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OBJECTIVES: 

 To understand the essential principles of Physics of semiconductor device and 
Electron transport properties. Become proficient in magnetic, dielectric and optical 
properties of materials and Nano devices. 

UNIT I ELECTRICAL PROPERTIES OF MATERIALS      9 

Classical free electron theory - Expression for electrical conductivity – Thermal conductivity, 
expression - Wiedemann-Franz law – Success and failures - electrons in metals – Particle in 
a three dimensional box – degenerate states – Fermi- Dirac statistics – Density of energy 
states – Electron in periodic potential: Bloch theorem – metals and insulators - Energy bands 
in solids– tight binding approximation - Electron effective mass – concept of hole. 
UNIT II SEMICONDUCTOR PHYSICS        9 

Intrinsic Semiconductors – Energy band diagram – direct and indirect semiconductors – 
Carrier concentration in intrinsic semiconductors – extrinsic semiconductors - Carrier 
concentration in N type & P-type semiconductors – Carrier transport: Velocity-electric field 
relations – drift and diffusion transport - Einstein’s relation – Hall effect and devices – Zener 
and avalanche breakdown in p-n junctions - Ohmic contacts – tunnel diode - Schottky diode – 
MOS capacitor - power transistor. 
UNIT III MAGNETIC AND DIELECTRIC PROPERTIES OF MATERIALS    9 

Magnetism in materials – magnetic field and induction – magnetization - magnetic permeability 
and susceptibility–types of magnetic materials – microscopic classification of magnetic 
materials - Ferromagnetism: origin and exchange interaction- saturation magnetization and 
Curie temperature – Domain Theory. Dielectric materials: Polarization processes – dielectric 
loss – internal field – Clausius-Mosotti relation- dielectric breakdown – high-k dielectrics. 
UNIT IV OPTICAL PROPERTIES OF MATERIALS      9 
Classification of optical materials – carrier generation and recombination processes – 
Absorption emission and scattering of light in metals, insulators and Semiconductors 
(concepts only) – photo current in a P- N diode – solar cell –photo detectors - LED – Organic 
LED – Laser diodes – excitons - quantum confined Stark effect – quantum dot laser. 
UNIT V NANOELECTRONIC DEVICES        9 

Introduction - electron density in bulk material – Size dependence of Fermi energy– quantum 
confinement – quantum structures - Density of states in quantum well, quantum wire and 
quantum dot structures –Zener-Bloch oscillations – resonant tunneling – quantum interference 
effects – mesoscopic structures: conductance fluctuations and coherent transport – Coulomb 
blockade effects - Single electron phenomena and Single electron Transistor – magnetic 
semiconductors – spintronics - Carbon nanotubes: Properties and applications. 

TOTAL: 45 PERIODS 
OUTCOMES: 
 
At the end of the course, the students will able to 

 Gain knowledge on classical and quantum electron theories, and energy band structures, 
 Acquire knowledge on basics of semiconductor physics and its applications in various 

devices, 
 Get knowledge on magnetic and dielectric properties of materials, 
 Have the necessary understanding on the functioning of optical materials for 

optoelectronics, 
 Understand the basics of quantum structures and their applications in spintronic and carbon 

electronics. 
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ELECTRICAL PROPERTIES OF MATERIALS 

Low resistive materials are known as conducting materials. They have high electric and thermal 

conductivities. The conducting property of a solid is due to the number of valence electrons, which 

become free electron when they are detached from the parent atom. 

Classification of conducting materials: 

 Based on their conductivity conducting materials are classified into three types. 

 Zero resistivity materials  

 Low resistivity materials 

 High resistivity materials 

 

ELECTRON THEORY OF SOLIDS: The electron theory of metals aims to explain the structure 

and properties of solids through their electronic structure. The electron theory is applicable to all 

solids i.e., both metals and non-metals. It explains the electrical, thermal and magnetic properties 

of solids etc.  

The theory has been developed in three main stages.  

The classical free electron theory: Drude and Lorentz proposed this theory in 1900. According 

to this theory, the metals containing the free electrons obey the laws of classical mechanics.  

The quantum free electron theory: Somerfield developed this theory in 1928. According to this 

theory the free electrons obey quantum laws. According to this theory the free electrons are moving 

in a constant potential.  

The zone theory: Bloch stated this theory in 1928. According to this theory, the free electrons 

move in a periodic field provided by the lattice.  

POSTULATES OF CLASSICAL FREE ELECTRON THEORY   

In the absence of electrical field: When an electrical field is not applied, the 

free electrons move everywhere in a random manner. They collide with other 

free electrons and positive ion core. This collision is known as elastic 

collision. 

 

Classical free electron theory - Expression for electrical conductivity – Thermal conductivity, 

expression - Quantum free electron theory :Tunnelling – degenerate states – Fermi- Dirac 

statistics – Density of energy states – Electron in periodic potential – Energy bands in solids 

– tight binding approximation - Electron effective mass – concept of hole. Magnetic materials: 

Dia, para and ferromagnetic effects – paramagnetism in the conduction electrons in metals – 

exchange interaction and ferromagnetism – quantum interference devices – GMR devices. 

UNIT-1 Electrical and Magnetic Properties of materials
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In the presence of electric field: When the electrical field is applied, the 

electrons get some amount of energy from the applied electric field and 

they begin to move towards the positive potential. 

Since electrons are assumed to be a perfect gas, they obey the laws of kinetic 

theory of gases. 

 

Drift velocity: It is defined as the average velocity acquired by the free electrons in a metal in a 

particular direction by the application of an electrical field.             𝒗𝐝 =
𝛌

𝛕𝐜
 

Collision Time: The average time taken by a free electron between any two successive collisions 

is known as collision time.                𝛕𝐜  =  𝛌/𝒗𝐝 

Mean free path: The average distance travelled by a free electron between any two successive 

collisions in the presence of an applied field is known as mean free path. It is the product of drift 

velocity of electrons (vd) and collision time (τc).    λ = 𝒗𝒅 x τc 

Relaxation time: The average time taken by a free electron to reach its equilibrium position from 

its disturbed position due to application of an external electric field is called relaxation time.  It is 
approximately equal to 10-14 second. 
 

Electrical conductivity of a metal 

Definition: It can be defined as the quantity of electric charge 

(Q) conducted per unit time (t) across unit area (A) of the solid 

for unit applied electric field (E).     𝜎 =  
𝑄

𝑡𝐴𝐸
  Ω−1m−1 

Derivation: We know in the in the absence of external electric 

field, the motion of electrons in a metal moves randomly in all directions. When an electric field 

is applied between the two ends of a metallic rod. The electrons will move towards the positive 

field direction and produces current in the metallic rod.  

If ‘E’ is the electric field intensity and ‘m’ is the mass of the electron, then 

Force experienced by the electron  F = eE -------(1) 

According to the Newton’s second law  F = ma  -------(2) 

Equating (1) and (2)            eE = ma 

      a =  
eE

m
  ---------(3) 

Due to the applied electric field, the electron gains acceleration ‘a’  
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Acceleration =  
Velocity

Time
=  

Drift velocity

Relaxation time
 

a =  
vd

τ
 

𝒗𝒅 = 𝒂𝝉   ---------(4) 

Substituting (3) in (4)         𝐯𝐝 =
𝐞𝐄

𝐦
𝛕 --------(5) 

If ‘n’ is the free electron density and ‘e’ is the charge of electron then current density is given by  

                      𝐽 = 𝑛𝑉𝑑𝑒--------(6)  

Sub (5) in (6)     J = ne(
eE

m
τ) 

      J =  
ne2E

m
τ  --------(7) 

According to ohm’s law, current density (J) is expressed as         J = E 
J

E
= σ 

      
J

E
=  

ne2

m
τ 

     σ =  
ne2

m
τ   ------(8) 

Thus the above equation represents the electrical conductivity of metal.  

Thermal conductivity of a metal: 

 In general, the thermal conductivity takes place not only by thermal motion 

of free electrons but also by thermally excited lattice vibrations called phonons.  The total thermal 

conductivity K tot is given by      

KTot =  Kelectron + KPhonon 

In metals, conductivity due to free electrons is predominant. KTot  ≈  Kelectron 

In insulators thermal conductivity is due to atomic or molecular vibrations of the lattice is 

predominant     ∴ KTot  ≈  Kphonon 

In semiconductors both electron & phonon will contribute for thermal conduction. 

∴ KTot  ≈  Ke + Kph 

Definition: Thermal conductivity of the material is defined as the amount of heat conducted per 

unit area per unit time maintained at unit temperature gradient  
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𝐾 =
𝑄

𝑡𝐴 (
𝑑𝑇

𝑑𝑥
)

  𝑊/𝑚/ 𝐾 

Derivation: Let us consider a uniform rod AB with Temp (Hot) T at end A & T-dT (cold) at end 

B. Heat flows from hot end to cold end and the distance between A & 

B is. The no of conduction electrons in a metal is ‘n’ their average 

velocity is v.   

At A, Average kinetic energy of an electron = 
3

2
𝐾𝑇 ---------(1)  

At B, Average kinetic energy of an electron = 
3

2
𝐾(𝑇 − 𝑑𝑇)---------(2) 

The number of electrons crossing per unit area per unit time is 
1

6
 𝑛𝑣 

Excess of kinetic energy carried by the electron from A to B = [
3

2
𝐾𝑇 −

3

2
𝐾(𝑇 − 𝑑𝑇)] 

1

6
 𝑛𝑣  

= [
3

2
𝐾𝑇 −

3

2
𝐾𝑇 +

3

2
𝐾𝑑𝑇]

1

6
 𝑛𝑣 

= 
1

4
𝑛𝑣𝐾𝑑𝑇 ---------(3) 

Similarly the deficient of kinetic energy carried by the electron from A to B per unit area in unit 

time = - 
1

4
𝑛𝑣𝐾𝑑𝑇 ----------(4) 

Hence, the net amount of energy transferred from A to B per unit area per unit time  

    𝑄 = (
1

4
𝑛𝑣𝐾𝑑𝑇) −  (− 

1

4
𝑛𝑣𝐾𝑑𝑇)   

    𝑄 =
1

2
𝑛𝑣𝐾𝑑𝑇 -----------(5)  

From basic definition of thermal conductivity   

The amount of heat conducted per unit time per unit area is  𝑄 = 𝐾
𝑑𝑇

𝜆
 ---------(6) 

Equate (5) and (6) we get,   
1

2
𝑛𝑣𝐾𝑑𝑇 =  𝐾

𝑑𝑇

𝜆
  

                𝐾 =  
1

2
𝑛𝜐𝑘𝜆 --------(7) 

For metals   Relaxation time () = Collision time (c)  

                  =  ---------(8) 

Sub (8) in (7) we get    𝐾 =  
1

2
𝑛𝜐2𝑘𝜏 -----------(9) 

This is the classical expression for thermal conductivity of a metal. 

Weidemann-Franz law:  
It states that for the metals, the ratio of thermal conductivity to electrical conductivity is 

directly proportional to the absolute temperature. This ratio is constant for all metals at a given 

temperature.       
𝐊

𝛔
𝛂𝐓  

𝐊

𝛔
= 𝐋𝐓 

Where, L is a constant known as Lorentz number. 
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We know that, 

Electrical conductivity of a metal σ =  
ne2

m
τ   ------ (1) 

Thermal conductivity of a metal 𝐾 =  
1

2
𝑛𝜐2𝑘𝜏 ------ (2)  

                        
𝐊

𝛔
   =  

ne2

m
τ

1

2
𝑛𝜐2𝑘𝜏

                    
𝐊

𝛔
  =   

1  m𝜐2 𝑘

2     e2 
  ---------- (3) 

We know that the kinetic energy of an electron     
1

2
 m𝑣2 =

3

2
𝑘𝑇  ---------(4) 

Substituting equation (4) in equation (3), we have      
K

σ
 = 

3

2
𝑘𝑇 

𝑘

𝑒2  

                 
𝐾

σ
 = 

3

2
 
𝑘2

𝑒2  𝑇 

                                        
K

σ
= LT ------------ (5) 

where L = 
3

2
 
𝑘2

𝑒2
 is a constant and it is known as Lorentz number. 

Thus it is proved that, the ratio of thermal conductivity to electrical conductivity of a metal is 

directly proportional to the absolute temperature of the metal. Weidemann -Franz law clearly 

shows that if a metal has high thermal conductivity, it will also have high electrical conductivity. 
 

