$ and $\triangle A D E$,

$$
\begin{align*}
& \frac{x_{2}}{L}=\frac{\lambda}{t} \\
& x_{2}=\frac{\lambda t}{t} \tag{2}
\end{align*}
$$

The fringe width β is defined as the distance between any two consecutive bright or dark fringes,

Then we have
Fringe width $\beta=x_{2}-x_{1}$

$$
\beta=\frac{\lambda L}{t}-\frac{\lambda L}{2 t}
$$

$$
B=\frac{\lambda L}{2 t}
$$

Experiment:
The experimental arrangement is shown in the figure.

* Two optically plane glass plates are placed one over other and tied together by means of a rubber band at one end. A thin wire is inserted between the plates at the other end.
* Now a wedge shaped air film is formed between the two glass plates.
* The light from a sodium Vapour lamp is. made to incident on a plane glass sheet held over the wedge at an angle of 45° with the vertical.
* When the light falls normally on air wedge arrangement, due to interference between the wave reflected from the top and bottom surface of the film, large number of interference fringes are formed
* Now by focussing the microscope, the fringes are observed and readings are tabulated
* The horizontal position of the dark fringes in the order $n, n+5, n+10, n+15 \ldots$ are measured.
* From this width of 5 fringes is calculated $(x=5 \beta)$ Then, the fringes width β is calculated as

$$
\text { Wat } \begin{aligned}
\beta & =\frac{x}{5} \\
\beta & =\frac{\lambda L}{2 t} \\
t & =\frac{\lambda L}{2 \beta}
\end{aligned}
$$

Thus we can measure the thickness of the wire using airwedg.

EINSTEIN'S COEFFICIENTS
when a light radiation is incident on the assembly of atoms. we can observe क्tree things

1. Stimulated absorption
2. Spontaneous Emission
3. Stimulated Emission

STIMULATED ABSORPTION:-
The Atoms in the Lower Energy State (ϵ_{1}) absorbs radiation and is exited to the higher Energy Level $\left(E_{2}\right)$ This process is known as "stimulated absorption".
The rate of stimulated absorption Nab is given by

Nap $\alpha N, Q$
$N \rightarrow$ No of atoms in the lower $\begin{aligned} & \text { energy } \\ & \text { level }\end{aligned}$
$Q \rightarrow$ Energy density (Incident radiation)

$$
\begin{equation*}
\therefore N_{a b}=B_{12} N_{1} Q \tag{1}
\end{equation*}
$$

$\mathrm{B}_{12} \rightarrow$ Proportionality Constant
SPONTANEOUS EMISSION:-
The exited atoms in the Higher Energylevel E_{2} Return to the lower Energy level E_{1} by Emitting Photon of Energy 'hr' without any external factor This process is known as "spontaneous Emission".
Rate of Emission $N_{S P} \propto N_{2}$

$$
N_{S P}=A_{21} N_{2} \longrightarrow \text { (2) }
$$

$N_{2} \rightarrow$ atoms in the exitesstate A_{21}-constant
 at higher energylevel to make transition to lower Energy level(E_{1}) during this Transition photon of Energy ' $h r$ ' is Emitted. This kind of Emission is known as "Stimulated Emission

The rate of stimulated Emission Not is given by $N_{s t} \alpha_{2} Q$

$$
\begin{equation*}
N_{\text {st }}=B_{21} N_{2} Q \tag{3}
\end{equation*}
$$

$B_{21} \rightarrow$ Roportionality Constant These Constants $A_{12}, B_{12} \varepsilon_{1} B_{21}$ are called Einstein's A \& B coefficients.
At equillibrium Condition $\left.\begin{array}{l}\text { No. of downward } \\ \text { transitions }\end{array}\right\}=\left\{\begin{array}{l}\text { No. of UPward } \\ \text { Transitions }\end{array}\right.$
(ie)

$$
N_{s p}+N_{s t}=N_{a b} \rightarrow(4)
$$

Sub eqn (1) (2) \& (3) in (4) we have.

$$
\begin{aligned}
& A_{21} N_{2}+B_{21} N_{2} Q=B_{12} N_{1} Q \\
& B_{12} N_{1} Q-B_{21} N_{2} Q=A_{21} N_{2} \\
& \left(B_{12} N_{1}-B_{21} N_{2}\right) Q=A_{21} N_{2}
\end{aligned}
$$

$$
Q=\frac{A_{21} N_{2}}{B_{12} N_{1}-B_{21} N_{2}}
$$

- Numerator and denominator by $\mathrm{B}_{21} \mathrm{~N}_{2}$

$$
\begin{aligned}
& B_{21} N_{2} A_{21} N_{2} / B_{21} N_{2} \\
& Q=\frac{B_{12} N_{1}}{B_{21} N_{2}}-\frac{B_{21} N_{2}}{B_{21} N_{2}} \\
& Q=\frac{1}{B_{21}} \frac{1}{\left(\frac{B_{12}}{B_{21}}\right) \frac{N_{1}}{N_{2}}-1}
\end{aligned}
$$

From Boltzman's equation.

$$
\begin{align*}
& \frac{N_{1}}{N_{2}}=e^{h \gamma / K_{B} T} \\
\therefore & Q \frac{1}{B_{21}} \frac{1}{\left(\frac{B_{12}}{B_{21}}\right) e^{h \nu / K_{B} T}-1} \tag{5}
\end{align*}
$$

w.k. that according to Planck's Energy equation

$$
\begin{equation*}
Q=\frac{8 \pi h \gamma^{3}}{c^{3}} \frac{1}{e^{h^{2} / k_{B} T-1}} \tag{6}
\end{equation*}
$$

Comparing equation (5) \& (b)

$$
\frac{B_{12}}{B_{21}} \simeq 1 \quad{ }_{1} \mathrm{~B}_{12} \simeq B_{21}
$$

$$
\frac{B_{21}}{A_{21}}=\frac{8 \pi h \nu^{3}}{B_{21}^{3}} \text { (or) } \frac{8 \pi h}{\lambda^{3}}
$$

equation (7)
"Conclusion" Gives us the relation between spontaneous \& stimulated Emission coefficients and it is Proportional to ' $\gamma \gamma^{3 \prime}$
Here, the spontaneous Emission is more prodominant than the Stimulated Emission.

NO-YAG LASER SOLIDSTATE
Nd-YAG Stands for Neodymium
Yittrium Aluminium Garnet
CHARECTERISTICS:
Type: Four level solid state laser
Active modium: Nd yell Rod
Pumping method: OPtical pumping (xenon Lamp)
Resonator: fully polished and Partially polished Ends of Nd-y Ah Red.
Pw/output: 70 w
Nature: Pulzed(er)Continious wave form.
wave length: $1.06 \mathrm{\mu m}$ (IR-resion)
$\overbrace{\text { PRINCIPLE }}$
The neodimium, atoms from Nd-YAG rod optically pumped by Xenon (or) (rypton flash lamp. During the transition from meta stable state to groundstate Laser beam of wavelength 1.064 Hm is Emitted.
ONGTRUCTION

* The Nd-YAG crystal Cut in the form of cylinder and the Ends are highly polished so as to be optically flat as polished.
* chynderical rod and a Flash lamp (Pumping source) kept parallel and placed inside a reflector Cavity
* Ends of the Cavity Covered by 100% and Partially polished mirrors lishichacts as a

WORKING. ENERGY LEVEL DIAGRAM B

(i) Due to absorption of light radiation of wavelength $0.73 \mu \mathrm{~m}$ and $0.80 \mu \mathrm{~mm} \mathrm{Nd}^{3+}$ Neodimium atoms are exited from
$E_{0} \rightarrow E_{3}$ and E_{4}. levels
(ii) By spontaneous Emission atoms from $E_{3} \varepsilon_{4} E_{4}$ moves to E_{2} the metastable state at which "Population Inversion" is achieved.
(iii) Bystimulated Emission Transition from $E_{2}-E_{1}$ intiated Leads to Laser action, wavelength of $1.06 \mathrm{~mm}(10600 \mathrm{~A})$ Laser light is Emitted.
(iv) These Photons reflected.
back and forth between the mirrors undergo Amlification hence high intence laser light Emitted through partially
polished mirrors.
Advantage.

* High Energy O/P
* Repetition rate is Very high
* Population inversion achieved Easily

* Used as a range finder in millitary
* Used for cutting, drilling, welding and surface hardening in Industries.
* Used for Cataract surgery, gall bladder surgery ext.... in Medical field.
* Used in long haul communication.
*ARBOR DIOXIDE $\left(\mathrm{CO}_{2}\right)$ LASER
It's a four level Molecular Gaslaser operates in "far Infrared" region.

CHARACTERISTICS
TYPE: Four level molecular gas laser
Active medium: Mixer of $\mathrm{CO}, \mathrm{N}_{2}, \mathrm{He}$ gas.
Pumping method: In elastic atom to atom collision.
Resonator

Pulp
: fully Polished a Partially polished concave mirrors.

Nature :Pulzed (or Continious
Wavelength: $9.6 \mu \mathrm{~m}$ \& $10 \mu \mathrm{~m}$.
DiaGram.

DC-exitation
CONSTRUCTION
(i) It consists a discharge tube of Diameter 2.5 cm a hd Length 5 m .
(ii) CO, N_{2}, He fitted inside the tube in the ratio $1: 2: 3$ ratio, respectively.
(iii) Discharge is Produced by DC-exitation.
(iv) Nacl - Windows are placed inclined at prows tex angle to the resonator axis.
(v) Ends of the tube covered with Partially in fully polished concave mirrors. will act as a resonator.

VIBRATIONAL NODES
CO_{2} Molecule is a linear molecule Consisting of central atom with two oxygenatoms on either sides. It consist of 3 independent "Vibrational modes"

In this mode Carbon atom is Stationary where the two Oxygen atom vibrate along the axis.
creates stretching.

In this mode all the three atoms oscillate along the axis but the Vibration direction of carbon is opposite to that of the oxygen.