Lorentz number:  
The ratio of thermal conductivity (K) of a metal to the product of electrical conductivity 

(σ) of a metal and absolute temperature (T) of the metal is a constant.  It is called Lorentz number 

and it is given by   𝐋 =
𝐊

𝛔𝐓
 

The value of L can be calculated from the expression L = 
3

2
 
𝑘2

𝑒2 

L = 
3

2
 

(1.38  𝑥 10−23)2

(1.6 𝑥 10−19)2  

L = 1.12 x 10-8 W Ω K-2 (By theory) 

L = 2.44 x 10-8 W Ω K-2 (By Experiment) 

This discrepancy in the experimental and theoretical value of Lorentz number is one of the 

drawbacks of classical theory. It is rectified in quantum theory.  

Merits of classical free electron theory 

 It is used to verify ohm’s law. 

 The electrical and thermal conductivities of metals can be explained by this theory. 

 It is used to derive Wiedemann-Franz law. 

 It is used to explain the optical properties of metals. 
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Drawbacks of classical free electron theory 
 

 It is a macroscopic theory 

 Classical theory states that all the free electrons will absorb energy, but quantum theory 

states only few electrons will absorb energy. 

 This theory cannot explain the Compton, photo-electric effect, paramagnetic, 

ferromagnetism, etc. 

 The theoretical and experimental values of specific heat and electronic specific heat are not 

matched. 

 The Lorentz number by classical theory does not have good agreement with the 

experimental value and it is rectified by quantum theory. 

 According to this theory, the ratio 
𝐊

𝛔𝐓
    is constant at all temperatures. But it is found that 

it is not constant at low temperatures. 

 By this theory, the value of specific heat of a metal is 4.5R, but the experimental value is 

3R, where R is a universal gas constant. 

 The susceptibility of a paramagnetic material is inversely proportional to temperature. But 

experimental result shows that Para magnetism of a metal is independent of temperature. 

Moreover Ferromagnetism cannot be explained by this theory.  

Differences between electrical and thermal conductivity 

S. No Electrical Conductivity Thermal Conductivity 

1  Electrical conductivity is based on the no 

of free electrons 

Thermal conductivity is based both on 

electrons and phonons 

2 The quantity of electrical charges flowing 

per unit time across unit area in the metal 

for unit applied electric field is called 

electrical conductivity 

It is defined as the amount of heat 

conducted per unit time through the metal 

having unit area of cross section 

maintaining at unit temperature gradient 

between the two ends 

3 Electrical conductivity takes place from 

higher potential side to lower potential 

side  

Thermal conductivity takes place from hot 

end to cold end. 

4  Unit :Ω-1 m-1 Unit :W m-1K-1 

 
Quantum free electron theory: 

 In order to remove the failures of classical free electron theory, Sommerfield proposed 

quantum free electron theory in 1928, based on the quantum concepts.  

According to this theory, the electrons in a metal move in a constant potential. He derived an 

expression for electron energies by using Schrodinger’s wave equation and De- Broglie concept 

of matter waves. He treated the problem quantum mechanically using Fermi – Dirac statistics. 
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Important assumptions: 

 The potential of an electron is uniform or constant within the crystal. 

 The electrons possess wave nature. 

 The allowed energy levels of an electron are quantized. 

 The electrons have freedom to move within the crystal itself and they are restricted from 

leaving crystal due to potential barrier at its surface. 

 The free electrons obey Fermi – Dirac statistics. 

Merits of quantum free electron theory: 

It explains the electrical conductivity, thermal conductivity and specific heat capacity of 

metals, photoelectric effect, Compton Effect etc. 

Demerits of quantum free electron theory: 

 It fails to provide the distinction between metals, semiconductors and insulators. 

 It fails to explain the positive value of Hall co- efficient and some transport properties of 

metals. 

Tunnelling 

In quantum mechanics a particle having lesser energy (E) than the barrier potential (V) 

can easily cross over the potential barrier having a finite width ‘l ’ even without climbing over the 

barrier by tunnelling through the barrier. This process is called tunnelling.  

  

Explanation: let us consider a beam of particles having kinetic energy E, less than the barrier 

potential (V), incident from region 1. According to classical mechanics the probability for the 

incident particles to cross the barrier is zero, because it has very less energy (E) when compared 

to the barrier potential (V). 

 

But according to quantum mechanics, the incident wave from region (1) having the wave 

function 1 can cross the barrier region (2) by the process of tunnelling, represented by the wave 

function 2 and comes out to the region (3), represented by the wave function 3. However based 

on the width of the potential barrier there is a probability for the wave, represented by the wave 

function 1
’
 to get reflected within the same region (1).  The value of transmission coefficient T 

depends on the mass of the particle (m), thickness of the barrier (l) and the energy difference i.e, 

(V – E). 

 

Examples 

1. The tunnelling effect is observed in Josephson junction, in which electron pairs in the 

superconductor’s tunnel through the barrier layer, giving rise to the Josephson current. 

2. This effect is also observed in the case of emission of alpha particles by radioactive nuclei. 

Here, though the ‘’ particle has very less kinetic energy they are able to escape from the 

nucleus whose potential wall is around 2.5 MeV high. 

3. Tunnelling also occurs in certain semiconductor diodes called tunnel diodes. 

4. Electron tunnels through insulating layer and act as a switch by tunnelling effect.  
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Degenerate states: For various combinations of quantum numbers ‘n’ if we get the same 

Eigen value (Energy levels) but different Eigen functions, then it is called degenerate state. 

 

The energy of the particle in a 3-dimensional in the ground state is given by 

Enxnynz
=  

(nx
2 + ny

2 +  nz
2 )h2

8ma2
 

 

Example: For three combination of quantum numbers say (112), (121) and (211), we get same 

energy values i.e., E112 = E121 = E211 = 
6h2

8ma2 but different Eigen functions i.e., 112≠121≠211 

𝜓112 =  √
8

𝑎3  sin
𝜋𝑥

𝑎
sin

𝜋𝑦

𝑎
sin

2𝜋𝑧

𝑎
      𝜓121 =  √

8

𝑎3  sin
𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑎
sin

𝜋𝑧

𝑎
     𝜓211 =  √

8

𝑎3  sin
2𝜋𝑥

𝑎
sin

𝜋𝑦

𝑎
sin

𝜋𝑧

𝑎
 

Fermi Distribution Function 

Fermi function F (E) represents the probability of an electron occupying a given energy state at 

absolute temperature. The energy distribution of the particles was found by Fermi – Dirac 

statistics. Fermi- Dirac Statistics deals with the energy distribution of the particles having half 

integral spin values called as Fermions or Fermi particles. Example: Electrons. 

 

The Fermi distribution is given by  𝐅(𝐄) =
𝟏

𝟏+ 𝐞(𝐄−𝐄𝐅) 𝐤𝐓⁄  

Where, 

 E  : Energy of the energy level whose occupancy is being considered. 

 EF : Energy of the Fermi level (Fermi energy) 

 k : Boltzmann’s constant 

 T  :  Absolute temperature 

 

 The probability value F (E) lies between 0 and 1.  

If F (E) = 1, the energy level is occupied by an electron. 

If F (E) = 0, the energy level is vacant. 

If F (E) = 0.5, then there is 50% chance for the electron to occupy the given energy level.  

 

Effect of temperature on Fermi function:  
The effect of temperature on Fermi function F(E) can be discussed with respect to the above 

equation. 

 

Case (1) : Probability of occupation for E < EF at T = 0 

  F(E) =
1

1+ e(E−EF) kT⁄  

When T = 0 and E < EF, we have  F(E) =
1

1+ e(−ve) 0⁄        F(E) =
1

1+ e−∞
 

                       F(E) =
1

1+ 0
   F(E) = 1 
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Thus at T = 0, there is 100% chance for the given energy level to be filled with electrons. It can 

also be said that the energy levels below the Fermi energy levels are filled with electrons. 

 

Case (2) : Probability of occupation for E> EF at T = 0 

F(E) =
1

1 +  e(E−EF) kT⁄
 

When T = 0 and E> EF, we have  

  F(E) =
1

1+ e(+ve) 0⁄   F(E) =
1

1+ e∞

 F(E) =
1

1+ ∞
           F(E) = 

1

 ∞
 

 F (E) = 0 

Thus at T = 0, there is 0% chance for the given energy level to be filled with electrons. It can also 

be said that the energy levels above the Fermi energy level are not occupied by the electrons. 

 

Case (3): Probability of occupation for E = EF at T > 0K 

F(E) =
1

1 +  e(E−EF) kT⁄
 

When T = 0 and E = EF, we have 

  F(E) =
1

1+ 𝑒0               F(E) =
1

1+ 1
 

  F(E) =
1

2
    F(E) = 0.5 

Here, there is 50% chance for the electrons to occupy Fermi energy level i.e., the value of F(E) 

becomes 0.5 at E = EF 

 
 

Case (4): Probability of occupation at any temperature 

When the temperature is raised slowly from absolute zero, the Fermi distribution function 

smoothly decreases to zero. Due to the supply of thermal energy the electrons within the range of 

kT below the Fermi level alone takes the energy  kT and goes to higher energy state. Hence at 

any temperature (T), empty states will also be available below EF. Therefore the fermi distribution 

reduces to classical Maxwell Boltzmann statistics.  
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Uses of Fermi distribution function: 

 It gives the probability of occupation for a given energy level at a given temperature. 

 It gives the idea about filled and unfilled states. 

 It is very useful in the calculation of number of free electrons per unit volume at given 

temperature. 

 It is very useful in the calculation of Fermi energy of a metal. 

Density of states 

The Fermi function gives only the probability of filling up of electrons in a given energy state, it 

does not gives information about the number of electrons that can be filled in a given energy state. 

To know that we should know about the number of available energy states so called density of 

states. 

 

Definition: 

 

 It is defined as the number of available electron states per unit volume in an energy interval E and 

E+dE. It is denoted by Z (E) and it is given by  

 

Z(E)dE =  
Number of energy states in the energy interval E and E + dE 

Volume of the metal piece
 

Derivation: Let us consider a cubical sample with side ‘a’. A sphere is constructed with three 

quantum numbers nx, ny and nz as coordinate axes in three-

dimensional space. A radius vector n is drawn from the origin 

‘o’ to a point with coordinates nx, ny and nz in this space. All the 

points on the surface of that sphere will have the same energy E. 

thus n2 =  nx
2 + ny

2 + nz
2  denotes the radius of the sphere 

with energy E. This sphere can be further divided into many 

shells. Each shell represents a particular combination of 

quantum numbers. Therefore it denotes a particular energy value with a particular radius. In this 

space, unit volume represents one energy state.  

 

Number of energy states within a sphere of radius ‘n’ = 
4

3
πn3 ------------ (1)  
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Since the quantum numbers can have only positive integer values; we have to take only one octant 

of the sphere, i.e., 
1

8
Th of the spherical volume. Therefore the number of available energy states 

within one octant of the sphere of radius ‘n’ corresponding to energy E is  

= 
1

8
[

4

3
πn3]---------------(2) 

 

Similarly, the number of available energy states within one octant of the sphere of radius ‘n+dn’ 

corresponding to energy E+dE is  = 
1

8
[

4

3
π(n + dn)3] ---------------(3) 

 

Now, the number of available energy states between the shell of radius n and n+dn is determined 

by subtracting eqn (2) from eqn (3 

𝑁(𝐸)𝑑𝐸 =
1

8
(

4𝜋

3
) (𝑛 + 𝑑𝑛)3 −

1

8
(

4𝜋

3
) 𝑛3 

     = 
1

8
(

4π

3
) [(𝑛 + 𝑑𝑛)3 − 𝑛3] 

   𝑁(𝐸)𝑑𝐸 = (
𝜋

6
) [𝑛3 + 𝑑𝑛3 + 3𝑛2𝑑𝑛 + 3𝑛𝑑𝑛2 − 𝑛3] 

 

Since dn is very small, higher powers of dn terms dn2 and dn3 can be neglected. 

     𝑁(𝐸)𝑑𝐸 = (
𝜋

6
) [3𝑛2𝑑𝑛] 

     𝑁(𝐸)𝑑𝐸 = (
𝜋

2
) [𝑛2𝑑𝑛] 

               𝑁(𝐸)𝑑𝐸 = (
𝜋

2
) 𝑛[𝑛𝑑𝑛] -----------(4) 

We know that the energy of the electron in a cubical metal piece of sides ‘a’ is given by  

   𝐸 =
n2h2

8ma2
  ----------------(5) 

   n2  =  [
8𝑚𝑎2𝐸

ℎ2
] -------------(6) 

   n =  [
8𝑚𝑎2𝐸

ℎ2
]

1 2⁄

---------------(7) 

Differentiating eqn(6) we get  ndn =  [
8𝑚𝑎2𝑑𝐸

2ℎ2
] -------------- (8) 

Substituting eqns (7) and (8) in eqn (4), we have 

  𝑁(𝐸)𝑑𝐸 =
𝜋

2
[

8𝑚𝑎2𝐸

ℎ2
]

1 2⁄

[
8𝑚𝑎2𝑑𝐸

2ℎ2
] 

  𝑁(𝐸)𝑑𝐸 =
1

2

𝜋

2
[

8𝑚𝑎2𝐸

ℎ2
]

1 2⁄

[
8𝑚𝑎2𝑑𝐸

ℎ2
] 

  𝑁(𝐸)𝑑𝐸 =
𝜋

4
[

8𝑚𝑎2

ℎ2
]

1 2⁄

𝐸1 2⁄ [
8𝑚𝑎2

ℎ2
] 𝑑𝐸 ------------(9) 

  𝑁(𝐸)𝑑𝐸 =
𝜋

4
[

8𝑚𝑎2

ℎ2
]

3 2⁄

𝐸1 2⁄ 𝑑𝐸   ------------(10) 
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Pauli’s exclusion principle states that two electrons of opposite spins can occupy each state and 

hence the number of energy states available for electron occupancy is given by 

  𝑁(𝐸)𝑑𝐸 = 2 𝑋 
𝜋

4
[

8𝑚𝑎2

ℎ2
]

3 2⁄

𝐸1 2⁄ 𝑑𝐸  

  𝑁(𝐸)𝑑𝐸 =  
𝜋

2
(

𝑎

ℎ
)

3
(8𝑚)3 2⁄ 𝐸1 2⁄ 𝑑𝐸 

    𝑁(𝐸)𝑑𝐸 =  
𝜋

2
(

𝑎

ℎ
)

3

8(2𝑚)3 2⁄ 𝐸1 2⁄ 𝑑𝐸  

    𝑁(𝐸)𝑑𝐸 =  
4𝜋

ℎ3
(2𝑚)3 2⁄ 𝑎3𝐸1 2⁄ 𝑑𝐸 -------------(11) 

Density of the states is given by the number of energy states per unit volume. 

    𝑍(𝐸)𝑑𝐸 =  
𝑁(𝐸)𝑑𝐸

𝑉
 

    𝑍(𝐸)𝑑𝐸 = [
4π

h3(2m)3 2⁄ a3E1 2⁄ dE  

a3
]  

    𝑍(𝐸)𝑑𝐸 =
4π

h3
(2m)3 2⁄ E1 2⁄ dE  ---------------(12) 

This is the expression for the density of charge carriers in the energy interval E and E+dE. It 

is used to calculate the carrier concentration in metals and semiconductors. 

 

Carrier concentration 
Carrier concentration, i.e., the number of electrons per unit volume in a given energy interval 

is calculated by summing the product of the density of the state’s Z(E) and the occupancy 

probability F(E). 

i.e.,     nc =  ∫ Z(E)F(E)dE 

Substituting the expressions for Z(E) and F(E), we have 

     nc =  ∫
4π

h3
(2m)3 2⁄ E1 2⁄ 1

1+ e(E−EF) kT⁄ dE   -----------(13) 

For a metal at absolute zero temperature, the upper most occupied level is EF and all the 

levels are completely filled below EF. 

For a material at absolute zero F(E) = 1. 

                                              nc=∫
4𝜋

ℎ3
(2𝑚)

3

2𝐸
1

2 dE  ------------(14) 

nc =  
4𝜋

ℎ3
(2𝑚)

3

2 ∫ 𝐸
1

2
𝐸𝐹

0
dE 

=  
4𝜋

ℎ3
(2𝑚)

3

2 (
𝐸

3
2

3

2

)
0

𝐸𝐹

 

=   
2

3

4𝜋

ℎ3
(2𝑚)

3

2𝐸𝐹0

3

2 
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                                               nc =  
8𝜋

3ℎ3
(2𝑚)

3

2𝐸𝐹0

3

2     -------------(15) 

 This eqn is used to calculate the carrier concentration in metals and semi conductors. 

Expression for Fermi energy at 0K: 

 We know  nc = 
8𝜋

3ℎ3
(2𝑚)

3

2𝐸𝐹0

3

2 

        𝐸𝐹0

3

2 =
3𝑛𝑐

8𝜋
(

ℎ2

2𝑚
)

3

2
 

        𝐸𝐹0
= (

3𝑛𝑐

8𝜋
)

2

3
(

ℎ2

2𝑚
)   -------------(16) 

 This eqn is used to find out the Fermi energy of metals and semiconductors. 

Average Energy of an electron at 0K 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑎𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑎𝑡 0𝐾 𝐸𝐴𝑣𝑔 =  
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑎𝑡 0𝐾 (𝐸𝑡𝑜𝑡)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑡 0𝐾 (𝑁(𝐸)𝑑𝐸)
 

 

Here, the 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑎𝑡 0𝐾 (𝐸𝑡𝑜𝑡) = 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑎𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑎𝑡 0𝐾 𝑋     𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑡 0𝐾 (𝑁(𝐸)𝑑𝐸)  
 

𝐸𝑡𝑜𝑡 = ∫ 𝑁(𝐸)𝑑𝐸 . 𝐸
𝐸𝐹

0

 

𝐸𝑡𝑜𝑡 = ∫
4π

h
3

(2m)3 2⁄ 𝐸𝐹 
1 2⁄

dE . 𝐸
𝐸𝐹0

0

 

𝐸𝑡𝑜𝑡 = ∫
4π

h3
(2m)3 2⁄ 𝐸𝐹 

3 2⁄
dE 

𝐸𝐹0

0

 

𝐸𝑡𝑜𝑡 =
4π

h3
(2m)3 2⁄

𝐸𝐹0
5 2⁄

5
2⁄

 

                    𝐸𝑡𝑜𝑡 =
8π

5h3 (2m)3 2⁄ 𝐸𝐹0
5 2⁄

 ----------(1) 

We know 𝑁(𝐸)𝑑𝐸 =
8𝜋

3ℎ3 (2𝑚)
3
2𝐸𝐹0

3
2  ---------- (2) 

𝐸𝐴𝑣𝑔 =  

8π

5h3 (2m)3 2⁄ 𝐸𝐹0
5 2⁄

8𝜋

3ℎ
3 (2𝑚)

3
2𝐸𝐹0

3
2

 

𝐸𝐴𝑣𝑔 =
3

5
𝐸𝐹0  
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ELECTRONS IN PERIODICAL POTENTIAL 

 The free electron theory explains the properties of thermal conductivity, electrical 

conductivity and specific heat of most of the metals. But, it fails to explain why some solids are 

conductors, some are insulators and others are semiconductors. 

 A solution to this problem was given by band theory of solids and is called zone theory. 

 According to free electron theory, the potential energy of the electron inside the crystal 

through which an electron moves is supported to be (zero). So it is completely free to move about 

in the crystal, restrained only by the surface of the crystal. 

Postulates 

1. According to band theory, potential energy of electron within the crystals is periodic due 

to periodicity of the crystal i.e., free electron move inside periodic lattice field. 

2. The potential energy of the solid of the solid varies periodically with the periodicity of 

space lattice ‘a’ which is nothing but interatomic spacing. 

 

Inside a real crystal, the electrons (-) move through 

periodic arrangement of positively charged holes (+) 

a shown in the fig(a).Fig.(b) shows one dimensional 

periodic potential distribution for a crystal. It is 

assumed that the potential energy of the electron at the 

positive ion site is zero and is maximum when it is 

half way between the adjacent nuclei. 

ENERGY BANDS IN SOLIDS 

 According to the energy band theory of solids, the free electrons move in a periodic 

potential produced by positive ion cores. The electrons are treated as weakly perturbed by the 

periodic potential. A simple qualitative explanation of the formation of energy bands in a solid 

is given below. 

 A solid contains an enormous number of atoms packed closely together. Each atom when 

isolated has a discrete set of electron levels, 1s, 2s, 2p, … If we imagine the N atoms on the 

solid to be isolated from one another, they would have completely coinciding schemes of 

energy levels. 

The energies of electrons within any one isolated atom obey the following conditions. 
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(i) There are specific electronic energy levels in each atom (fig. a). 

Electrons cannot occupy space between these 

levels 

(ii) Electrons fill the lowest energy levels first. A 

specific quantity of energy, called a quantum 

of energy must be supplied to move an 

electron to the next higher level. 

(iii) Pauli’s, exclusion principle states that no two 

electrons can occupy the same quantum state. 

Not more than two electrons can occupy any 

one energy level. Two electrons shall occupy the same energy level because they have 

opposite electron spins (fig b). 

 

When the atoms are brought in close proximity to form a solid, the valence electrons of 

common to the entire crystal, and their outermost electronic orbits overlap. Therefore, N 

electrons will now have to occupy different energy levels, which may be brought about by the 

electric forces exerted on each electron by all N nuclei. As a result of these forces, each atomic 

energy level is split up into a large number of closely spaced energy levels. A set of such 

closely spaced energy levels is called an energy band. 

 Consider 11 electrons of a neutral sodium atom, each occupying specific energy level as 

indicated in fig.  The energy levels of sodium become bands when the atoms lie close together. 

In an energy band, allowed energies are almost continuous. These energy bands are 

separated by ranges of energies that have no allowed energy levels. These regions are known 

as forbidden bands or energy gaps. 

The amount of splitting is not the same for different levels. The levels filled by valence 

electrons are disturbed to a greater extent, while this filled by electrons of inner shells are 

distributed only slightly. If there are N atoms in a solid, there are N allowed quantum states in 

each band. Each quantum state is occupied by a maximum of two electrons with opposite spins. 

Thus, each energy band can be occupied by 2N electrons. 
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 The valence band consists of a group of states containing the outermost electrons or 

valence electrons of an atom. The band formed from atomic energy levels contains valence 

electrons is called valence band. These electrons have the highest energy. The band is 

obviously the highest occupied band.  

 Above the valence band, there exists the band of next higher permitted energies called 

conduction band. It is separated from the valence band by a gap. The gap represents the 

range of energy which electrons cannot possess. 

 The conduction band corresponds to the first excited states and it 

is normally the lowest unfilled energy band. In conduction band, the 

electrons can move freely and they are generally called conduction 

electrons. 

 According to free electron theory, the potential energy of the 

electron inside the crystal through which an electron moves is 

supposed to be constant which an electron moves is supposed to be 

constant (zero) and so it is completely free to move throughout the 

crystal, restrained only by the surface of the crystal.  
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Classification of Metals, Semiconductors and Insulators 

 On the basis of width of forbidden gap valence and conduction band the solids are classified 

into insulators, semiconductors and conductors. 

Insulators 

 In case of insulator, the forbidden energy band is very wide as shown in the fig. Due to 

this, electrons cannot jump from valance band to conduction band. In insulator, the valance 

electrons are bound very tightly to their parent atoms. 

 For example, In the case of material like Glass, the valance band is completely full at 0k 

and the energy gap between valance band and conduction band of the order of 10eV. 

 Even in the presence of high electric field, the 

electrons cannot jump from the valance band 

to conduction band. 

 When a very large energy is supplied, an 

electron may jump across the forbidden gap. 

Increase in temperature also enables some 

electrons to go the conduction band. 

 This explains why certain insulators 

became conductors at high temperature. 

The resistivity of insulators is of the order of 

107 Ωm. (ohmmeter) 

Semiconductor 

 In semiconductors, the forbidden gap is very small as shown in the fig.  Germanium and 

silicon are the best example semiconductors. 

 In germanium, the forbidden gap is of the order of 0.7 eV while in case of silicon, it is the 

order of 1.1eV.            

 Actually, a semiconductor one whose electrical 

property lies between those of insulators and 

conductors. At 0k there are no free electrons in 

conduction band and valence band is completely 

filled. 

 When a small amount of energy is supplied, the 

electrons can easily jump from valence band to 

conduction, since the forbidden gap is very small.  

 In semiconductors, the conductivities is the order of 

102 Ωm. (ohm meter) 
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Conductor 

 In case of conductors, there is no forbidden gap both 

conduction band and valence band overlap each other as 

shown in the fig.   

 In conduction gap, plenty of free electrons available for the 

process of electric conduction. The electron from the 

valence band enters into the conduction band. 

 The most important fact in conductor is that due to the 

absence of forbidden gap, there is no structure to establish 

holes. The total current in conductor is simply the flow of 

electrons.  

Tight binding approximation 

There are usually two approaches to understand the origin of band theory associated with solids. 

One is the “nearly free electron model” and the other “tight-binding model”. 

1) Nearly free electron model: In the nearly free electron approximation, interactions between 

electrons are completely ignored. In solids there exists the ionic core which are tightly bound 

to the lattice location, while the free electrons are free to move here and there throughout the 

solid. 