Inthis mode all the threeatoms arfdergo Vibration perpendicular to the bond axis and the movement of $\left(\begin{array}{l}(-0) \\ \text { em }\end{array}\right.$ to each other.
ENERGY LEVEL DIAGRAM

* COz laser exited by a

DC exitation
(i) The exited electrons collided with Nitrogen molecules by which N_{2} got exited to Metastable state

$$
e^{2 \star}+N_{2} \longrightarrow N_{2}^{*}
$$

(ii) exited N_{2} exitesthe ground state CO_{2} molecule by inelastic collisions.

$$
\mathrm{N}_{2}^{*}+\mathrm{CO}_{2} \longrightarrow \mathrm{CO}_{2}{ }^{\star}
$$

(ii) due to this population inversion is achieved in the 'E4' Level.
(ii) By stimulated Emission Co_{2} Molecules ffitorn. make a Transition from E_{4} to $E_{3} \varepsilon_{1} E_{2}$ through which a Coherent laser beam of wavelength loum and 9.6 Hm is Emitted respectively. in the IR region.
(v) Transition $E_{2} \rightarrow E_{1} \varepsilon_{1}$
$E_{3} \rightarrow E_{1}$ happens due to Elastic collision.
(vi) finally helium helps to discharge the heat from CO_{2} to come to ground state Fo

MERITS

* Construction is Simple
* $0 / p$ is continione.
* High Efficiency.
* Very High D/P Power.
* $0 / p$ pw can be increased by Increasing the length. of the gas tube.
(DE MERITS
* Carbon monoxide will contaminate the osyser.
* Depends on operating Temp.
* Since it is in IR refion it is invisible. Accidental Exposure cause some series damage.

APPLICATIONS:

* widely used in Material processing welding, chilling, cutting
Soldering.
* Used for openair Communicaf
* used in remote Sensing.
* It is used in the

Treatement of liver c_{1} lunch * Itiés caused perform Micro surgery and blood loss less operation.
Solid-state semiconductor Diode

* It is a most compact form
of all laser
* It is also called injection
laser.

It is broadly classified into two types.
a) Homofunction
b) Hetero Function

PN Junction diode.

When the $P N$ Junction diode is forwarded biased, due to recombing of electron and holes light radiation is emitted indirect band gap semiconductor known as recombination
 combined to form a p-njunction * Two electrodes connected on top and bottom side.

* Forward biasing is given through electrodes
* The end faces of $p-n j u n c t i o n$ are well polished which acts as an optical resonator.
Working:-3
* The circuit in forward biased * As shown in energy level diagram electron and holes are injected into junction region
* The large no. of electrons and holes recombine with each other. * Due to this photons of $h \nu$ emitted * This get amplified by the polished side of diode.
* The more the biacing voltage more the emission of photon are
possible.

K

\rightarrow small and compact
\rightarrow Highly efficient
\rightarrow operated with lesspower compared to other lasers continuous/pulsed
\rightarrow output is con

Disadvantage?
\rightarrow output has large divergence
\rightarrow poor coherence and stability
Application:
\rightarrow used in fiber optic communication
\rightarrow used in printer $\& \subset D$ players.
Hetero--junction Laser:
In this, p^{-n} junction formed by more than on n-type and p-type material.

when the pnjunction diode is holes recombine to produce photon.
 forwarded biased the electrons and Construction:

* Three p-type layers and two n-type layers combine to form a $p-n$ junction.
* Here the ' p 'layer in the junction act as an active region
* This sandwiched placed in between two electrodes.
* Forward biased is given * End faces are polished.
working
* when the layers are forward biased large no of electors and holes are recombined.
* Recombination produce large output photons.
* The biasing voltage is directly proportional to the emission of electrons.
* The photons reflected by the polished ends and get amplified.
* A coherent beam of laser of wavelength $8000 \AA$ emerges.

* It produces continuous wave form
* output power is very high

Disadvantage

* very difficult to form junction * cost is very high Applications
* very difficult to form junction * cost is very high.

BASIC APPUCATIONS OF LASER
SURFACE ALLOYING:
It means that there is controlled melting of work of work piece surface to desired depth, with simutano addrion of powdered alloying Element
LASER CLADDING
In this the laser beam melts a thin Layer of work pine this will mixes with the Liquid Cladding alloy.

TASER WELDING
welding is joining of two (or) or more metal pieces in to a single into single unit
*) In laser welding the beam heats the edges of the two Plates to their melting point and cause them to fuse together.
Hence No possibilities of Impurities, welding rate is trish, dissimilar metals Can be welded.

LASER CUTTING
The principle of laser cutting is the vaporization of the material at a point of focus of the beam. The Vaporized material is removed with the help of a gas jet.
QItcan be done at room Temp.
© Cutting speed is verghish.

* Heating and cooling are so rapid.

Oscillations
Differential Equation for a Simple Harmonic Motion:-

Definition : of SHM.
Simple Harmonic Motion is the motion in which the acceleration of a body is directly proportional to the displacement from a fixed point and is always directed towards the fixed point (or) equilibrium position.

Derivation:
Displacement The displacement of vibrating particle at any instant is defined as the distance moved by the particle from its mean position of rest.

Let us consider a particle ' P ' moving in a circular path of radius ' A ' with uniform velocity ' v ' and angular velocity ω, with respect to the centre of the circle of reference O as shown wi fig

When the particle ' P ' moves around the circle, then the foot of the perpendicular ' Q ' vibrates along the diameter ' $Y Y^{\prime}$ '. Further If the motion of the particle ' P ' is inform, then the motion of ' Q ' is also periodic. (ic) the particle will take the same time to vibrate between the points y and

- II f the particle ' P ' completes one revolution, then the foot of the \mathcal{L}^{r} ' Q ' will complete one verticle oscillation.

Thus the distance $O Q$ is termed as displacement of the particle and is denoted by the letter ' y '.

If the particle moves from \dot{x} to p in t seconds, then the angle between pox is given by

From
$\sin \theta$ or $\sin \cot$

$$
\angle P O X=\angle Q P O=\theta=\omega t
$$

From $\triangle Q P O$

$$
\begin{equation*}
\sin \theta \text { (Or) } \sin \omega t=\frac{O Q}{O P} \tag{1}
\end{equation*}
$$

$O Q=y$ and $O P=A$.

$$
\begin{align*}
(1) \Rightarrow & \sin \omega t=\frac{y}{A} \\
& y=A \sin \omega t \tag{2}
\end{align*}
$$

This en respresents displacement of vibrating particle.
(11) Velocity:

Velocity of the vibrating particle is defined as the rate of change of displacement

$$
\begin{equation*}
\therefore \text { Velocity }(v)=\frac{d y}{d t} \tag{3}
\end{equation*}
$$

Substitute ign (2) in egn(3) we get

$$
\begin{align*}
& v=\frac{d}{d t}(A \sin \omega t) \\
& v=A \omega \cos \omega t \tag{4}
\end{align*}
$$

This an respresents the velocity of the vibrating particle.
(iii) Acceleration:-

Acceleration
of the
Vibrating particle is defined as the rate of change of velocity.

$$
\begin{equation*}
\therefore \text { Acceleration }=\frac{d v}{d t} \tag{5}
\end{equation*}
$$

Substituting eqn(4) in eqn (5)

$$
\begin{align*}
\text { Acceleration } & =\frac{d}{d t}(A \omega \cos \omega t) \\
\frac{d^{2} y}{d t^{2}} & =A \omega(-\omega \sin \omega t) \\
& =-\omega^{2} A \sin \omega t \\
\frac{d^{2} y}{d t^{2}} & =-\omega^{2} y \tag{6}
\end{align*}
$$

This en respresents the acceleration of vibrating particle.

Unit-IV - Basic Quantum Mechanics.

Introduction:
The most outstanding development in modern Science is The conception of quantum mechanics. The quantum mechanics is better than Newtonian mechanics in explaining the fundamental Physics.

The fundamental concept were not different from those of everyday experience, such as Particle. Position, Speed, mass, force. energy and even field. There concepts are referred as "classical""

The world of atoms cannot be described and under stood with these concepts. Thus, it needed new Conofts to understand the properties of atom. Agroup of Scientists Nails Bohr.W. Heisenberg,
E. Schrodinger,'s P.A.M. Dirac, W. Pauli and M. Born, conceived and formulated these new ideas in the beginning of $20^{\text {th }}$ century. This new formulation, a branch of Physics, was named as "Quantum mechanics" Limitations of Classical Mechanics.

* The Phenomenas which classical Physics failed to explain are black body Radiation. Photoelectric effect, emission of x-rays, etc..
* The other main difference is the quantized energy state. Inclassical Physics, an oscillating body can assume any Possible energy. On the coutracy, quaubarm mechanics says that it can have only discrete non-zero energy.
Need of Quantum Mechanics:
* Clerical mechanics successfully explained the motions of object which are observable directly or by instruments like microscope. But when classical mechanics is applied to the particles of atomic levels, it fails to explain actual behaviour. Therefore, the clerical mechanics cannot used to to explain in atomic level, e.j. motion of a electron in an atom.
* The Phenomena of black body radiation, Photodectric effect, emission of X-rays, etc. were explained by Max Planck in 19,90 by introducing of the formula

$$
E=n h \nu
$$

Where, $n=0,1,2 \ldots$.

$$
h=\text { Planck's constant }=6.63 \times 10^{-34} \mathrm{~J} / \mathrm{s}
$$

* This is known as "Quantum hypothesis" and marked the beginning of modern physics. The whole microscopic world obeys the above formula.
Photons and Light waves - (Duality of, Radiation and matter)
The wave and Particle daudily of radiation is easily understood by knowing a difference between a wave and a Particle.
Wave:
* A wave originate due to oscillations and it is Spread out over a large region of Space. A wave can not be located of a Particular Place and mass cannot carried by a wave.
* Actually, a wave is a spread out disturbance specified by its amplitude ' A ', frequency ' ') wanelengit ' λ ' phase ' δ ' and Intensity ' I '.
* The Phenomena of interference, diffraction and Polarisation require The Resence of two or more waves at the same time and at the same Position.

It is very clear the two or mare Particles cannot occupy the same position at the same time. So are has to conclude that radiation behaves like waves.
Partide:

* A Particle is located at some definite Point and it has mass. It can move from one Place to another. A Particle gains energy when it accelevatedond it loses energy when it is slowed down.
* A Particle is Characterized by mass ' m ', velocity 'v,' momentum ' P ' and energy ' E '
* Spectra of black body radiation, Compton effect,

Phots electric effect et. could not be explained an wave nature of radiation.

These Phenomena established that radiant energy interacts with matter in the form of "Photons or quanta". Therefore, Planck's quantum theory came to conclude that radiation behaves like Particles.

* Thus, radiation sometimes behaves as a wave and at Some other times as a Partide. Now, waue-Parkide duality of radiation is universally accepted.
Compton Effect:
Statement:
${ }^{c}$ When a beam of ' X '-rays is Scattered by a Substance of low atomic number, the Scattered x-ray radiation consists of two Components. one Component has the Same wavelength' λ ' as the Incident ray and the other component has a slightly longer waedengti' λ^{\prime}. The change in the wowelenglt of scattered x-rays is known as Compton shift. The Phenomenon is called Compton Effect:"

Total energy before collusion $=h_{\nu}+m_{0} c^{2}$
Total energy after collision $=h \nu^{\prime}+m c^{2}$
Total Energy before collision $=$ Total Energy after collision.

$$
\begin{align*}
& h \nu+m_{0} c^{2}=h \nu^{\prime}+m c^{2} \\
& m c^{2}=h \nu-h \nu^{\prime}+m_{0} c^{2} \\
& m c^{2}=h\left(\nu-\nu^{\prime}\right)+m_{0} c^{2} \tag{1}
\end{align*}
$$

$$
c \because p=\frac{h}{\lambda}
$$

Before collision: $=\frac{h \nu}{c}$

$$
\lambda=C / \nu ; P=\frac{h}{C / \nu}
$$

$$
p=\frac{h u}{c} \text {) }
$$

$\begin{aligned} & \text { After collision } \\ & \text { momentum of Ph tan }\end{aligned}=\frac{h_{\nu^{\prime}}}{c} \cos \theta$
moment of electron $=m v \cos \phi \quad-$ Total momentum $^{h \nu^{\prime}} \cos \theta+m v \cos \phi-$ (2)
Total momentum before collision $=$ Total momentum after collision

$$
\begin{align*}
& \text { before collision } \tag{3}\\
& m \omega c \cos \phi=h\left(\nu-\nu^{\prime} \cos \theta\right)
\end{align*}
$$

Total momentum along Y-axis:
Before Collision:
Momentum of Photon and election $=0$.
After collision:
Momentum of Photan along Y.axis $=\frac{h \nu^{\prime}}{c} \sin \theta$.
Momentum of electron along y-axis $=-m v \sin \phi$ (in -key direction)
Total momentum along y-axis $=\frac{h \nu^{\prime}}{c} \sin \theta-m v \sin \phi$.
Total momentum before collision $=$ Total momentum After collision

$$
\begin{aligned}
& 0=\frac{h \nu^{\prime}}{c} \sin \theta-m \theta \sin \phi \\
& m v \sin \phi=\frac{h \nu^{\prime}}{c} \sin \theta-(4) \\
& m v c \sin \phi=\frac{h \nu^{\prime}}{} \sin \theta-(5)
\end{aligned}
$$

Squaring egn(3) and egn (5) and then adding, we get $(m v c \cos \phi)^{2}+(m v \sin \phi)^{2}=h^{2}\left(\nu-\nu^{\prime} \cos \theta\right)^{2}+\left(h \nu^{\prime} \sin \theta\right)^{2}$
L.H. 5 of eqn (b)

$$
\begin{aligned}
& =m^{2} v^{2} c^{2} \cos ^{2} \phi+m^{2} v^{2} c^{2} \sin ^{2} \phi \\
& =m^{2} v^{2} c^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right) \\
& =m^{2} v^{2} c^{2} \quad\left[\because \sin ^{2} \phi+\cos ^{2} \phi=1\right]
\end{aligned}
$$

R.H.S of $\operatorname{egn}(6)$

$$
\begin{align*}
& =h^{2}\left(\nu^{2}-2 \nu \nu^{\prime} \cos \theta+\nu^{2} \cos ^{2} \theta\right)+h^{2} \nu^{2} \sin ^{2} \theta \\
& =h^{2}\left[\nu^{2}-2 \nu \nu^{\prime} \cos \theta+\nu^{\prime 2} \cos ^{2} \theta+\nu^{\nu^{2}} \sin ^{2} \theta\right] \\
& =h^{2}\left[\nu^{2}-2 \nu \nu^{\prime} \cos \theta+\nu^{\prime 2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right] \\
& \left.=h^{2}\left[\because \nu^{2}-2 \nu \nu^{\prime} \cos 2+\nu^{\prime 2}\right] \quad \sin ^{2} \theta=1\right) \\
& \text { L.H.S }=\text { R.H.S } \\
& m^{2} \nu^{2} c^{2}=h^{2}\left(\nu^{2}-2 \nu \nu^{\prime} \cos \theta+\nu^{\prime 2}\right) \quad \text { (7) }
\end{align*}
$$

Squaring erge (1) on both sides, we get

$$
\begin{align*}
& \text { Squaring cquele (1) on both sides, } \\
& \left.\qquad\left(m c^{2}\right)^{2}=\left[h\left(\nu-\nu^{\prime}\right)+m_{0} c^{2}\right)\right]^{2}-(8) \tag{9}\\
& m^{2} c^{4}=h^{2}\left(\nu-\nu^{\prime}\right)^{2}+m_{0}^{2} c^{4}+2 h\left(\nu-\nu^{1}\right) m_{0} c^{2} \\
& m^{2} c^{4}=h^{2}\left(\nu-2 \nu \nu^{1}+\nu^{\prime 2}\right)+2 h\left(\nu-\nu^{1}\right) m_{0} c^{2}+m_{0}^{2} c^{4}
\end{align*}
$$

Subtracting eqm(7) from eqm (9), we get

$$
\begin{align*}
& \text { Subtracting } \operatorname{eqm}(7) \text { from eqm (2), we } \\
& m^{2} c^{4}-m^{2} \nu^{2} c^{2}= h^{2}\left(\nu^{2}-2 \nu \nu^{\prime}+\nu^{\prime 2}\right)+2 h\left(\nu-\nu^{\prime}\right) m_{0} c^{2}+m_{0}^{2} c^{4} \\
&-h^{2}\left(\nu^{2}-2 \nu \nu^{\prime} \cos \theta+\nu^{\prime 2}\right) \\
& m^{2} c^{2}\left(c^{2}-v^{2}\right)= h^{2} \nu^{2}-\frac{2 h^{2} \nu \nu^{\prime}+h^{2} \nu^{\prime 2}+2 h\left(\nu-\nu^{\prime}\right) m_{0} c^{2}+m_{0}^{2} c^{4}}{} \\
&-h^{2} \nu^{2}-2 h^{2} \nu \nu^{\prime} \cos \theta-h^{2} \nu^{\prime 2} \tag{10}\\
& m^{2} c^{2}\left(c^{2}-\nu^{2}\right)=-2 h^{2} \nu \nu^{\prime}(1-\cos \theta)+2 h\left(\nu-\nu^{1}\right) m_{0} c^{2}+m_{0}^{2} c^{4}
\end{align*}
$$

From the theory of Relativity, the variation of mass with velocity is given by

$$
\begin{equation*}
m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}} \tag{Il}
\end{equation*}
$$

Squaring the eqn (ii) on both sides, we have

$$
\begin{aligned}
& m^{2}=\frac{m_{0}^{2}}{1-v^{2} / c^{2}}=\frac{m_{0}^{2}}{\frac{c^{2}-v^{2}}{c^{2}}}=\frac{m_{0}^{2} c^{2}}{c^{2}-v^{2}} \\
& m^{2}\left(c^{2}-v^{2}\right)=m_{0}^{2} c^{2}
\end{aligned}
$$

multiplying " c^{2} " on both sides, we have

$$
\begin{equation*}
m^{2} c^{2}\left(c^{2}-v^{2}\right)=m_{0}^{2} c^{4} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \text { Substituting } \operatorname{eqn}(12) \text { in } e q_{m}(10) \text {, we get } \\
& m_{0}^{2} c^{4}=-2 h^{2} \nu \nu^{\prime}(1-\cos \theta)+2 h\left(\nu-\nu^{\prime}\right) m_{0} c^{2}+m_{0}^{2} c^{4} \\
& \underline{2 h}\left(\nu-\nu^{\prime}\right) m_{0} c^{2}=2 h^{2} \nu \nu^{\prime}(1-\cos \theta) \\
&\left(\nu-\nu^{\prime}\right) m_{0} c^{2}=\frac{7 h^{4} \nu \nu^{\prime}(1-\cos \theta)}{7 k L} \\
& \frac{\left(\nu-\nu^{\prime}\right)}{\nu \nu^{\prime}}=\frac{h}{m_{0} c^{2}}(1-\cos \theta) \\
& \frac{y}{\nu^{\prime}}-\frac{\nu^{\prime}}{\nu \nu^{\prime}}=\frac{h}{m_{0} c^{2}}(1-\cos \theta) \tag{13}\\
& \frac{1}{\nu^{\prime}}-\frac{1}{\nu}=\frac{h}{m_{0} c^{2}}(1-\cos \theta) \quad(13)
\end{align*}
$$

multiplying ' C ' on both sides of $\operatorname{eqn}(13)$, we get

$$
\begin{aligned}
& \text { ing ' } c \text { ' on both sides of eqn (13), we get } \\
& \frac{c}{\nu^{\prime}}-\frac{c}{\nu}=\frac{h \psi}{m_{0} c^{\prime}}(1-\cos \theta) \quad\left(\because \frac{c}{\nu}=\lambda\right. \\
& \lambda-\lambda=\frac{h}{m_{0} L}(1-\cos \theta) \\
& \left.d \lambda=\frac{h}{m_{0} c}=\lambda^{\prime}\right) \\
& d-\cos \theta)
\end{aligned}
$$

Therefore, the change in wavelength is given by

$$
d x=\frac{h}{m_{0} c}(1-\cos \theta)
$$

If is found the change in wavelength $(d \lambda)$ does not depend on the wavelength of the Incident radiation and the scattering Substance. But it depends only on the angle (θ)

Case(i): when $\theta=0$, then

$$
\begin{aligned}
d x & \left.=\frac{h}{m_{0} c}(1-\cos \theta) \quad \cos \theta=1\right) \\
& =\frac{h}{m_{0} c}(1-1)
\end{aligned}
$$

$d \lambda=0 \quad$ (Along the Srobleut direct no change in wavelength).
Cos (ii): When $\theta=90^{\circ}$, Then

$$
\begin{aligned}
& \text { when } \theta=90^{\circ}, \text { Then } \\
& d x=\frac{h}{m_{0} c}\left(1-\cos 90^{\circ}\right) \\
& d \lambda=\frac{h}{m_{0} c}(1-0) \\
& d \lambda=\frac{h}{m_{0} c} \quad d \lambda=0.0243 A^{\circ} \\
& d y \text { as } 90=0)
\end{aligned}
$$

This difference in wavelength is known as compton wavelength of electron
Case (iii): When $\theta=180^{\circ}$, then.

$$
\begin{aligned}
& d \lambda=\frac{h}{m_{0} c}\left(1-\cos 180^{\circ}\right) \\
& d \lambda=\frac{h}{m_{0} c}(1-(-1)) \\
& d \lambda=\frac{2 h}{m_{0} c} \\
& d \lambda=0.0486 A
\end{aligned}
$$

Thus. The change in warelenglt is maximum at $\theta=180^{\circ}$

Experimental Verification of Compton Effect:

A beam of monochromatic x-rays of wavelength λ is made to incident on a sectering substance. The Scattered x-rays ares received by Brag Spectrometer.