2) Tight-binding model: The opposite extreme to the nearly-free electron model assumes the 

electrons in the crystal behave much like an assembly of constituent atoms.  

 In this approach, the atoms are independent to begin with and they are brought together to 

build the solid. The electrons are bound to their respective individual atoms to begin with. 

 The atoms are free to begin while the electrons are tightly bound to the atom.  

 When atoms are far apart all the bound electrons have fixed energy levels. 

 When the atoms are brought close to form a solid, the electrons will maintain their original 

energy levels as long as interatomic separation is large.  

 When atoms are close enough the outer shell electrons begin to overlap and the energy 

levels begin to split above and below the energy level of individual atoms. 

 Initially the outer shell electrons overlap and as the interatomic spacing keeps on 

decreasing further, the inner shell electrons overlap and hence the corresponding energy 

levels also split. 
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Concept of Effective Mass 

The mass of an electron in the periodic potentials of a crystal is different from the free electron 

mass and is usually referred to as the effective mass.  Effective mass of an electron is the mass of 

the electron when it is accelerated in a periodic potential. It is denoted as m*. 

 

According to de Broglie hypothesis, a moving electron is associated with a wave. The velocity of 

an electron (v) is equal to the group velocity (vg) of the associated wave.  

The group velocity is given by  𝑣𝑔 =
𝑑𝜔

𝑑𝑘
 ----------(1) 

Where ω is the angular frequency (2πν) and K is the propagation vector of the wave. 

In quantum mechanics, the energy, ‘E’ of an electron is given by 𝐸 = ℎ𝜐 

𝐸 =
ℎ𝜔

2𝜋
 

𝐸 = ℏ 𝜔 

𝜔 =
𝐸

ℏ
 --------(2) 

Substituting value of 𝜔 from eq (2) to eq (1), we get   𝒗𝒈 =
𝒅

𝒅𝒌
(

𝑬

ℏ
) 

                  𝒗𝒈 =
𝟏

ℏ

𝒅𝑬

𝒅𝒌
     ------------(3) 

Differentiating Equation (3) with respect to ‘t’ , we get acceleration of electron as 
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𝑎 =  
𝑑(𝒗𝒈)

𝑑𝑡
 

𝑎 =  
𝑑

𝑑𝑡
(

𝟏

ℏ

𝒅𝑬

𝒅𝒌
) 

                             𝑎 =
𝟏

ℏ
(

𝒅𝟐𝑬

𝒅𝒌𝟐)
𝑑𝑘

𝑑𝑡
     --------------(4) 

In quantum theory, the momentum of an electron is given by 𝑝 =  
ℎ

𝜆
 

𝑝 =  
ℎ

2𝜋
 
2𝜋

𝜆
 

                      𝑝 = ℏ𝑘     -----------(5) 

Differentiating momentum with respect to t 
𝑑𝑝

𝑑𝑡
= ℏ 

𝒅𝒌

𝒅𝒕
 

Since force acting on the electron   F = 
𝑑𝑝

𝑑𝑡
 

𝐹 = ℏ 
𝒅𝒌

𝒅𝒕
             

𝒅𝒌

𝒅𝒕
=  

𝑭

ℏ
       -----------(6) 

Substituting egn (6) in (4) we get,   𝑎 =
𝟏

ℏ
(

𝒅𝟐𝑬

𝒅𝒌𝟐
)

𝑭

ℏ
 

𝑎 =
𝟏

ℏ𝟐
(

𝒅𝟐𝑬

𝒅𝒌𝟐
) 𝑭 

                   𝑭 =  [
ℏ𝟐

(
𝒅𝟐𝑬

𝒅𝒌𝟐)
]  𝒂      ---------(7) 

When an electric field is applied, acceleration of the electron due to this field  

𝑎 =  
𝑒𝐸

𝑚∗
=  

𝐹

𝑚∗
 

                    𝐹 =  𝑚∗𝑎     -------------(8) 

Comparing equations (7) and (8), we have    𝑚∗𝑎 = [
ℏ𝟐

(
𝒅𝟐𝑬

𝒅𝒌𝟐)
]  𝒂     
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𝑚∗ = [
ℏ𝟐

(
𝒅𝟐𝑬

𝒅𝒌𝟐)
]   

The above equation indicates the effective mass of an electron is not a constant, but depends on 

the value of (
𝒅𝟐𝑬

𝒅𝒌𝟐) 

Special cases 

Case (1): If (
𝒅𝟐𝑬

𝒅𝒌𝟐) is positive, then 𝑚∗ is also positive 

Case (2): If (
𝒅𝟐𝑬

𝒅𝒌𝟐) is negative, then 𝑚∗ is also negative 

Case (3) If (
𝒅𝟐𝑬

𝒅𝒌𝟐) is large, then the electron behave as a light particle 

Case (4) If (
𝒅𝟐𝑬

𝒅𝒌𝟐) is very small, then the electron behave as heavy particle 

Concept of holes 

 Effective mass plays an important role in conduction process of semiconductors & holes – 

full or filled valence bands. 

 Effective mass is –ve near zone edges of filled valence bands. 

 Electrons are accelerated in direction opposite to that the applied field direction – negative 

mass behavior of electrons. 

 Electrons with negative effective mass is considered as a new entity having same positive 

mass as that of an electron but with a positive charge – hole 

 Positive hole conduction and negative electron conduction are in equilibrium. 

 

MAGNETIC MATERIALS 

INTRODUCTION 

   Magnetism arises from the magnetic moment or magnetic dipole of the magnetic 

materials. When an electron revolves around the positive nucleus, orbital magnetic moment arises. 

Similarly when the electron spins, spin magnetic moment arises. Any material can be magnetized 

by an external magnetic field is called as magnetic materials. When a magnetic field is applied 

externally, the magnetic materials can be easily magnetized since they have permanent magnetic 

moment. Among the different types of magnetic materials, the following five will be having 

practical application. 
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1. Dia magnetic materials 

2. Para magnetic materials 

3. Ferro magnetic  materials 

4. Anti Ferro magnetic  materials 

5. Ferrimagnetic materials etc. 

 

BASIC TERMS AND DEFINITIONS 

1. Magnetic dipole: Magnetic dipole is a system consisting of two equal and opposite magnetic 

poles separated by a small distance ‘𝒍’. Where ‘𝒍’ is the length of the magnet. 

2. Magnetic moment: The product of magnetic pole strength ‘𝒎’ and the length of the magnet ‘𝒍’ 

is known as magnetic moment   (M)  𝑴 = 𝒎. 𝒍 

3. Magnetic flux (): Total number of magnetic lines of forces passing through a surface is known 

as magnetic flux. It is represented by  and its unit is weber (WB).  

4. Magnetic induction (or) Magnetic Flux density: Magnetic induction is the number of magnetic 

force passing through unit area perpendicularly. 𝐵 =  
𝜙

𝐴
Its unit is ‘𝑊𝑏/𝑚2‘or Tesla. 

5. Magnetic field intensity (or) Strength (H): It is defined as the force experienced by a unit North 

Pole placed at the given point in a magnetic field. Its unit is 𝑁/𝑊𝑏  or  Ampere/meter. 

6. Intensity of magnetization: Magnetization means the process of converting a Non-magnetic 

material into the magnetic material. It measures the magnetization of a magnetized specimen. It is 

defined as the magnetic moment per unit volume.𝑰 =
𝑴

𝑽
   Its unit is 𝑾𝒃/𝒎𝟐 

7. Magnetic permeability (μ): It is the ratio between magnetic flux density (B) and the magnetic 

field intensity (H).     𝜇 = 𝜇0𝜇𝑟                𝜇 = B 

H
 

8. Relative permeability (μr): It is the ratio between permeability of the medium to the permeability 

of free space  𝜇𝑟 =
μ

𝜇0
 

9. Magnetic Susceptibility, 𝝌:  It is the ratio between intensity of magnetization (I) and the 

magnetic field intensity (H) 𝝌 = 𝐼
𝐻
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Relation between μr and χ: 

 

 We know,  𝐵 = μ𝐻  

 In other way  𝐵 = 𝜇0(I + 𝐻)  

𝐵 = 𝜇0H(
I

H
+ 1) 

𝐵

𝐻
=  𝜇0(1 +  𝜒) 

 The relative permeability  𝜇 = 𝜇𝑟𝜇0 and 
𝐵

𝐻
=  𝜇 

  𝜇𝑟𝜇0 = 𝜇0(1 +  𝜒) 

𝜇𝑟 = 1 + χ 

 Where    is the Susceptibility of the medium.  

 

ORIGIN OF MAGNETIC MOMENT AND BOHR MAGNETON  

 

ORIGIN OF MAGNETIC MOMENT  
Any matter is basically made up of atoms. The property of magnetism exhibited by certain 

materials with the magnetic property of its constituent atoms. We know that electrons in an atom 

revolve around the nucleus in different orbits.  

Basically there are three contributions for the magnetic dipole moment of an atom.  

1. The orbital motions of electrons (the motion of electrons in the closed orbits around the  

       Nucleus) are called orbital magnetic moment.  

2. Spin motion of the electrons (due to electron spin angular momentum) is called spin magnetic 

moment.  

3. The contribution from the nuclear spin (due to nuclear spin angular momentum) is nearly 103 

times smaller than that of electron spin; it is not taken into consideration.  

 

BOHR MAGNETRON: The magnetic moment contributed by an electron with angular 

momentum quantum number n = 1 is known as Bohr Magnetron. 

𝜇𝐵 =  
𝑒ℎ

4𝜋𝑚
𝜇𝐵 =  9.27 𝑥 10−24

𝐴

𝑚2
 

 

CLASSIFICATION OF MAGNETIC MATERIALS: 

(On the basis of magnetic moment) 

 Magnetic materials are basically divided into two types on the basis of magnetic moments, 

namely 

1. Materials not having any permanent magnetic moment. 

 Examples: Dia-magnetic material 

2. Materials having permanent magnetic moment 

 Examples: Para-magnetic materials 

   Ferro magnetic materials 

   Ferri magnetic materials 
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Depending on the interaction between the induced dipoles, magnetic materials having permanent 

magnetic moment are classified into three. 

 
 If the permanent dipoles do not interact among themselves, the materials are known as 

paramagnetic materials 
 If the permanent dipole is strong and all the dipoles line up in parallel, the materials are known 

as Ferromagnetic materials. 

 If the permanent dipoles line up in anti parallel direction, the materials are known as 

antiferromagnetic or Ferrimagnetic materials. 

 

DIAMAGNETIC MATERIALS: 

 Diamagnetism is exhibited by all the materials. The atoms in the diamagnetic materials do 

not possess permanent magnetic moment. However, when a material is placed in a magnetic field, 

the electrons in the atomic orbits tend to counteract the external magnetic field and the atoms 

acquire an induced magnetic moment. As a result, the material becomes magnetized. The direction 

of the induced dipole moment is opposite to that of externally applied magnetic field. Due to this 

effect, the material gets very weakly repelled, in the magnetic field. This phenomenon is known 

as diamagnetism.  

When a magnetic field Ho is applied in the direction shown in fig., the atoms acquire an 

induced magnetic moment in the opposite direction to that of the field. The strength of the induced 

magnetic moment is proportional to the applied field and hence magnetization of the material 

varies directly with the strength of the magnetic field. The induced dipoles and magnetization 

vanish as soon as the applied field is removed.  

Magnetic 
Materials

Atoms having 
no permanent 
dipole moment

Diamagnetic 
Materials

Atoms having 
permanent 

dipole moment

Paramagnetic 
Materials

Ferromagnetic 
Materials

Anti-
ferromagnetic 

materials

Ferrimagnetic 
Materials
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Properties:  

 Permanent dipoles are absent. Therefore the magnetic effects are very small. 

 They repel the magnetic lines of force. 

 The susceptibility is negative, and is independent of temperature and applied field. 

 Permeability is less than unity. 

 When temperature is less than critical temperature diamagnets become normal material 

Examples: Gold, germanium, Silicon, water, alcholol, etc. 

 

 
 

PARAMAGNETIC MATERIALS: 

 In certain materials, each atom or molecule possesses a net permanent magnetic moment 

(due to orbital and spin magnetic moment) even in the absence of an external magnetic field. The 

magnetic moments are randomly oriented in the absence of external magnetic field. Therefore the 

net magnetic moment is zero, and hence the magnetization of the material is zero. But, when an 

external magnetic field is applied, the magnetic dipoles tend to align themselves in the direction 

of the magnetic field and the material becomes magnetized. As shown in fig. This effect is known 

as paramagnetism.  

 
Thermal agitation disturbs the alignment of the magnetic moments. With an increase in 

Temperature, the increase in thermal agitation tends to randomize the dipole direction thus leading 

to a decrease in magnetization. This indicates that the paramagnetic susceptibility decreases with 

increases in temperature. It is noted that the paramagnetic susceptibility varies inversely with 

temperature. 
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𝜒 =  
𝐶

𝑇
 

This is known as curie’s law of paramagnetism and C is called Curie’s constant. 

 

Properties: 

 The magnetic lines of force pass through the material. 

 They have permanent magnetic dipoles. 

 The susceptibility is positive and it depends on the 

temperature. 

 Permeability is greater than one. 

 When the temperature is less than critical temperature, the material becomes diamagnetic. 

Examples: CuSO4, MnSO4, Platinum, aluminium, etc. 

 

FERROMAGNETIC MATERIALS: 

 In ferromagnetic material the numbers of unpaired electrons are more. Most of the spin 

magnetic moment points in one direction. In the absence of magnetic field the dipoles align 

themselves parallel to each other and give rise to 

magnetic field called as spontaneous magnetization.  

When a small magnetic field is applied, the dipoles get 

reorient itself along the direction of the magnetic field 

and they becomes very strong magnets. 

 

Properties: 

 All the magnetic lines of force passes through the material, since it has own magnetization. 

 They have magnetization, even in the absence of external field. 

 They have permanent magnetic dipoles. 

 The susceptibility is positive and very high. 

According to Curie Weiss law the susceptibility is given 

by 𝜒 =
𝐶

𝑇−𝜃
 

 Permeability is very much greater than I 

 When the temperature is greater than Curie temperature, they become paramagnetic. 
 

COMPARISON OF DIAMAGNETIC, PARAMAGNETIC AND FERROMAGNETIC 

MATERIALS.  

 

S.No Dia magnetic materials Paramagnetic materials Ferromagnetic materials 

1 In diamagnetic materials there 

are equal number of electron 

spins which are randomly 

oriented and hence the net 

magnetic moment is zero.  

In paramagnetic materials 

there is unequal number of 

electron spins and hence 

there exists a permanent 

magnetic moment.  

In ferromagnetic materials 

there is more number of 

unequal electron spins and 

hence there exists 

enormous amount of 

permanent magnetic 

moment.  
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2 When the external magnetic 

field is applied, the electrons 

will align perpendicular to the 

field direction and hence it 

reduces the magnetic 

induction present in the 

material. Thus they are named 

as weak magnets.  

 

When the external magnetic 

field is applied, the electrons 

will align parallel to the field 

direction and hence the 

material is magnetized. Thus 

they are named as strong 

magnets. 

When the external 

magnetic field is applied, 

the electrons which are 

aligned parallel will 

reorient itself to the field 

direction and will be easily 

magnetized. Thus they are 

named as very strong 

magnets. 

3 When the material is placed in 

the magnetic field, the 

magnetic flux lines are 

repelled away from the 

material.  

When the material is placed 

in the magnetic field, the 

magnetic flux lines passes 

through the material. 

When the material is 

placed in the magnetic 

field, the magnetic flux 

lines are highly attracted 

towards the center of the 

material.  

4 The susceptibility is negative. 

(𝜒 =  −𝑣𝑒) 

The susceptibility is positive 

and small.  (𝜒 =  +𝑣𝑒) 

The susceptibility is 

positive and large.  (𝜒 =
 +𝑣𝑒) 

5 The susceptibility is 

independent of temperature.  

The susceptibility varies 

inversely with the absolute 

temperature. 

The susceptibility depends 

upon the temperature. 

6 Permeability is less than 1. Permeability is greater than 

1. 

Permeability is very much 

greater than 1. 

7 When the temperature is less 

than critical temperature, the 

diamagnetism suddenly 

disappears and becomes a 

normal material.  

 

When the temperature is less 

than curie temperature, the 

paramagnetic material is 

converted into diamagnetic 

material.  

When the temperature is 

greater than curie 

temperature, the 

ferromagnetic material is 

converted into 

paramagnetic material. 

8 Examples: gold, bismuth, 

water, antimony, hydrogen, 

alcohol, germanium, silicon, 

etc. 

Examples: platinum, 

chromium, aluminium, 

copper sulphate, manganese 

sulphate, etc. 

Examples: iron, nickel, 

cobalt, steel, etc.  

 

ORIGIN OF FERROMAGNETISM AND EXCHANGE INTERACTION 

Concept: Metals contain large number of electrons (i.e.,) free electrons. Each electron posses a 

magnetic moment. When the magnetic field is applied, then the elementary electrons behave as 

magnetic dipoles, which tend to orient along the direction of external magnetic field. Thus the 

electrons affect the paramagnetism volume susceptibility (𝜒𝐶). 
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Explanation 

Langevin showed that paramagnetic susceptibility varies as 
1

𝑇
 

𝜒𝐶 =  
1

𝑇
 

Where 𝜒𝐶  is called paramagnetic susceptibility. 

 

Its value is 10-4 at room temperature but experimental observation shows that the paramagnetic 

susceptibility value has very small value sy, in the order of 10-6 and is independent of temperature.  

Pauli applied Fermi Dirac statistics to explain this disagreement as follows. Each electron has a 

magnetic moment 𝐼 μ𝐵 along the direction of magnetic field.  

 

If there are ‘n’ number of conduction electrons per unit volume, then  

The net magnetization is            𝑀 =  μ𝐵𝑛  

   𝑀 =  μ𝐵(𝑛+ −  𝑛−)      ---------------- (1) 

Where 𝑛 =  𝑛+ −  𝑛− 

Here 𝑛+ is the number of electrons with magnetic moment parallel to the magnetic field B and 

𝑛− is the number of electrons with magnetic moment anti-parallel to the magnetic field B. 

 

The concentration of electrons with magnetic moments parallel to the magnetic field is 

𝑛+ =  
1

2
 ∫  𝐹(𝐸)

𝐸𝐹

μ𝐵
 𝑔 (𝐸 + μ𝐵𝐵)𝑑𝐸           ---------------- (2) 

𝑛+ =  
1

2
 ∫  𝐹(𝐸)

𝐸𝐹

0  𝑔 (𝐸)𝑑𝐸 +
1

2
 μ𝐵𝐵 𝑔 (𝐸𝐹) ---------------- (3) 

Similarly,  

𝑛− =  
1

2
 ∫  𝐹(𝐸)

𝐸𝐹

μ𝐵
 𝑔 (𝐸 − μ𝐵𝐵)𝑑𝐸            

𝑛− =  
1

2
 ∫  𝐹(𝐸)

𝐸𝐹

0  𝑔 (𝐸)𝑑𝐸 −
1

2
 μ𝐵𝐵 𝑔 (𝐸𝐹) ---------------- (4) 

Where F(E) is called Fermi-Dirac distribution function and 
1

2
 𝑔 (𝐸 ± μ𝐵𝐵) is the density of 

orbitals of one spin (either + or (or) -) orientation.  

Substituting equation (3) and equation (4) in equation (1), we get 

The net magnetization      𝑀 =  μ𝐵 {
1

2
 ∫  𝐹(𝐸)

𝐸𝐹

0  𝑔 (𝐸)𝑑𝐸 +
1

2
 μ𝐵𝐵 𝑔 (𝐸𝐹) −

                                                      [1

2
 ∫  𝐹(𝐸)

𝐸𝐹

0  𝑔 (𝐸)𝑑𝐸 −
1

2
 μ𝐵𝐵 𝑔 (𝐸𝐹)]}       

𝑀 =  μ𝐵[μ𝐵𝐵 𝑔 (𝐸𝐹)] 

𝑀 =  μ𝐵
2𝐵 𝑔 (𝐸𝐹)    ---------------- (5) 

We know, density of states   𝑔 (𝐸𝐹) =  
3

2
 

𝑛

𝐸𝐹
            ---------------- (6) 



UNIT-2 Electrical and Magnetic Properties of materials 

 

P a g e  29 | 35 

 

Where 𝐸𝐹  is the Fermi Energy. 

Substituting equation (6) in equation (5), we get 

𝑀 =  μ𝐵
2𝐵 3

2
 𝑛

𝐸𝐹
  ---------------- (7) 

 

Since  𝐵 =  𝜇0𝐻, we can write equation (7) as  

𝑀 =  μ𝐵
2𝜇0𝐻 

3
2

 
𝑛

𝐸𝐹
 

       
𝑀

𝐻
=  

3

2
  

μ𝐵
2𝜇0 𝑛

𝐸𝐹
  ---------------- (8) 

Since  𝜒𝐶 =  
𝑀

𝐻
, we can write equation (8) as  

 𝜒𝐶 =  3
2

  
μ𝐵

2𝜇0 𝑛
𝐸𝐹

  ---------------- (9) 

Equation (9) is called as the Pauli’s paramagnetic susceptibility of a Fermi gas of conduction 

electrons.  

Here in equation (9) we can note that the susceptibility is independent of temperature thus verifying 

the experimental also.  

 

ORIGIN OF FERROMAGNETISM AND EXCHANGE INTERACTION 

The ferromagnetic property is exhibited by transition elements such as iron, cobalt and nickel at 

room temperature and rare earth elements such as gadolinium and dysprosium. The ferromagnetic 

materials possess parallel alignment of dipoles. This parallel alignment of dipoles is not due to the 

magnetic force existing between any two dipoles. The reason is that the magnetic potential energy 

is very small and it is smaller than thermal energy. 

 

   3d orbitals         4s orbitals 

        

     

The electronic configuration of iron is 1s2, 2s2, 2p6, 3s2, 3p6, 3d6 and 4s2. For iron, the six electrons 

present in the 3d sub shell occupy the orbitals such that there are four unpaired electrons and two 

paired electrons.  These four unpaired electrons contribute a magnetic moment of 4β. This 

arrangement shows the parallel alignment of four unpaired electrons. The parallel alignment of 

dipoles in iron is not due to the magnetic interaction. It is due to the Pauli’s exclusion principle 

and electrostatic interaction energy.  
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The Pauli’s exclusion principle and electrostatic interaction energy are combined together and 

constitute a new kind of interaction known as exchange interaction. The exchange interaction 

is a quantum mechanical concept.  

 

Quantum Interference Devices 

A Quantum Interference Device is a very sensitive device which is used to measure very weak 

magnetic fields at the order of 5 x 10-18 Tesla, using the principle of interference. 

Examples 

1. Superconducting quantum interference devices 

2. GMR devices etc. 

Applications 

1. These devices are used in research and biological studies. 

2. They are used in ultra-sensitive electronic and magnetic measurements. 

 

Superconducting Quantum Interference Devices (SQUID) 

SQUID [Superconducting Quantum Interference Devices] are the improved model of Josephson 

devices. It has high efficiency, sensitivity and quick performance. 

Principle: Small change in magnetic field, produces variation in flux quantum.  

Explanation:  

It consists of a super conducting rings 

which can have magnetic fields of 

quantum values               (1,2,3, ….) of 

flux placed in between the two Josephson 

junctions. 

 When the magnetic field is applied 

perpendicular to the plane of the ring, 

current is induced at the two Josephson 

junctions and produces interference 

pattern. The induced current flows around 

the ring so that the magnetic flux in the ring can have quantum values of flux, which corresponds 

to the value of magnetic field applied.  Therefore SQUIDS are used to detect the variation in very 

minute magnetic signals in terms of quantum flux. They are used ad storage devices for magnetic 

flux.  They are also used in the study of earthquakes, removing paramagnetic impurities, detection 

of magnetic signals from the brain, heart etc.  
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GMR Devices 

Giant magnetoresistance (GMR) is a quantum mechanical magnetoresistance effect observed in 

thin film structures composed of alternating ferromagnetic and nonmagnetic layers. Giant 

magnetoresistance is a large change in electrical resistance due to spin alignment of electrons in 

alternating magnetic layers separated by a non-magnetic layer. GMR Devices are widely used as 

magnetic sensors, read heads in hard disks, magnetometers, compass system, etc. 

 

MAGNETIC HARD DISK DRIVE (HDD) WITH GMR SENSOR 

The GMR read head sensor in a hard disk is built using a spin valve. Spin valve resistance 

demonstrates a steep change in the small field range close to H=0. As the magnetic bits on the 

hard drive pass under the read head, the magnetic alignment of the sensing layer in the spin valve 

changes resulting in the resistance change. 

 

As the read head passes over the disk, the free 

layer shifts its magnetic orientation to match 

that of the bit. So sometimes the direction of the 

free layer’s magnetic field is aligned with the 

field of the pinned layer (which never changes), 

and sometimes it is opposite. When they are 

aligned, most of their electrons will share the same up or down spin. As some of these electrons 

pass through the layers in the form of current, there will be minimal scattering. The low resistance 

means a current will be detected, and the computer computes a 1 bit. 