The intensity of Scattered x-rays is measured for various scattering angles. The graph is Plotted (Intensity and wavelength). It is found that the curves have to peaks, one Corresponding to un modified radiation and other corresponding to modified radiation.

The Difference between twopeates on the wandenth axis gives "Compton shift"

The curves shows that the greater the scattering angle, The greater is Compton shift in accordance with expression.

$$
d \lambda=\frac{h}{m_{0} c}(1-\cos \theta)
$$

Electrons (Particles) And Matter Waves - (Concept of Matterwaues) de -Broglie's Hypothesis:

Louis de-Broglie proposed a very bold and novel Suggestion that like light radiation, matter or material Particle also Porseses dual (two) characteristics 1.e. Particle - like and wave like"

According to de-Braglie hypothesis, a moving Particle is always associated with waves.

* Waves and Particles are the only two modes through which energy can Propagate in nature.
* Our universe is fully Composed of light radiation and matter
* Since nature loves symmetry, matter and waves must be symmetric.
* If electromagnetic radiation like, light, x-rays canact like wave and a Particle, then material Particles (electron, protons, etc) Should also act like a Partide andawana
* Every moving Particle is always associated wilt a wane.
de-Broglei waves and it's wavelength:
"The waves associated with the matter Particles are Called matter waves or de-Broglie waves.

From Planck's theory, the energy of a Photon (Particles) of frequency ν ' is given by

$$
\begin{equation*}
E=h \nu \tag{1}
\end{equation*}
$$

According to Einstein's mass-energy relation

$$
E=m c^{2} \quad(2)
$$

where m-mass of the photon; c-velocity of the Photon.
Equating equ (1) and (2), we get

$$
\begin{aligned}
& h \nu=m c^{2} \quad\left(\because \nu=\frac{c}{\lambda}\right) \\
& \quad \frac{h c}{\lambda}=m c^{2} \\
& \lambda=\frac{h y}{m c^{2}} \\
& \lambda=\frac{h}{m c} \quad(3)
\end{aligned}
$$

Since $m c=p$ (momentum of a Photon)

$$
\lambda=\frac{h}{p}
$$

Equation (3) is known as de-Broglic's wave equation.
de_Broglie wave length in terms of energy:
We know that the Kinetic energy $E=1 / 2 m v^{2}$ multiplying by m on bolts ides weget

$$
\begin{aligned}
& m E=1 / 2 m^{2} v^{2} \\
& 2 m E=m^{2} v^{2}
\end{aligned}
$$

Taking square rat

$$
\begin{aligned}
\sqrt{m^{2} w^{2}} & =\sqrt{2 m E} \\
m v & =\sqrt{2 m E}
\end{aligned}
$$

we know that $\lambda=\frac{h}{m v}$.

$$
x=\frac{h}{m v}=\frac{h}{\sqrt{2 m E}}
$$

De-Braglie's wauebthin terms of Energy is

$$
\lambda=\frac{h}{\sqrt{2 m E}}
$$

de-Broglie's wavelength in terms of accelerating
Potential associated with electrons:
When am election of charge ' e ' is accelerated by a Potential difference of 'V'volts, then the electron gives gains a Velocity ' v ' and hence.
Workdone on the election = eU

This workdone is converted into the kinetic energy of the electron as $1 / 2 m w^{2}$

Workdone $=$ Kinetic energy

$$
\begin{align*}
& e v=1 / 2 m u^{2} \tag{2}\\
& 2 e v=m u^{2}
\end{align*}
$$

Kim, an both sides

$$
2 m e V=m^{2} v^{2}
$$

Taking square root

$$
\begin{equation*}
\mathrm{mu}=\sqrt{2 \mathrm{maV}} \tag{3}
\end{equation*}
$$

From the de-Broglie's concent

$$
\begin{equation*}
\lambda=\frac{h}{m v} \tag{4}
\end{equation*}
$$

Subskituking eon((3) in equ(1), we have

$$
\begin{equation*}
\lambda=\frac{h}{\sqrt{2 m e v}} \tag{5}
\end{equation*}
$$

$$
\begin{gathered}
h=6.625 \times 10^{-34} \mathrm{I}_{5}, m=9.1 \times 10^{-31} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C} \\
\lambda=\frac{12.25}{v} \times 10^{-10} \text { metre }
\end{gathered}
$$

Properties of Matter Waves:
(1) If the mass of the Particle smaller, then the Wavelength associated with that Parkide is longer.
(2. If the velocity of the Particle is small, then the Wavelength arrocialed with that Patrice is longer.
(3). If $v=0$, than $\lambda=\bar{\alpha}$. ..e; the wave becomes indeterminate and if $V=\infty$, Then $\lambda=0$. This indicates that deproglie' waves are generated by the motion of Particles.
(4). These wave do not dependent an the charge of the Particles. This shows that these wows are not electromagentic cones
(5). The vedurity of de-Broglie's waver is not Corrant Since it depends an the velocity of the material Particle.

Schrodinger Time Independent wave equation:
-Insider a wave associated with a moving
Particle.
Let x, y, z be the Coordinates of the particle and ' ψ ' wavefunation for de-Braglie's coves at any given instant of time ' t 'r

Squaring eam (6)

$$
\begin{equation*}
\frac{w^{2}}{v^{2}}=\frac{2^{2} \pi^{2}}{\lambda^{2}}=\frac{4 \pi^{2}}{\lambda^{2}} \tag{7}
\end{equation*}
$$

Substituting equ(7) in en (5)

$$
\begin{equation*}
\sigma^{2} \psi+\frac{4 \pi^{2}}{\pi^{2}} \psi=0 \tag{8}
\end{equation*}
$$

Subs, $\lambda=\frac{h}{m v}$ in ear (8), we get

$$
\begin{align*}
& \nabla^{2} \psi+\frac{4 \pi^{2}}{h^{2} / m^{2} v^{2}} \psi=0 \\
& \nabla^{2} \psi+\frac{4 \pi^{2} m^{2} v^{2}}{h^{2}} \psi=0 \tag{q}
\end{align*}
$$

$$
\text { Total Energy }=\text { Potential Energy }+ \text { Kinetic Energy. }
$$

$$
E=V+1 / 2 m u^{2}
$$

$$
(E-V)=1 / 2 m v^{2}
$$

$$
2(E-v)=m v^{2}
$$

$X m$, on boll sides

$$
\begin{align*}
& \text { doth Sides } \tag{10}\\
& 2 m(E-v)=m^{2} v^{2}
\end{align*}
$$

Substituting $\operatorname{en}(10)$ in (9), we get

$$
\begin{align*}
& \nabla^{2} \psi+\frac{4 \pi^{2}}{h^{2}} \times 2 m(E-v) \psi=0 \\
& \nabla^{2} \psi+\frac{\pi^{2}}{h^{2}} 2 m(E-v) \psi=0 \tag{II}
\end{align*}
$$

Let us Introduce $\hbar=\frac{h}{2 \pi}$ in eam (II)

$$
\begin{equation*}
\hbar^{2}=\frac{h^{2}}{2 \pi^{2}}=\frac{h^{2}}{4 \pi^{2}} \tag{R}
\end{equation*}
$$

Where \hbar is a reduced Planck's Constant.
equ(11) is modified by Substituting \hbar

The classical differential equation tor wave motion is given by

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} \tag{1}
\end{equation*}
$$

The $\operatorname{com}(1)$ is written as

$$
\begin{equation*}
\nabla^{2} \psi=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} \tag{2}
\end{equation*}
$$

The where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is the Laplacian's operator.
The solution of eqn(2) gives ψ as periodic variations in terms of time ' t ',

$$
\begin{gather*}
\psi(x, y, z, t)=\psi_{0}(x, y, z) e^{-i \omega t} \\
\psi=\psi_{0} e^{-i \omega t}-(3) \tag{3}
\end{gather*}
$$

Differentiating the $\operatorname{eqn}(3)$ with respect to 't', we have

$$
\frac{\partial \psi}{\partial t}=-i \omega \psi_{0} e^{-i \omega t}
$$

- Again Differentiating $\omega \cdot r+$ 'time ' t '

$$
\begin{align*}
& \frac{\partial^{2} \psi}{\partial t^{2}}=(i \omega)(i \omega) \psi \cdot e^{-i \omega t} \\
& \frac{\partial^{2} \psi}{\partial t^{2}}=-i^{2} \omega \psi\left(i \psi=\psi_{0} e^{-i \omega t}\right) \tag{4}\\
& i^{2}=-1
\end{align*}
$$

Substituting ear (4) in ear (2), we hove.

$$
\begin{aligned}
& \nabla^{2} \psi=-\frac{w^{2}}{v^{2}} \psi \\
& <^{2} \psi+\frac{w^{2}}{v^{2}} \psi=0-5
\end{aligned}
$$

We know that Angular frequency $\omega=2 \pi \gamma$

$$
\begin{aligned}
& \nu=\text { frequency; } \nu=\frac{{ }^{\prime} c}{\lambda}=\frac{v}{\lambda} \\
& \omega=\frac{2 \pi v}{\lambda} ; \frac{\omega}{v}=\frac{2 \pi}{\lambda}-(6)
\end{aligned}
$$

$$
\begin{aligned}
& \nabla^{2} \psi+\frac{m}{h^{2} / 8 \pi^{2}}(E-v) \psi=0 \\
& \nabla^{2} \psi+\frac{m}{h^{2} / 4 \pi^{2} \times 2}(E-v) \psi=0 \\
& \nabla^{2} \psi+\frac{2 m}{h^{2} / 4 \pi^{2}}(E-v) \psi=0
\end{aligned}
$$

or. Substituting eq u (12) in em (13), Schrodinger
Time-independent wave eau written as

$$
\begin{equation*}
\Longrightarrow^{2} \psi+\frac{2 m}{\hbar}(E-v) \psi=0 \tag{14}
\end{equation*}
$$

(or)

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi \tag{15}
\end{equation*}
$$

Schrodinger Time Dependent wave equation:
Schrodinger Time dependent wave equation is derived from Schrodinger's time independent wave equation

The solution of classical differential equation of wane motion is given by,

$$
\begin{equation*}
\varphi=\psi_{0} e^{-i \omega t} \tag{1}
\end{equation*}
$$

Differentiating elm (1) w.r.t to 'fine' ' t '.

$$
\begin{gathered}
\left.\frac{\partial \psi}{\partial t}=-i \omega t_{0} e^{i \omega t}-(2) \quad \because \psi=\psi_{0} e^{i \omega t}\right) \\
\frac{\partial \psi}{\partial t}=-i 2 \pi \nu \psi \quad \because \omega=2 \pi \nu \\
\frac{\partial \psi}{\partial t}=i 2 \pi \frac{E}{h} \psi-(3) \because E=h \nu \\
\frac{\partial \psi}{\partial t}=-i \frac{E}{h / 2 \pi} \psi \quad \nu / h \\
\end{gathered}
$$

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=-i \frac{E}{\hbar} \psi \tag{4}
\end{equation*}
$$

$x i$ on both sides.

$$
\begin{align*}
& \frac{i \partial \psi}{\partial t}=-i \times i \frac{E}{\hbar} \psi \quad\left(: i^{2}=-1\right) \\
& \left.i \hbar \frac{\partial \psi}{\partial t}=E \psi \right\rvert\,-(\xi) \tag{5}
\end{align*}
$$

Schrodinger time Independent en (is

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi+v \psi=£ \psi \tag{b}
\end{equation*}
$$

From eam (5) \& (6)

$$
\begin{align*}
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=i \hbar \frac{\partial \psi}{\partial t} \\
& \left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V\right) \psi=i \hbar \frac{\partial \psi}{\partial t} \\
& H \psi=E \psi-(\delta) \tag{8}
\end{align*}
$$

Where $H=\left[\frac{\hbar^{2}}{2 m} \nabla^{2}+V\right]$ is Hamiltonian operator
$E=i \hbar \frac{\partial \psi}{\partial t}$ is Energy operator.
eau (7) is known as Schrodinger's time Dependent wave equiction
\qquad \times

Physical Significance of wave function ' ψ ':

1. The variable quantity which describes de -Broglie wave is called "wave function $\psi^{\text {" }}$ ".
2. It Connects the Particle nature and its associated wave nature statistically.
3. The wave function arsocicked with the moving Particle at a Particular Instant of time and ot a Particular point in Space is related to the Probability of finding the particle at that Instant and at that Point.
4. The Probability O corresponds to the certainty of not finding the parkule and ' 1 ' corresponds to certainty of finding the particle.

$$
\text { 1.e } \begin{aligned}
& \iiint \psi^{*} \psi=1 . \text { if Partide is Present } \\
& \psi^{*} \psi=0 . \text { if Particle is not Present. } \\
&\left(\psi^{*} \rightarrow \text { complex conjugate of } \psi^{\prime}\right)
\end{aligned}
$$

5. The Probability of finding a particle at a particular region must be real and positive, but the ware function ' ψ ' is in general Complex quantity.
Motion of a Free Particle:
Letus cassider electrons probayating freely in Space in the Positive x-direction and not acted upon by any force. Their Potential Energy is zero.

$$
\begin{aligned}
& 2^{2} \psi+\frac{8 \pi^{2} m}{\hbar^{2}}(E-v) \psi=0 \text { reduces to } \\
& \frac{d^{2} \psi}{d k^{2}}+\frac{8 \pi m E}{\hbar^{2}} \psi=0 \text {; taking } k^{2}=\frac{8 i m E}{\hbar^{2}} \text { weget }
\end{aligned}
$$

$\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0$ The general Solution of this eqn is

$$
\psi(x)=A e^{i k x}+B e^{-i k x} \quad(A \& B \text { are cosstant})
$$

The wave oily Propagate in Posituce x-drredion. we get,

$$
\psi(x, t)=A e^{i k x} e^{-i \omega t}
$$

The allowed energy values torn a continuum and are given by

$$
E=\frac{h^{2} k^{2}}{8 \pi^{2} m} \quad E \propto k^{2}
$$

Parkide in a infinite Potential:
(one-Dimensional Box)
two rigid walls insider a Particle of mass ' m ' moving between
The Potential of a box at $x=0$ and $x=a$ along x-axis.
It is taken as zero for simplicity.
The wails are Infinitely high. The Potential energy V of the Particle is infinite outside the walls.

Thus, the Potential function is given by

$$
\begin{array}{ll}
V(x)=0 & \text { for } 0<x<a \\
V(x)=\infty & \text { for } 0 \geqslant x \geqslant a
\end{array}
$$

(Particle in a are Dimensional rigid box)
The Particle cannot come ant of the box. Also, it can not exist on the wall. So - wave function. So, wave function ψ is zero for $x \leqslant 0$ and $x \geqslant a$. Now, task is to find the value ψ within the box ie between $x=0$ and $x=a$.

Schrodinger's wave equation in one-dimensional
is given by,

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}(E-V) \psi=0 \tag{1}
\end{equation*}
$$

Since $V=0$ between the calls, The eam (1) reduces to

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \psi=0 \tag{2}
\end{equation*}
$$

Substituting $\frac{2 \mathrm{mE}}{h^{2}}=k^{2}$ in equ(2), we get

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 \tag{3}
\end{equation*}
$$

The general solution of $\operatorname{equ}(3)$ is given by

$$
\begin{equation*}
\psi(x)=A \sin k x+B \cos k x \tag{4}
\end{equation*}
$$

Here, A and B are two unknown corstonits.
The values of the constants A s B are determined by applying the boundary caditions.
Boundary Condition (is

$$
\psi=0 \text { at } x=0
$$

Applying this Condition to eau (4), we have

$$
\begin{aligned}
& 0=A \sin 0+B \cos 0 \quad[\because \sin 0=0 \\
& 0=0+B \times 1 \\
& \quad B=0
\end{aligned}
$$

Hence.
Boundary Condition (ii)

$$
\begin{aligned}
& \psi=0 \text { at } x=a \\
& 0=A \sin k a+0 \\
& A \sin k a=0
\end{aligned}
$$

It is found that either $A=0$ (or) $\sin k a=0$
' A ' cavinot be zero since already one of the constants B is ${ }^{\circ}$.'
If A is zero, then the wave function is zero oven in between walls of the box. Hence 'A' Should not be zeno.

$$
\therefore \quad \sin k a=0 .
$$

Sin ka is ' O ' only when $k a$ takes the value of $n \pi$

$$
\begin{align*}
& k a=n \pi \\
& n=1,2,3 \ldots \\
& k=\frac{n \pi}{a}-(5) \tag{5}\\
& k^{2}=\frac{n^{2} \pi^{2}}{a^{2}} \quad(6) \tag{6}
\end{align*}
$$

we know that $\left.k^{2}=\frac{2 m E}{\hbar^{2}}=\frac{2 m E}{h^{2}\left(2 \pi^{2}\right.}\right)=\frac{2 m E \times 4 \pi^{2}}{h^{2}}(\because \hbar=h / 2 \pi)$

$$
\begin{equation*}
k^{2}=\frac{8 \pi^{2} m E}{h^{2}} \tag{7}
\end{equation*}
$$

Equating equ(6) and (7)

$$
\begin{align*}
& \frac{h^{2} y^{2}}{a^{2}}=\frac{8 y^{-2} m E}{h^{2}} \\
& E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}} \tag{8}
\end{align*}
$$

Substituting ear (5) in eqn(4), we have.

$$
\begin{equation*}
\psi_{n}(x)=A \sin \frac{n \pi x}{a} \tag{9}
\end{equation*}
$$

Here $n=1,2,3$
For each value of n, there is an "energy level"
Each Value of E_{n} is known as Energy Eigen Value and the Corresponding Ψ_{n} is called as eigen function.

Normalisation of wave function:
The constant ' A ' is determined by normalisation of wave function as follows.