 When the free layer’s magnetic orientation switches to opposite that of the pinned layer, there’s a 

much different result. The electrons in the two layers have opposing spins. So as the current passes 

through the magnetized layers, those electrons will scatter in one or the other of them, resulting in 

a much weaker current and a 0 bit. 

PROBLEMS 

1. Calculate the drift velocity of the free electron with a mobility of3.5 x 10-3 m2V-1s-1 in 

copper for an electric field strength of 0.5 V/m. 

Drift Velocity 𝑣𝑑  =μ E 

𝑣𝑑 = 3.5x10-3x 0.5 

𝑣𝑑= 1.75x10-3m/s 

𝑣𝑑 =  0.00175 m/s 
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2. A conducting rod contains 8.5x1028 electrons per m3. Calculate the electrical 

conductivity at room temperature if the collision time for electron is 2 x 10-14s. 

𝜎 =  
𝑛𝑒2𝜏

𝑚
 

𝜎 =  
(8.5 𝑥 1028𝑥 (1.609 𝑥 10−19)2𝑥 2 𝑥 10−14)

9.11 𝑥 10−31
  

𝜎 =  4.83 𝑥 107𝑚ℎ𝑜/𝑚 

 

3.  The mobility of electron in copper is 3x10-3 m2/Vs.  Assuming e = 1.6 x 10-19 C and                

me= 9.1x10-31 kg, calculate the mean free time. 

𝜎 =  
𝑛𝑒2𝜏

𝑚
   and    𝜎 = 𝜇 𝑛 𝑒 

Equating above eqns we can write  𝜏 =  
𝜇𝑚

𝑒
 

Mean free time 𝜏 =  
3 𝑥 10−3 𝑥 9.1 𝑥 10−31

1.6 𝑥 10−19
 

Mean free time τ = 1.70625x10-14 seconds 

4. Evaluate the Fermi function for energy KBT above the Fermi energy. 

                                               E-EF = KB T   

              F(E) =  
1

1+ e

E− EF
kBT⁄

  F(E) =  
1

1+ e

kBT
kBT⁄

                        F(E) =  
1

1+exp(1)
 

         F(E) =  
1

1 +  2.78
                     F(𝐄) = 𝟎. 𝟐𝟔𝟗 

5. The Fermi temperature of a metal is 24600 K. Calculate the Fermi velocity. 

 The relation between Fermi energy, Fermi velocity and Fermi temperature is given by 

𝐸𝐹  = 𝐾𝐵𝑇𝐹 =  
1

2
𝑚𝑣𝐹

2 

𝑣𝐹  =  √
2𝐾𝐵𝑇𝐹

𝑚
 =  √

2 𝑥 1.38 𝑥 10−23 𝑥 24600

9.11 𝑥 10−31
 

𝑣𝐹  =    0.8633 𝑋 106𝑚/𝑠 

6. Calculate the electrical and thermal conductivities for a metal with a relaxation time 10-14 

second at 300 K. Also calculate Lorentz number using the above result. (Density of 

electrons = 6x1028 m-3). 
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7.  The density of silver is 10.5x103 kg/m3.  The atomic weight of silver is 107.9.  Each silver  

atom provides one conduction electron. The conductivity of silver at 20 °C is 6.8 x 107                

Ω-1m-1.  Calculate the density of electron and also the mobility of electrons in silver.                                                                                                      

  

 Number of atoms present  per m3  =  Avagadro No. , X 
 Density 

Atomic weight
 

                                          =       
6.023 X1023X 10.5 X 103

107.9 X 10−3  

Number of atoms present  per m3  = 5.86 X 1028atoms/m3 

μ =  
σ

ne
 

 μ =  
6.8 X 107

5.86 X 1028  X 1.6 X 10−19         𝛍 = 𝟎. 𝟕𝟐 𝐗 𝟏𝟎−𝟐𝐦𝟐𝐕−𝟏𝐬−𝟏 

8. Use the Fermi distribution function to obtain the value of F (E) for the level   just    

0.01eV   above the Fermi level at 200 K.                    

E-EF = 0.01eV  

F(E) =  
1

1 +  e
E− EF

kT
⁄

 

F(E) =  
1

1 + exp (
0.01 X 1.6 X 10−19

1.38 X 10−23 X 200
)
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F(E) =  
1

1 +  e0.05797
 

𝐅(𝐄) = 𝟎. 𝟑𝟓𝟖𝟗 

9. The Fermi energy of silver is 5.51 eV. What is the average energy of a free   electron at 

0K?                                                           

Eavg
̅̅ ̅̅ ̅̅ =  

3

5
EF 

Eavg
̅̅ ̅̅ ̅̅ =  

3

5
( 5.51 X 1.6 X 10−19) 

Eavg
̅̅ ̅̅ ̅̅ =  5.2896 X 10−19J 

𝐄𝐚𝐯𝐠
̅̅ ̅̅ ̅̅ =  𝟑. 𝟑𝟎𝟔 𝐞𝐕 

10. Magnetic field Intensity of a paramagnetic material is 104 A/m. At room temperature, 

its susceptibility is 3.7 x 10-3. Calculate the magnetization in the material. 
 

 

11. A magnetic field of 1800 ampere/meter produces a magnetic flux of 3 x 10-5 weber in 

an iron bar of cross sectional area 0.2 cm2. Calculate permeability. 

 

 

12. A magnetic field of 2000 A/m is applied to a material which has a susceptibility of 1000. 

Calculate the (i) Intensity of Magnetization and (ii) Flux density. 
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13. The magnetic susceptibility of a medium is 940 x 10-4. Calculate its absolute and relative 

permeability.   

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇𝑟 = 1 +  𝜒 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇𝑟 = 1 + (940 x 10−4) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇𝑟 = 1 + (0.094) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇𝑟 = 1.094 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇 = 𝜇0𝜇𝑟  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇 = 4𝜋 x 10−7 x  1.094 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜇 = 13.74  x 10−7 N/𝐴2 

14. Iron has relative permeability of 5000. Calculate its magnetic susceptibility. 

 

15. The magnetic field strength of silicon is 1500 A/m. if the magnetic susceptibility is                     

, calculate the magnetization and flux density in Silicon. 

Intensity of magnetization   𝐼 =  𝜒𝑚 𝐻 

𝐼 =  − 0.3 x 10−5 𝑥 `1500 

𝐼 =  − 4.5 x 10−3𝐴 /𝑚 

𝐹𝑙𝑢𝑥 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐵 =  𝜇𝐻 

𝐵 =  𝜇𝐻 

𝐵 = (1 +  𝜒𝑚 )𝐻 

𝐵 = (1 −  0.3 x 10−5 )1500 

𝐵 = (0.999997 )1500 

𝑩 =  𝟏𝟒𝟗𝟗. 𝟗 𝑾𝒃/𝒎𝟐  
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Introduction: 

  

 

 

A semiconductor is a solid which has the resistivity in between the conductor and the insulator. It 

act as insulator at low temperature and act as conductors at high temperature. Examples: 

Germanium, Silicon, GaAs, InP, etc. The resistivity of semiconductors are from 10-4  to 0.5 ohm 

– metre. The study of semiconducting materials is essential for engineers due to their wide 

application in semiconductor devices in engineering and technology.  

 

Properties of semiconductors: 

 The resistivity lies between 10-4 to 0.5 ohm meters. 

 At 0K, they behave as insulators. 

 They empty conduction band and almost filled valence band. 

 The conductivity of a semiconductor increases both due to the temperature and impurities. 

 They have negative temperature coefficient of resistance. 

 In semiconductors both the electron and holes are charge carriers and will take part in conduction. 

 

Classification of semiconductors:              

Based on composition they are classified as   

 (i) Elemental semiconductors      (ii) Compound semiconductors  

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap 

semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic 

semiconductors - Carrier concentration in N-type & P-type semiconductors – Variation 

of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, 

mobility and diffusion – Hall effect and devices – Ohmic contacts – Schottky diode.  

UNIT -2
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(i) Elemental semiconductors: They are made from a single element of fourth group 

elements of the periodic table. They are also called as indirect band gap semiconductors. 

Examples: Germanium, Silicon, Diamond. 

(ii) Compound semiconductors: They are formed by combining third and fifth group 

elements or second and sixth group elements in the periodic table.  They are also called as direct 

band gap semiconductors. Examples: GaP, GaAs, MgO, ZnO, ZnS. 

 

Types of semiconductors: 

Depending on the impurity added, there are two types. 

(i) Intrinsic semiconductor  (or) pure semiconductors 

                                  (ii) Extrinsic semiconductor (or) impure semiconductors 

(a) N-type semiconductor 

(b) P-type semiconductor 

 

Intrinsic semiconductor: 

 
 The semiconductor in extremely pure form, without addition of impurities is known as an 

intrinsic semiconductor. In intrinsic semiconductor, holes and electrons are created by thermal 

agitation.  As there are no impurities the number of free electrons must be equal to the number of 

holes.  Examples: silicon and germanium.  

 

S.No Elemental semiconductors Compound semiconductors 

1 They are made up of single element. They are made up of compounds. 

2 They are made from a single element 

of fourth group elements of the 

periodic table. 

They are formed by combining third and 

fifth group elements or second and sixth 

group elements in the periodic table.   

3 They are called indirect band gap 

semiconductors. 

They are called as direct band gap 

semiconductors. 

4 Here heat is produced during 

recombination. 

Here the photons are emitted during 

recombination. 

5 Life time of charge carriers is more. Life time of charge carriers is less.  

6 Current amplification is more.  Current amplification is less.  

7 They are used in the manufacture of 

diodes and transistors, etc. 

They are used for making LED’s, laser 

diodes,  IC’s, etc. 

8 Examples: Ge, Si, etc. Examples: GaAs, GaP, CdS, MgO, etc. 
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They belong to the fourth group element in the periodic table. They are tetravalent atoms since 

they have four valence electrons. The neighboring atoms form covalent bonds by sharing four 

electrons with each other so as to form a stable structure. At very low temperatures say 0 K, no 

free electrons are available for conduction. Hence this semiconductor behaves as an insulator.  

 

Carrier concentration in intrinsic semiconductors: 

 The number of electrons in the conduction band per unit volume of the material or the 

number of holes in the valence band of the material is known as carrier concentration. It is also 

known as density of charge carriers.  

Calculation of density of electrons in conduction band: 

The number of electrons in the energy interval E and E + dE is given by                                  
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dn = Z (E) F (E) dE               ……………(1) 

  Where  Z (E) dE → Density of  energy states   

  F(E)  → Electron probability occupancy. 

The number of electrons in the conduction band for the entire region is calculated by integrating 

the equation (1) from energy Ec to +∞. 

   n = ∫ dn = ∫ 𝑍(𝐸)𝐹(𝐸)𝑑𝐸
+∞

𝐸𝑐
….. … (2)        

Where   

 Z (E) dE = 
4𝜋

ℎ3
  (2me

*) 3/2E1/2dE ….…….(3) 

The electrons in the conduction band are move in a periodic 

potential , so m = me
*  

 Where me
* → Effective mass. 

         E c → The potential energy of an electron at rest. 

       E-E c → The  kinetic energy of the conduction electron 

at higher energy levels. 