Probability density is given by $\psi^{*} \psi$

$$
\begin{aligned}
& \text { w.k.t } \psi_{n}(x)=A \sin \frac{n \pi x}{a} \\
& \psi^{*} \psi=A \sin \frac{n \pi x}{a} \times A \sin \frac{n \pi x}{a}
\end{aligned}
$$

$\left[\because \psi=\psi^{*}\right.$ The wane function is real (not complex)]

$$
\begin{equation*}
\psi * \psi=A^{2} \sin ^{2}\left[\frac{n \pi x}{a}\right] \tag{10}
\end{equation*}
$$

The Probability of finding the Particle inside the box. The probability of finding the Radicle intrude the box of length ' a ' is given by.

$$
\begin{equation*}
\int_{0}^{a} \psi^{*} \psi d x=1 \tag{II}
\end{equation*}
$$

Substitute $\operatorname{eqn}^{\circ}(10)$ in equ(11)

$$
\begin{gathered}
\int_{0}^{a} A^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right) d x=1 \\
\frac{A^{2}}{2} \int_{0}^{a}[d x]-\int_{0}^{a} \cos \left(\frac{2 n \pi x}{a}\right) d x=1 \quad\left[\because \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}\right] \\
\frac{A^{2}}{2}\left[[x]_{0}^{a}-\left[\frac{\sin \left(\frac{2 \pi n x}{a}\right)}{\left.\frac{2 n \pi}{a}\right]}\right]=1\right.
\end{gathered}
$$

The Second term of the Integral becomes zero at bolt limits

$$
\begin{array}{r}
\frac{A^{2}}{2}[x]_{0}^{a}=1 \\
\frac{A^{2} a}{2}=1 \cdot \\
A^{2}=2 / a \\
A=\sqrt{2 / a} \tag{R}
\end{array}
$$

on substituting en (12) in ign (9), we have

$$
\begin{equation*}
\psi_{n}=\sqrt{2 / a} \sin \frac{n \pi x}{a} \tag{13}
\end{equation*}
$$

This expression (13) is known as "normalised eigen function"
From ign (8) and (13), the following cases can be taken and they explain the motion of electron in are dimensional box.
Case (i): $n=1$

$$
\begin{aligned}
& n=1 \\
& E_{1}=\frac{h^{2}}{8 m a^{2}} ;
\end{aligned} \quad \psi_{1}(x)=\sqrt{2 / a} \sin \left(\frac{\pi x}{a}\right)
$$

$\psi_{1}(x)$ is maximum at exactly middle of the box.
Case (ii) : $n=2$

$$
\begin{aligned}
& E_{2}=\frac{4 h^{2}}{8 m a^{2}}=4 E_{1} ; \quad \psi_{2}(x)=\sqrt{2} / a \sin \left(\frac{2 \pi x}{a}\right) \\
& \hline \text { quarter distance from either }
\end{aligned}
$$

$\psi_{2}(x)$ is maximum at quarter distance from either sides. of the box

Case (iii) $n=3$

$$
E_{3}=\frac{9 h^{2}}{8 m a^{2}}=9 E_{1} ; \quad \psi_{3}(x)=\sqrt{2 / a} \sin \left(\frac{3 \pi x}{a}\right)
$$

$\psi_{3}(x)$ is maximum at exactly middle and one-sixth distance from either of the sides of the box.

Extension to Two Dimension (2D Boxes)
In a Two dimensional Potential well, the Particle: can freely move in two directions (x and y).
n_{x} and n_{y}. Corresponding to the two coordinate axes namely. x and y respectively.

If ' a ' and ' b ' are the lengths of the well as shown fig along ' x ' and y ' $\underset{y=b}{ }$ axes, Then

Energy of the Particle $E=E_{n x}+E_{n y}$

$$
\begin{aligned}
& E_{n_{x y}}=\frac{n^{2} h^{2}}{8 m a^{2}}+\frac{n^{2} h^{2}}{8 m b^{2}} \\
& \text { If } a=b \\
& E_{n_{x} n_{y}}=\frac{h^{2}}{8 m a^{2}}\left[n^{2} x+n_{y}^{2}\right]
\end{aligned}
$$

The Corresponding normalised wave function of the Particle in the two dimensional well is written as

$$
\begin{aligned}
& \text { dimensional well is written as } \\
& \psi_{n_{x} n_{y}}=\sqrt{2 / a} \sin \left(\frac{n_{x} \pi_{x}}{a}\right) \times \sqrt{2 / a} \sin \left(\frac{n_{y} \pi_{y}}{b}\right) \\
&=\sqrt{2 / a} \times \sqrt{2 / a} \sin \left(\frac{n_{x} \pi_{x}}{a}\right) \times \sin \left(\frac{\pi_{y} n_{y}}{b}\right) \\
& \therefore \psi_{n x n_{y}}=\sqrt{\frac{4}{a b}} \sin \left(\frac{n_{x} \pi_{x}}{a}\right) \times \sin \left(\frac{n_{y} \pi_{y}}{b}\right)
\end{aligned}
$$

example:

$$
\begin{aligned}
& E_{12}=E_{21}=\frac{5 h^{2}}{8 m a^{2}}
\end{aligned} \quad \begin{aligned}
& n_{x}=1, n_{y}=2 ; \text { similarly } n x=2, n_{y}=1 \\
& \psi_{12}=\sqrt{4 / a b} \sin \frac{\pi x}{a} \sin \frac{2 \pi y}{b} \\
& \psi_{21}=\sqrt{4 / a b} \sin \frac{2 \pi x}{a} \sin \frac{\pi y}{a}
\end{aligned}
$$

We understand that several combinations of the two quankuin numbers ($n x$ shy) lead to different eisen velure is embinsen functions.

Particle in Three Dimensional Bon:
In a Three dimensional box, The Parkide Can moue in any direction in space. So, we have to use three quantum numbers, $n x, n_{y}, n_{z}$ corresponding to the three Coordinate axes namely x, y and respatinely.

If a, b, c are the lengths of the box.
Energy of the Particle $=E_{x}+E_{y}+E_{z}$

$$
E_{n_{n n g} n_{2}}=\frac{n_{x}^{2} h^{2}}{8 m a^{2}}+\frac{n^{2} h^{2}}{8 m b^{2}}+\frac{n^{2} b^{2}}{8 m c^{2}}
$$

If $a=b=c$ as for cubical box, Then

$$
\begin{equation*}
E_{n_{x} n y n_{2}}=\frac{h^{2}}{8 m a^{2}}\left[n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right] \tag{1}
\end{equation*}
$$

Corresponding normalised wane function

$$
\begin{aligned}
& \text { corresponding normalised wane function } \\
& \psi_{n x n_{y} n_{z}}=\sqrt{2 / a} \sin \left(\frac{n_{x} \pi x}{a}\right) \times \sqrt{2 / a} \sin \left(\frac{n_{y} \pi y}{b}\right) \times \sqrt{2 / a} \sin \left(\frac{m_{z} \pi_{z}}{c}\right) \\
& \psi_{n_{x} n_{y} n_{z}}=\sqrt{8 / a b c} \sin \left(\frac{n_{x} \pi x}{a}\right) \sin \left(\frac{n_{y} n y}{b}\right) \sin \left(\frac{n_{z} \pi_{z}}{c}\right)-\text { (e) }
\end{aligned}
$$

From eam (1) \& (2) Several Combination of the three quantum numbers $\left(n_{x}, n_{y}\right.$ and $\left.n_{z}\right)$ lead to different energy eigen value and eigen function

Example:

$$
\begin{aligned}
& n_{x}=1, n_{y}=1, n_{z}=2 \\
& n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=1^{2}+1^{2}+2^{2}=6 \text { similarly, } n_{x}=1, n_{y}=2, n=1
\end{aligned}
$$

and for $n_{x}=2, n_{y}=1, n_{z}=1$ wehaue ' b^{\prime}

$$
\begin{equation*}
\therefore E_{112}=E_{121}=E_{211}=\frac{6 h^{2}}{8 m a^{2}} \tag{3}
\end{equation*}
$$

The corresponding Wave function is written as

$$
\left.\begin{array}{l}
\psi_{112}=\sqrt{8 / a^{3}} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} \sin \frac{2 \pi z}{c} \\
\psi_{121}=\sqrt{8 / a^{3}} \sin \frac{\pi x}{a} \sin \frac{2 \pi y}{b} \sin \frac{\pi z}{c} \tag{4}\\
\psi_{211}=\sqrt{8 / a^{3}} \sin \frac{2 \pi x}{a} \sin \frac{\pi y}{b} \sin \frac{\pi z}{c}
\end{array}\right\}
$$

Degeneracy:
From eqn (3) and (4) several combinations of quantum numbers, we have the same Energy eigen value but different eigen functions Such a state of energy level is called "degenerate state".
Nan-degenerate: state:
When only one ware function Corresponds to the energy eigen value, such a state is called "non-degenerate state.
Suppose:

$$
\begin{aligned}
& n_{x}=2, n_{y}=2, n_{z}=2 \\
& E_{222}=\frac{12 h^{2}}{8 m a^{2}} \text { and } \\
& \psi_{222}=\sqrt{\frac{8}{a^{3}}} \sin \frac{2 \pi x}{a} \sin \frac{2 \pi y}{b} \sin \frac{2 \pi z}{c}
\end{aligned}
$$

Then,

Probability Density:
Probability of finding the Partide between Position x and $x+d x$.

$$
P(x)=\left|\psi_{n}\right|^{2} d x=\frac{2}{a} \sin ^{2}\left(\frac{n \pi x}{a}\right) d x
$$

Probability density is maximum when

$$
\begin{aligned}
& \frac{n \pi x}{a}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \ldots \\
& x=\frac{a}{2 n}, \frac{3 a}{2 n}, \frac{5 a}{2 n} \ldots
\end{aligned}
$$

* $n=1, x=\frac{a}{2}$. The Particle most likely to be in the middle of the bor. (because $\left|\psi_{i}\right|^{2}$ is maximum there) * For $n=2, x=\frac{a}{4}$ and $\frac{3 a}{4}$, The Parkile most likely to be at $\frac{a}{4}$ and $\frac{3 a}{4}$ and never found in the middle of the bor because $\left|\psi_{2}\right|^{2}$ is zeno There.
* For $n=3$; The most likely position of Hartide are $x=\frac{a}{b}, \frac{3 a}{b}, \frac{5 a}{b}$

While classical mectranics Predicts the Same Probability for the Particle being anywhere in the box. Quantum mechanics Predicts that the Probability is different at different Points and There are Points (nodes) where the Particle is never found.

Correspondance Principle:
Quantum mechanics is highly successful in describing microscoping entities like atoms and elementary parkides. But, macroscopic system, like tennis ball, automobile etc, are accurately described by classical mechanics.

Bohr's Correspondance Principle bridges the gap beleveen the Classical mechanics and Quantum mechanics. it removes The apparent discontinuity between These two.
Statement:
"The Principle states that for large quantum numbers, quantum Physics gives the sameresulbs as those of Classical Physics."

In fact," The greater The quantum number, The closer quantum Physics approaches Classical Physics"

Example:
Einstein's Special relativity Satisfies the concespandance
Principle, because it reduces to classical mechanics in the limit of Velocities small compared to the speed of light.

Significance:
The corcespondance Principle has Proved to be of great use in the computation of the Intensity, Polarisation and Coherance of spectral radiation. It has also been Welfectuct helpful in the formulation of "Selection rules"

Unit-v
APPLIED QUANTUM MEChANICS
5.1. THE HARMONIC OSCILIATOR:

Any Oscillation system for which the not restoring force is directly proportional to the negative of the displacement is called an harmonic oscillator.