 Equation (3) is modified as  

Z(E)dE = 
4𝜋

ℎ3
  (2me

*) 3/2  (E- Ec) 
1/2 dE          …………(4)                 

Where  F(E) =  
1

1+𝑒(𝐸−𝐸𝐹)/𝑘𝑇                                ………….(5) 

Substitute equation (4) and (5) in equation (2) we have 

               n=∫
4𝜋

ℎ3
(2me

∗)
3

2(E − 𝐸𝑐)
1

2
1

   1+𝑒(𝐸−𝐸𝐹)/𝑘𝑇 dE                        
+∞

𝑬𝒄
 

  n =  
4𝜋

ℎ3
(2me

∗)
3

2 ∫ (E − 𝐸𝑐  )
1

2
1

     1+𝑒(𝐸−𝐸𝐹)/𝑘𝑇 dE                      
+∞

𝑬𝒄
…………. (6) 

Since kT is very small and𝑒(𝐸−𝐸𝐹)/𝑘𝑇  is very large compared to 1.  1 from the denominator of 

equation (6) is neglected. 

    n =   
4𝜋

ℎ3
(2me

∗)
3

2 ∫ (E − 𝐸𝑐)
1

2 𝑒−(𝐸−𝐸𝐹)/𝑘𝑇dE                        
+∞

𝑬𝒄
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   n =    
4𝜋

ℎ3 (2me
∗)

3

2 ∫  (E − 𝐸𝑐)
1

2 𝑒(𝐸𝐹−𝐸)/𝑘𝑇dE                         
+∞

𝑬𝒄
   

  n =     
4𝜋

ℎ3 (2me
∗)

3

2𝑒𝐸𝐹/𝑘𝑇 ∫ (E − 𝐸𝑐 )
1

2  𝑒−
𝐸

𝑘𝑇
  dE                 

+∞

𝑬𝒄
         …….….(7) 

Take E − 𝐸𝑐 = 𝓍, dE = d𝓍,    E  = 𝐸𝑐 +  𝓍 

When  E  = 𝐸𝑐   , 𝐸𝑐−𝐸𝑐 = 𝓍    ,  𝓍=0 

When  E  =+  , + −𝐸𝑐 = 𝓍 ,  𝓍= +  

Substituting the above values in equation (7) we have 

   n =  
4𝜋

ℎ3 (2me
∗)

3

2 𝑒𝐸𝐹/𝑘𝑇 ∫ (𝓍)
1

2  e−(Ec+𝓍)/𝑘𝑇d𝓍                                 
 

+∞

𝟎
 

                                   n =  
4𝜋

ℎ3 (2me
∗)

3

2 𝑒(𝐸𝐹−𝐸𝑐)/𝑘𝑇 ∫ (𝓍)
1

2  e−𝑥/𝑘𝑇d𝓍                              ……… (8)
 

+∞

𝟎
 

Using the gamma function,∫ (𝓍)
1

2e
−(

𝓍

𝑘𝑇
)
d𝓍

+∞

0
 =  

(𝑘𝑇)
3
2π

1
2

2
                                     ………(9) 

Substituting equation (9) in equation (8) we have  n =   
4𝜋

ℎ3 (2me
∗)

3

2  𝑒(𝐸𝐹−𝐸𝑐)/𝑘𝑇  
(𝑘𝑇)

3
2π

1
2

2
 

    n = 2(
2𝜋me

∗kT

ℎ2 )
3/2

𝑒(𝐸𝐹−𝐸𝑐)/𝑘𝑇                                                   ……..(10) 

This is the expression for the concentration of electrons in the conduction band of an intrinsic 

semiconductor. 

Calculation of density holes in the valence band: 

 If an electron is transferred from valence band to conduction band, a hole is created in the 

valence band. Let dP be the number of holes in the valence band for the energy range E and 

E+dE    dP = Z(E) (1-F(E))dE                                                   ………….(1) 

Where 1-F(E) →  Probability of an  unoccupied electron state i.e., presence of a hole 

1-F(E) =   1 - [
1

1+𝑒
(𝐸−𝐸𝐹)

𝑘𝑇

]         1-F(E)   =  
    1+𝑒

(𝐸−𝐸𝐹)
𝑘𝑇 − 1

1+𝑒
(𝐸−𝐸𝐹)

𝑘𝑇

  1-F(E)    =  
𝑒

(𝐸−𝐸𝐹)
𝑘𝑇

1+𝑒
(𝐸−𝐸𝐹)

𝑘𝑇

     …………(2) 

E is very small compared to 𝐸𝐹, 𝑒
(𝐸−𝐸𝐹)

𝑘𝑇   is very small. So the second term in the denominator of 

equation (2) is neglected.  ie,   1 + 𝑒
(𝐸−𝐸𝐹)

𝑘𝑇   ≈  1 
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    ∴   1-F(E)   =  𝑒
(𝐸−𝐸𝐹)

𝑘𝑇                                          …………(3)  

Density of states in the valence band      Z (E) dE = 
4𝜋

ℎ3
  (2mh

*) 3/2 E1/2 dE                ………….(4)  

              Where   mh
* → Effective mass of the hole in the valence band. 

      E v → the potential energy of a hole at rest. 

                 Ev - E → the kinetic energy of the hole at level below Ev. 

∴Equation (4) is modified as   Z(E)dE = 
4𝜋

ℎ3  (2mh
*) 3/2  (Ev - E) 1/2 dE                 …………(5) 

Substitute equation (3) and (5) in equation (1) we have 

                          dP  =  
4𝜋

ℎ3
(2mh

∗ )
3

2(Ev −  E)
1

2e
(E−EF)

kT dE           …………(6) 

Integrating equation (6) with respect to limit  -∞  to   Ev 

   ∫ dP = ∫  
4𝜋

ℎ3
(2mh

∗ )
3

2 (Ev − E)
1

2  e
(E−EF)

kT  dE                            
𝑬𝒗

−∞
 

                     P =  
4𝜋

ℎ3 (2mh
∗ )

3

2 𝑒−𝐸𝐹/𝑘𝑇 ∫ (Ev − 𝐸 )
1

2 𝑒
𝐸

𝑘𝑇dE                                             ………
Ev

−∞
...(7) 

Take 𝐸𝑣 − 𝐸 =  𝓍 ,     dE =  - d𝓍 , E  = - 𝓍+𝐸𝑣 

When  E  = 𝐸𝑣   ,  𝓍  = 𝐸𝑣−𝐸𝑣   ,  𝓍 =0 

When  E  = -∞ ,    𝓍 = 𝐸𝑣 +∞,   𝓍 = + ∞ 

Substituting the above values in equation (7) we have 

            P =  
4𝜋

 ℎ3 (2mh
∗ )

3

2 𝑒−𝐸𝐹/𝑘𝑇 ∫ (𝓍)
1

2 e
(−𝓍+Ev)

kT  (−d𝓍) 
0

∞
  ………(8) 

              P =   
4𝜋

ℎ3 (2mh
∗ )

3

2 𝑒(𝐸𝑣−𝐸𝐹)/𝑘𝑇 ∫ (𝓍)
1

2 e
(−𝓍)

kT  (d𝓍) 
∞

𝟎
     ………(9) 

Using the gamma function,∫ (𝓍)
1

2 e−(
𝓍

𝑘𝑇
)d𝓍

+∞

0
= 

(𝑘𝑇)
3
2π

1
2

2
                                 ..……(10) 

Substituting equation (10) in equation (9) we have   P =  
4𝜋

ℎ3 (2mh
∗ )

3

2 𝑒(𝐸𝑣−𝐸𝐹)/𝑘𝑇  
(𝑘𝑇)

3
2π

1
2

2
 

      P = 2(
2𝜋mh

∗ kT

ℎ2
)
3/2

𝑒(𝐸𝑣−𝐸𝐹)/𝑘𝑇                            …………(11) 

This is the expression for the concentration of holes in the valence band of an intrinsic 

semiconductor. 
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Intrinsic carrier concentration: 

 In an intrinsic semiconductor, the concentration of electrons in the conduction band is 

equal to the concentration of the holes in the valence band. We can rewrite     n = p = ni 

Where ni → Intrinsic carrier concentration 

   np   = ni  X   ni      and        np   = ni
2
 

  ∴ ni
2 = 2(

2𝜋me
∗kT

ℎ2 )
3/2

𝑒(𝐸𝐹−𝐸𝑐)/𝑘𝑇 × 2(
2𝜋mh

∗ kT

ℎ2 )
3/2

𝑒(𝐸𝑣−𝐸𝐹)/𝑘𝑇 

   ni
2 =    4(

2𝜋kT

ℎ2
)
3
(me

∗mh
∗ )3/2𝑒(𝐸𝑣−𝐸𝑐)/𝑘𝑇 

  ni
2 =    4(

2𝜋kT

ℎ2 )
3
(me

∗mh
∗ )3/2𝑒(−𝐸𝑔)/𝑘𝑇 

where   𝐸𝑐 − 𝐸𝑣  = 𝐸𝑔 , 𝐸𝑔 →  Forbidden  energy gap 

    ∴ ni =  2(
2𝜋kT

ℎ2 )
3/2

(me
∗mh

∗ )3/4𝑒(−𝐸𝑔)/2𝑘𝑇                     ……….(12) 

Limitations of intrinsic semiconductor 

Intrinsic semiconductors cannot be directly used to fabricate devices due to the following 

limitations; 

(i)   Electrical conductivity is low. Germanium has a conductivity of 1.67 Ω−1𝑚−1 which is nearly 

107 times smaller than that of copper.  

(ii)  Electrical conductivity is a function of temperature and increases exponentially as the 

temperature increases.  

In intrinsic or pure semiconductors, the carrier concentration of both electrons and holes is very 

low at normal temperatures. In order to get sufficient current density through semiconductor, a 

large electrical field should be applied. This problem is overcome by adding suitable impurities 

into intrinsic semiconductors.  

 

Extrinsic semiconductor: 

                Impure semiconductors in which charge carriers are produced due to the impurity atoms 

are called extrinsic semiconductors. It is also known as doped semiconductor. The addition of 

impurities to a pure semiconductor is known as doping and added impurity is called as doping 

agent or dopant. The addition of impurities increases the number of free electrons and holes in 

semiconductor and hence increases its electrical conductivity. Some of the common doping agents 

are arsenic, aluminium and boron.  

 

Depending on the impurity atom they are classified in to two types 

 (i)   n- type semiconductor   and   (ii)  p- type semiconductor 
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n- type semiconductor:   They are obtained by doping an intrinsic semiconductor with 

pentavalent impurity atoms like phosphorous and arsenic. The four valence electron of impurity 

atom will be bonded with four valence electrons of semiconducting atom and one electron is free 

which is responsible for conduction. Majority carriers are electrons. 

 

p- type semiconductor: They are formed by doping an intrinsic semiconductor with trivalent 

impurity atoms like Galium and Indium. The three valence electrons of the impurity atom pairs 

with three valence electrons of the semiconductor and one position of the impurity atom is left free 

(vacant). The excess holes produced are the majority carriers. 

 

  
S.no Intrinsic Semiconductor Extrinsic semiconductor 

1 

Semiconductor in a pure form is called 

intrinsic semiconductor. 

Example: Si, Ge 

Semiconductor which are doped with impurity is 

called Extrinsic semiconductor 

Example: Si, Ge doped with Al, In,P 

2 
The charge carriers are produced only due 

to thermal agitation. 

The charge carriers are produced due to impurities 

and may also be produced due to thermal agitation. 

3 They have low electrical conductivity They have high electrical conductivity. 

4 They have low operating temperature. They have high operating temperature. 

5 

At 0 K, Fermi level exactly lies between 

conduction band and valence band. 

At 0 K, Fermi level lies closer to conduction band 

in n-type semiconductor and lies near valence band 

in p-type semiconductor. 

 

S.no n- type  Semiconductor p-type semiconductor 

1 

n-type semiconductor is obtained by 

doping an intrinsic semiconductor with 

pentavalent impurity.  

p-type semiconductor is obtained by doping an 

intrinsic semiconductor with trivalent impurity.  

2 
Here electrons are majority carriers and 

holes are minority carriers. 

Here holes are majority carriers and electrons are 

minority carriers. 

3 
It has donor energy level very close to 

conduction band. 

It has acceptor energy level very close to valence 

band. 

4 

When the temperature is increased, these 

semiconductors can easily donate an 

electron from the donor energy level to the 

conduction band.  

When the temperature is increased, these 

semiconductors can easily accept an electron from 

the valence band to acceptor energy level. 
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5 

Fermi level lies exactly at the middle of    

the donor level  and the bottom of the 

conduction band 𝐸𝐹 =  
(𝐸𝑑+𝐸𝑐)

2
 

Fermi level lies exactly at the middle of the 

acceptor level  and the top of the valence band 

𝐸𝐹=
(𝐸𝑎+𝐸𝑣)

2
 

6 
Fermi level decreases with increase of 

temperature.  

Fermi level increases with increase of temperature. 

 

n- type semiconductor: 

            When a small amount of pentavalent impurity is added to a pure semiconductor. Such 

impurities are known as donor impurities because they donate free electrons to the semiconductor 

crystal. In n- type semiconductor electrons are majority charge carriers and holes are minority 

charge carriers. 

Let us consider, pentavalent impurity phosphorus is added to silicon as shown in below 

figure. Phosphorus atom has 5 valence electrons and silicon has 4 valence electrons. Phosphorus 

atom has one excess valence electron than silicon. The four valence electrons of each phosphorus 

atom form 4 covalent bonds with the 4 neighboring silicon atoms. The fifth valence electron of the 

phosphorus atom cannot able to form the covalent bond with the silicon atom because silicon atom 

does not have the fifth valence electron to form the covalent bond. 