A pendulum, a particle attached to a spring. or many vibrations in atoms and molecules can be described as a harmonic oscillator.

A simple realization of the harmonic Oscillator is a mass, attached to the end of a simple spring as shown in fig.5.1

Fig. 5.1 Harmonic oscillator

The equation of motion for the simple harmonic oscillator is given by

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0 \tag{2}
\end{equation*}
$$

where x is the portion of the moss as a function of time, 1 . The constant k is known as the force constant; the larger the force constant, the larger the restoring force for a given displacement from the equilibrium position.

Eau: (2) can be rewritten as

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+w^{2} x=0 \tag{3}
\end{equation*}
$$

where the oscillation occurs with a constant angular Frearvency,

$$
\omega=\sqrt{\frac{k}{m}} \quad\left[\operatorname{since}, \omega^{2}=\frac{k}{m}\right]
$$

The general solution to er (3) is

$$
x(t)=A \sin \omega t+B \cos \omega t
$$

with represents periodic motion with a sinusoidal time dependence. This is known as simple harmonic motion and the corresponding system is known as harmonic oscillator.

Energy in the Harmonic Oscillator:
The total energy E of the oscillator is the sum of its kinetic energy and the elastic potential energy of the force givenby

$$
E=\frac{1}{2} m v^{2}+\frac{1}{2} m x^{2}
$$

Where v is the velocity of the mass m when it is at a distance x from the equilibrium position.

The study of quantum mechanical harmonic motion begins with the specification of the schrodinger equation.

The classical potential energy is given by

$$
v=\frac{1}{2} k x^{2}
$$

and 20 we can write down the schrodinger equation as

$$
[-\underbrace{\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}}_{\substack{\text { o } \\
\begin{array}{c}
\text { inetic } \\
\text { Energy }
\end{array}}}+\underbrace{\frac{1}{2} k x^{2}}_{\substack{\text { potential } \\
\text { Energy }}}] \psi(x)=E \psi(x)
$$

since harmonic motion has a charasteristic angular frequency, it makes sense to measure energy in terms of ω.

Hence, the allowed energies are

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \text { for } n=0,1,2,3, \ldots
$$

Where the ground state is usually designated with the aruantum number, $n=0$

Therefore, we have

$$
\begin{aligned}
& E_{0}=\left(\frac{1}{2}\right) \hbar \omega \\
& E_{1}=\left(\frac{\rho}{2}\right) \hbar \omega \\
& E_{2}=\left(\frac{5}{2}\right) \hbar \omega \\
& E_{3}=\left(\frac{7}{2}\right) \hbar \omega \text { sind soon. }
\end{aligned}
$$

It is clear that tue difference between successive energy eigen values has a constant value given by,

$$
\Delta E=E_{n+1}-E_{n}=\hbar c \omega
$$

The potential energy function and first few energy levels for the harmonic oscillator as shown in Fig.5.2

As the oruantum member number n increases, the energy of the oscillator and therefore the amplitude of Oscillation 0 increases.

A packet of energy $\hbar \omega$ is needed to make the ovuantum harmonic oscillator to move from a lower energy state to higher energy state.

Here, the ground-state energy, $E_{0}=\left(\frac{1}{2}\right)$ hi is greater than the classical, value of zero, which is a conseorvence of the uncertainty principle. This means that the oscillator is always oscillating.

Fig.5.2. Energy States and potential well of a quantum harmonic oscillator

The salient features of harmonic oscillator are,

The energies are aruantised and the energy levels are evenly spaced.

There is a non-zero ground state energy.
$E=0$ is not allowed by Heisenberg uncertainly principle.

Significance:
(i) It serves as a prototype in the mathematical treatment of phenomena like elasticity, acoustics, $A C$ circuits, molecular and crystal vibrations, electromagnetic fields and optical properties of matter.
(ii) The physics of oruantized electromagnetic oscillations (photons) and aruantized mechanical' Oscillations (phonons) is intimately related to the $q u a n t u m$ harmonic oscillator.
5.2. BARRIER PENETRATION AND QUANTUM

TUNNELLING:
According to aruantum mechanics, a Particle such as electron can penetrate a barrier into a region forbidden by classical mechanics.

This phenomenon is known as barrier penetration and can happen only when the particle exhibits wave nature.

Tunnelling is a aruantum phenomenon where particles with less energy than that of a potential barrier can still cross the energy barrier, by penetrating through it.

Explanation:
Let us consider a particle of mass m fravelling 50 the right alonge the x-axis. The particle encounters a narrow potential barrier whose height vo is greater than E and whose thickness is L.

- classically all the particles.
(i) Will be reflected back (at $x=0$) if $E<v_{0}$ and
(ii) will bo transmitted to $x>L$ if $E>V_{0}$

But, oruantum mechanics predicts a nonzero probability for finding the particle on the other side of the barrier even when $E<v_{0}$.

This can happen as the approaching particle has a sinusoidal wave function as shown in fig.5.4.

Within the barrier the wave is decaying and before it dies away to zero. there is again a sinusoidal wave function, at $x=1$.
But it is a sine wave of greatly reduced amplitude.

Since, $[\psi]^{2}$ is non-zero beyond the barrio it is evident that there is a noi-zaro probability that the particle penetrates the barrier. This process is called tunnelling through the barrier or barrier perietration. Thus, funnelling is a result of the wove properties of material particles.

Tunnelling probability:
The tunneling probability can be described with a transmission co-eqticient, T and a reflection co-eqficient R.
since an incident particle must either reflect or tunnel through, we have $\tau+R=1$ Transmission coefficient:

The probability that the particle gets through the barrier is called transmission cospticiont (T).

Probability density of transmitted wave $T=\frac{\text { probability density of incident wave }}{\text { pres }}$

The tranmixion conticiant is given by

$$
T=e^{-2 \mathrm{OHL}}
$$

Where.

$$
G=\sqrt{\frac{2 m\left(V_{0}-E\right)}{h^{2}}}
$$

The transmission probability increases with decrease in height and width of the barrier.
5.3. TUNNELIING MICROSCOPE:

An electron microscope that works by Quantum tunnelling phenomenon and creates atomic scale imaging of surfaces is known as tunnelling microscope. Fetbact in p

For the electrons in the sample and in the metal tip, it is forbidden to stop in the gap between sample and tip. However, this gap is so small that the electrons are able to Funnel and flow through the gap.

Principle:
when a voltage is applied between a conducting tip and a surface close to it, electron can tunnel through the vaccim between the atoms of the tip and the surface. The tunnelling currents that results depends upon, the distance between probe tip and sample surface.

Construction
The basic components are, piezoelectric tube
Tunnelling current amplifier Distance control unit f scanning unit Data processing and display.

working
The sharp conducting probe tip attached to a piezoelectric tube is positioned at a distance few angstroms from the sample surface.

A small voltage applied between the probe tip and the surface causes electrons Fo tunnel from the tip to the sample surface.

As the probe is scanned over the surface, the voltage applied to the piezotube is altered to maintain a constant tip-surface distance.
changes in this voltage registers variations in the tunnelling current.

The changes in the tunnelling current are recorded and then used to generate a map of the sample surface on the display unit Merits:

The high resolution of stye enables researchers to examine surfaces at an atomic level.

Gives three dimensional profile of a surface.
versatile and can be used in ultrahigh vaccum, air, water and other Liquids and gasesoperates in temperatures as low as zero kelvin up to a new hundred degrees celsius.

Demerits :
Require very stable, clean surfaces and conducting surfaces.

Difficult to use effectively.
The electronics rearlieed are extremely sophisticated as well as very expensive.

Applications:
The tunnelling microscope is widely used in both industrial and fundamental research to obtain atomic-scale images of metal surfaces

Used as diagnostic tool in the fields like solid state physics, electrochemistry, biology, organic. clumistry, nano machining etc...

Defects and physical structure of Synturic chemical compounds can be studied.

To study charge transport mechanism in molecules.

Used in research surrounding semiconductors and microelectronics.
5.4. RESONANT TIODE

A diode with a resonant tunnelling Structure that allows electrons to tunnel through various resonant states at certain energy level is known as resonant diode. principle:

Tunnelling of electrons through a Finite - height potential well that occurs only when electron energies match an energy bevel in the well. construction:

The structure of resonant diode is shown below.

Fi9.5.7. structure of resonant diode
It consists of an intrinsic Gats
avuantum ural region sandwiched between two thin barrier regions made of AlGaAs.

The regions at the extreme ends on both sides are made of heavily doped n-Giants and they serve the purpose of
emitter and collector.
By applying a bias voltage, the tunnelling current across the diode can be controlled.

Working:
According to aruantum mechanics, electrons can tunnel from outride into the well through barrier under suitable conditions

The Energy band diagram of the resonant diode in shown in fig.5.8
without any voltage bias, the electron energy havel in tue well is higher than the incident electron energy (E).

Fig.5.8. Energy Band Diagram of resonant diode (with no voltage bias)
So, no electron in the conduction band can tunnel to the well, and there is no current.
on increasing the bias voltage, the
incident electron energy level. E on the leapt becomes higher and matches an energy level in the potential well. Now some electrons can tunnel into the well and the current from left to right increases due to funnelling.

conduction Bard.

Fi9.5.9. Energy Band Diagram of resonant diode (with applied voltage bias)
Thus, when the electric field increases
Fo the point where the energy level of the electrons in the emitter coincides with the energy level to the aruasi-bound state of the well, the current reaches a maximum. This type of funnelling is known as resonant tunneling.

I-V characteristics af erosorant tierle:

The current voltage (v) characters istic
far resonant diode is shown in fig.5.10.

As voltage increase, F also increases and hence the tunneling cureont increases and reaches a peak point.

Fi9.5.10.I-v-chanacteristc of roltafinant diode Further increases in voltage alters the energy value E and hence the transmission is low. This results in decrease in current which reaches a minimum value point called valley. The decrease of current with an increase in voltage is known as negative resistance.

As the applied voltage continues 10 increase, curent begins to rise again because of substantial thermionic emission.

Let us consider a particle with total energy $E<V_{0}$ confined within a well bouncing back and forth between the Furning points at $x=-L$ and $x=L$.

The potential well is divided into three regions $(1,2,3)$ with associated wave function as follows.
$\Psi= \begin{cases}\Psi_{1}, \text { if } x<-1 & \text { (thiregion outside the box) } \\ \Psi_{2}, & \text { if }-1<x<L\end{cases}$

The time independent schrodinger's equation can be written as

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \cdot \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi \tag{0}
\end{equation*}
$$

Inside the box
For this region, inside the box $v(x)=0$ and eau (1). reduces ± 0

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{2}}{d x^{2}}=E \psi_{2} \tag{2}
\end{equation*}
$$

Letting

$$
K=\frac{\sqrt{2 m E}}{\hbar}
$$

earn (2) becomes

$$
\frac{d^{2} \Psi_{2}}{d x^{2}}=-k^{2} \Psi_{2}
$$

The general solution for the above differential equation is

$$
\begin{equation*}
\psi_{2}=A \sin (k x)+B \cos (k x) \tag{3}
\end{equation*}
$$

Here, $A \nsubseteq B$ are constants and k can be any real number

Hence,

$$
E=\frac{k^{2} \hbar^{2}}{2 m}
$$

Outride the box
In the regions, $x<-L$ and $x>L$, we have, $V=v_{0}$ and now the schrodinger equation is

$$
\frac{-\hbar^{2}}{2 m} \cdot \frac{d^{2} \psi}{d x^{2}}+V_{0} \psi=E \psi
$$

we rewrite this as

$$
\frac{d^{2} \psi}{d x^{2}}-\left[\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}\right] \psi=0
$$

Let us assume that E is less than Vo, so the particle is "trapped" in the usell. There might be only one such bound state or more.

We define a constant on by

$$
G I^{2}=\frac{2 m\left(V_{0}-1\right)}{h^{2}}
$$

and rewrite the echrodicgen salvation an

$$
\frac{d^{2} \psi}{d x^{2}}-\operatorname{cr}^{2} \psi=0
$$

This oaruation has the general solution

$$
\Psi_{1,3}=C e^{a, x}+D 0^{-G x}
$$

In the region, $x<-1, x$ is always negative. SO, D must be zero. Sirnitarly in region. $x>L$, where x is always positive, c must be zero.

Hence.

$$
\begin{aligned}
& \psi_{1}=C e^{c_{1} x} \\
& \Psi_{3}=D e^{-\operatorname{cin} x}
\end{aligned}
$$

Conclusion:
In a finite potential well, the wave function extends into these classically forbidden region where the total energy is less than the potential energy. The situation is possible and is consistent with the uncertainly principle.

However, in both these regions the waves function decreases exponentially with distance from the well.

If the particle manages to acopuíre energy. $E>V_{0}$, then it will escape from the well.

An electron confined within a semiconductor by an electric force has a potential energy that can be modelled as a finite potential well. similarly a proton confined within the nucleus by the nuclear force has a potential energy that can be modelled as a finite potential well. Hence any situation in which a particle is confined can be modelled as a finite potential well. characteristics of finite potential well.

The number of bound state energies is finite.

The number of bound states increases with the width and depth of the well.

Tunnelling into the barrier (wall) is possible.

Higher energy states are less tightly bound than lower ones.

A particle provided with enough energy can escape the well (unbound state).
5.6. BIOCH THEOREM

One of the characteristic features of many solids is the regular arrangement of their atom forming a crystal. The potential energy of electrons in such a crystal is the result of the positively charged ion producing a columbic attraction.

In a crystal, electrons move in a potential $V(x)$ which is produced by regularlyspaced ion cores as shown in fig.5.12(a)

The potential of the election at the site of positive ions is zero and is maximum in between the sites of two positive ions as Shown in fig. 5.12(6)

Fig.5.12. Electrons in a periodic potential
lat a ons-dixansional latices cés only an arrows of ionic corse s along x-ar is is considered

Quince the potential onongy at any particle bound in a field of attraction is negative, and since the conduction otoctron is bound to the solid, its potential on orgy V is negative.

Further, ar it approaches the site at an ionic core, $V \rightarrow-d r$
since luis occur symmetrically on either ide of the core, it is roferood to as potential well.

The width of the potential wall ' h ' is not uniform, but has a tapering shape.

It vo is the potential at a given olepth of the well, then the variation is such that.
$b \rightarrow 0$, as $V \rightarrow \infty$ and hence.

$$
b v_{0}=c o n s t a n t
$$

Now, since the lattice is a repetitive structure of the ion arrangement in a crystal, the typo of variation of also repeats itself.

If " α " is the inter-ionic distance, then, as use move in x-aligection, the value of v will be same at all points which are seperated by a distance equal to " a ".

$$
i(x, V(x)=V(x+a)
$$

where, x is distance of the electron from the corse.
such a potential is said to be a periodic potential.

The Bloch theorem states that, for a Particle moving in a periodic potential, the eigen functions for a conduction electron are of the form,

$$
\Psi(x)=U(x) \cos k x
$$

where, $U(x)=U(x+a)$

The function $U(x)$ has the same periodicity as the potential energy of the electron, and is called the modulating function.

Significance:
A large number of materials pore well described by regular atomic spacing and a periodic potential for a crystal lattice which is like a string of finite wells.

The presence of periodic potential is a crystal leads to energy bands, which are essentially energy intervals between which energy levels are nearly continuous. 5.7. THE KRONIG PENNEY MODEL:

The study of essential behaviour of electrons by approximating the potential inside a crystal to the shape of rectangular steps is called kronig - Penney model of potentials.

The kronig-penney model describes the one dimensional representation of electron potential in a periodic lattice (7i9.5.13)

Fig: 5.13 periodic potential-Kronig-penney model

This model consist of an infinite row rectangular potential wells separated by barrier of width "b". Each well has a width " a " and a depth vo.

It is assumed that when an electron is near the positive ion site, potential energy is taken as zero. Whereas, outside the well, that is, in between two poritive ions, potential energy is assumed to be No.

Hence, we have

$$
V(x)=V_{0} \text { for }-b<x<0
$$ and

$$
V(x)=0 \quad \text { for } \quad 0<x<a
$$

The period of the potential is, $(a+b)$

The possible states that the electron can occupy are determined by the schrodinger eovuation,

$$
\frac{d^{2} \Psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}(E-V) \Psi=0
$$

The schrodinger earuation for the two regions can be written as

Region I $\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{2 m}{\hbar^{2}}$ (E) $\psi=0, \quad 0<x<a$

$$
[\sin c e, v=0]
$$

wa macrite tur movernciver sty

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+x^{2} y+\infty \operatorname{ser}+x+x+9 \tag{b}
\end{equation*}
$$

and

$$
\left.\frac{d^{2} y}{d a}-p^{2} y+0 \text { for } t x^{2} x+\infty \quad x\right)
$$

wiule.

$$
\begin{aligned}
& \alpha^{2}=\frac{3 m E}{h^{2}} \\
& \beta^{2}=\frac{0 m}{n^{2}}\left(v_{0}+1\right)
\end{aligned}
$$

Block bas given tw devtion fer cebrateripos ormation ax

$$
y(x)-U(x) \cos k x
$$

whine, $U(x)=(x+x)$
golveng tue atove warmation (8) \% (A) bu applyeng fotindeny eondilions, wat gat

$$
\begin{aligned}
& 2 h^{2} a \\
& \frac{P}{\alpha a}+i(n(\sin)+\cos (\pi n)=\operatorname{sit}
\end{aligned}
$$

where, $p=\frac{8 \pi^{2} m v_{0} \alpha b}{2 \hbar^{2}}=$ potential barrie
Strength

Fig. 5.14
By varrying α, a, wave function mechanical nature could be plotted as shown in fig. 5.14.

The shaded portion of the wave shows the bancts of allowed energy with the forbidden region as unshaded portion.

Thus, the energies of an electron moving under a periodic lattice potential ide only in certain allowed zones: other energies are forbidden.

Results from kronig-perney rootlet:
The krorig - penney model demonstrates that a simple one dimensional periodic potential veilds energy bands as well as energy band gaps.

If potential barrier betwacon walls is strong, energy bands are narrowed and speed for apart. This corresponds to crystals in which electrons are tightly band to ion cores, and wave functions donot overlap much with adjacent cores.

If potential barrier between wells is weak, energy bands are wide and spaced close together.

The energy spectrum of sections consist of an infinite number of allouzed energy bands seperated by intervals in which, there are no allowed energy levels. These are known as forbidden regions.
when " α " increases, the width of The allowed energy band also increases and forbidden energy regions become narrow
5. 8. ORIMIN OF ENFRGY EAND COFD BAND
THEORY OF SOLIDS.

An easy ways to consider how energy bands arise in a solid is to look at what happens to the energy levels of isolated stems ar thus are brought closer and close together to form the solid.

In an isolated atom, the electrons ar tightly bound and have discrete, sharp energy levels.

As the atoms are brought closer together, each of the energy level for each atom changes because of the influence of the other atom.

Hence, when two identical atoms are brought. closer, the outermost orbit of these atoms overlap and interacts with the wave functions of the electrons of the different atoms. then the energy levels corresponding to those wave functions split into two.

Thus, an energy level split in to two levels of slightly different enengies For the two-atom system and three levels of slightly different energies for the threeatom system and so on as slow in fig.5.15

when a plarge number of atoms
Cof order 10^{28} or mors) are brought together to form a solid. the number of orbitals becomes exceedingly large, and the dinperene in energy between them becomes very small. so the levels mays be considered to form continuous bands of energy rather than the discrete energy levels of the atoms in isolation.
within an energy band. energy level
are 80 numerous and are so close to each other that they form almost continuous band.
However, some intervals of energy contain no orrbitale i.e., the forbidden energy levels, no matter how many atoms ass aggregated, forming band gaps.

KEY POINTS:

Energy Band
A set of closely packed energy level is called as energy band.
width of a band
The overall range of energies from the lowest to the highest level for a band is called the width of a band

Valence band
A band which is occupied by the Valence electrons is called as Valence band. The valence band may be partially or completely filled up depending on the nature of the material.
conduction band
The lowest unfilled energy band is called as conduction band. This band may be empty of partially filled. In conduction band the electrons can move 7 really.

Forbidden gap or band gap:
The energy gap between valence band and conduction band is called forbidden energy gap or forbidden gap or band gap.