Thus, fifth valence electron of phosphorus atom does not involve in the formation of covalent 

bonds. Hence, it is free to move and not attached to the parent atom. This shows that each 

phosphorus atom donates one free electron. Therefore, all the pentavalent impurities are called 

donors. The number of free electrons are depends on the amount of impurity (phosphorus) added 

to the silicon. A small addition of impurity (phosphorus) generates millions of free electrons. 

 

https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/valence-electrons.html
https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/covalent-bond.html
https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/atom.html
https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/free-electrons.html
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Carrier concentration in n- type semiconductor: 

          In an n-type semiconductor, the donor level is just below the conduction band. 𝑁𝑑 denotes 

the donor concentration and 𝐸𝑑 denotes the energy of donor level. 

         Density of electrons per unit volume in the conduction band is given by 

n =2(
2𝜋me

∗kT

ℎ2
)
3/2

𝑒(𝐸𝐹−𝐸𝑐)/𝑘𝑇                    ………..(1) 

Density of ionized donors   =  𝑁𝑑(1- F(Ed)) 

        = 𝑁𝑑 (1 − [
1

1+𝑒
(𝐸𝑑−𝐸𝐹)

𝑘𝑇

]) 

                                         = 𝑁𝑑   [
    1+𝑒

(𝐸𝑑−𝐸𝐹)

𝑘𝑇 − 1

1+𝑒
(𝐸𝑑−𝐸𝐹)

𝑘𝑇

] 

                                         = 𝑁𝑑  [
𝑒

(𝐸𝑑−𝐸𝐹)

𝑘𝑇

1+𝑒
(𝐸𝑑−𝐸𝐹)

𝑘𝑇

]      

If 𝐸𝐹 lies more than a few kT above donor levels. So the 

denominator may be neglected. 

∴ Density of ionized donors   =  𝑁𝑑  [𝑒
(𝐸𝑑−𝐸𝐹)

𝑘𝑇 ]        ………(2) 

At equilibrium density of electrons in the conduction band is equal to the density of ionized 

donors. 

     2(
2𝜋me

∗kT

ℎ2 )
3/2

𝑒(𝐸𝐹−𝐸𝑐)/𝑘𝑇   = 𝑁𝑑  [𝑒
(𝐸𝑑−𝐸𝐹)

𝑘𝑇 ]                               ………(3) 

  Taking log on both sides, we get  

      log  [2 (
2𝜋me

∗kT

ℎ2 )
3/2

𝑒(𝐸𝐹−𝐸𝑐)/𝑘𝑇]   = log (𝑁𝑑  [𝑒
(𝐸𝑑−𝐸𝐹)

𝑘𝑇 ] ) 

Rearranging,    
𝐸𝐹−𝐸𝑐−𝐸𝑑+𝐸𝐹

𝑘𝑇
  =  log [

𝑁𝑑

2(
2𝜋me

∗kT

ℎ2 )
3
2

] 

     
 2𝐸𝐹− (𝐸𝑑+𝐸𝑐 )

𝑘𝑇
   =  log [

𝑁𝑑

2(
2𝜋me

∗kT

ℎ2 )
3
2

] 
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     2𝐸𝐹  = (𝐸𝑑 + 𝐸𝑐 )  +  𝑘𝑇 log [
𝑁𝑑

2(
2𝜋me

∗kT

ℎ2 )
3
2

] 

   𝐸𝐹 =  
𝐸𝑑+𝐸𝑐

2
  + 

𝑘𝑇

2
 log [

𝑁𝑑

2(
2𝜋me

∗kT

ℎ2 )
3
2

]            ……..(4) 

Substituting the expression of 𝐸𝐹from equation (5) in (1) 

                            n =  2(
2𝜋me

∗kT

ℎ2
)
3/2

  exp 

[
 
 
 
 
 𝐸𝑑+𝐸𝑐

2
  + 

𝑘𝑇

2
 log [

𝑁𝑑

2(
2𝜋me

∗kT

ℎ2 )
3
2

] − 𝐸𝑐

𝑘𝑇

]
 
 
 
 
 

 

                            n =  2(
2𝜋me

∗kT

ℎ2 )
3/2

  exp [
𝑘𝑇

2𝑘𝑇
 log [

𝑁𝑑

2(
2𝜋me

∗kT

ℎ2 )

3
2

]  +
𝐸𝑑+𝐸𝑐−2𝐸𝑐

2kT
] 

                            n =  2(
2𝜋me

∗kT

ℎ2 )
3/2

  exp [
1

2
 log [

𝑁𝑑

2(
2𝜋me

∗kT

ℎ2 )

3
2

]  +
 𝐸𝑑−𝐸𝑐

2kT
] 

                            n =  2(
2𝜋me

∗kT

ℎ2 )
3/2

  exp [ log 
(Nd)

1
2

(2)
1
2(

2𝜋me
∗kT

ℎ2 )

3
4

 +
( 𝐸𝑑−𝐸𝑐)

2kT
] 

                            n =  2(
2𝜋me

∗kT

ℎ2 )
3/2 (Nd)

1
2

(2)
1
2(

2𝜋me
∗kT

ℎ2 )

3
4

  exp[
 𝐸𝑑−𝐸𝑐

2kT
] 

                            n = (2Nd)
1

2 (
2𝜋me

∗kT

ℎ2 )

3

4
  exp[

−∆E

2kT
]  where  ∆E = 𝐸𝑐 − 𝐸𝑑 

∆E  → Ionisation energy of the donor. ie, The amount of energy required to transfer an electron 

from donor energy level 𝐸𝑑 to conduction band 𝐸𝑐. 

                            n = (2Nd)
1

2 (
2𝜋me

∗kT

ℎ2 )

3

4
  exp[

−∆E

2kT
] 

It is clear that the density of electrons in the conduction band is directly proportional to the 

square root of donor concentration. 
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p- type semiconductor: 

            When a small amount of trivalent impurity is added to a pure semiconductor, it becomes 

p- type semiconductor typical examples of trivalent impurities are gallium and indium. Such 

impurities are known as acceptor impurities because the holes they create can accept electrons. In 

p- type semiconductor holes are majority charge carriers and electrons are minority charge carriers. 

 

Let us consider, trivalent impurity boron is added to silicon as shown in below figure. 

Boron atom has three valence electrons and silicon has four valence electrons. The three valence 

electrons of each boron atom form 3 covalent bonds with the 3 neighboring silicon atoms. In the 

fourth covalent bond, only silicon atom contributes one valence electron, while the boron atom has 

no valence electron to contribute. Thus, the fourth covalent bond is incomplete with shortage of 

one electron. This missing electron is called hole. This shows each boron atom accept one electron 

to fill the hole. Therefore, all the trivalent impurities are called acceptors. A small addition of 

impurity (boron) provides millions of holes. 

Carrier concentration in p- type semiconductor: 

          In p-type semiconductors, the acceptor level is just above the valence band. Let𝐸𝑎 represent 

the energy of the acceptor level,  and 𝑁𝑎 represent the number of acceptor atoms per unit volume. 

         Density of holes per unit volume in the valence band is given by 

    P = 2(
2𝜋mh

∗ kT

ℎ2
)
3/2

𝑒(𝐸𝑣−𝐸𝐹)/𝑘𝑇                     ………..(1) 

Density of ionized acceptors   =  𝑁𝑎F(𝐸𝑎)  =𝑁𝑎 [
1

1+𝑒
(𝐸𝑎−𝐸𝐹)

𝑘𝑇

] 

https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/atom.html
https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/valence-electrons.html
https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/covalent-bond.html
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Since 𝐸𝑎 − 𝐸𝐹>> kT, 𝑒
(𝐸𝑎−𝐸𝐹)

𝑘𝑇   is very large quantity and thus 1 can be neglected from the 

denominator. 

∴ Density of ionized acceptors   =  𝑁𝑎  [𝑒
(𝐸𝐹−𝐸𝑎)

𝑘𝑇 ]                  ………(2) 

At equilibrium density of holes in the valence band is equal to the density of ionized acceptors. 

2(
2𝜋mh

∗ kT

ℎ2 )
3/2

𝑒(𝐸𝑣−𝐸𝐹)/𝑘𝑇   =  𝑁𝑎  [𝑒
(𝐸𝐹−𝐸𝑎)

𝑘𝑇 ]   

Taking log on both sides, we get  

    log(2 (
2𝜋mh

∗ kT

ℎ2 )
3/2

𝑒(𝐸𝑣−𝐸𝐹)/𝑘𝑇   )  = log (𝑁𝑎  [𝑒
(𝐸𝐹−𝐸𝑎)

𝑘𝑇 ]  )  

Rearranging,    

 

𝐸𝑣−𝐸𝐹−𝐸𝐹+𝐸𝑎

𝑘𝑇
  =  log [

𝑁𝑎

2(
2𝜋mh

∗ kT

ℎ2 )
3
2

] 

                
−2𝐸𝐹+(𝐸𝑎+𝐸𝑣 )

𝑘𝑇
   =  log [

𝑁𝑎

2(
2𝜋mh

∗ kT

ℎ2 )
3
2

] 

                −2𝐸𝐹  = −(𝐸𝑎 + 𝐸𝑣 )  +  𝑘𝑇 log [
𝑁𝑎

2(
2𝜋mh

∗ kT

ℎ2 )
3
2

] 

 𝐸𝐹= 
(𝐸𝑎+𝐸𝑣)

2
− 

𝑘𝑇

2
 log [

𝑁𝑎

2(
2𝜋mh

∗ kT

ℎ2 )
3
2

]          ……..(3) 

Substituting  the expression of 𝐸𝐹from equation (3) in (1) 

                           p =  2(
2𝜋mh

∗ kT

ℎ2 )
3/2

  exp 

[
 
 
 
 
 
 
 
 
𝐸𝑣 − 

(𝐸𝑎+𝐸𝑣)

2
  − 

𝑘𝑇
2
 log 

[
 
 
 
 
 

𝑁𝑎

2(
2𝜋mh

∗kT

ℎ
2 )

3
2

]
 
 
 
 
 

       

𝑘𝑇

]
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                            p  =  2(
2𝜋mh

∗ kT

ℎ2 )
3/2

  exp 

[
 
 
 

𝑘𝑇

2𝑘𝑇
 log 

[
 
 
 

𝑁𝑎

2(
2𝜋mh

∗ kT

ℎ2 )

3
2

]
 
 
 

 +
2𝐸𝑣−𝐸𝑎−𝐸𝑣

2kT

]
 
 
 

 

                           p =  2(
2𝜋mh

∗ kT

ℎ2 )
3/2

  exp 

[
 
 
 
1

2
 log 

[
 
 
 

𝑁𝑎

2(
2𝜋mh

∗ kT

ℎ2 )

3
2

]
 
 
 

 +
 𝐸𝑣−𝐸𝑎

2kT

]
 
 
 

 

                           p =  2(
2𝜋mh

∗ kT

ℎ2 )
3/2

  exp 

[
 
 
 

 log 
(Na)

1
2

(2)
1
2(

2𝜋mh
∗ kT

ℎ2 )

3
4

 +
𝐸𝑣−𝐸𝑎

2kT

]
 
 
 

 

                            p =  2(
2𝜋mh

∗ kT

ℎ2 )
3/2 (Na)

1
2

(2)
1
2(

2𝜋mh
∗ kT

ℎ2 )

3
4

  exp[
( 𝐸𝑣−𝐸𝑎)

2kT
] 

                            p = (2Na)
1

2 (
2𝜋mh

∗ kT

ℎ2 )

3

4
  exp[

−∆E

2kT
]       where ∆E = 𝐸𝑎 − 𝐸𝑣 

∆E  → Ionisation energy of the acceptor. 

         ie, The amount of energy required to transfer an holes from acceptor energy level 𝐸𝑎 to 

valence band 𝐸𝑣. 

                           p = (2Na)
1

2 (
2𝜋mh

∗ kT

ℎ2 )

3

4
  exp[

−∆E

2kT
] 

         It is clear that the density of holes in the valence band is directly proportional to the square 

root of acceptor concentration. 

Variation of carrier concentration with temperature 

In extrinsic semiconductors, the resistivity decreases linearly with increase in temperature. This 

variation is considered under three different regions. 

(i) Extrinsic or impurity range 

(ii) Exhaustion range 

(iii) Intrinsic range 

For an n-type semiconductor, the variation of carrier concentration n and p with temperature is 

shown in the graph. At 0 K, both conduction and valence bands are free from any charge carriers 

and hence the electrical conductivity is zero.  
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 Now when the temperature is slowly increased, the donor atom gets ionized and 

the electrons move towards the conduction band. Here the carrier concentration (ne) increases 

slowly in the conduction band for electrons. Since this range is obtained due to impurity atoms, it 

is called impurity range shown by the curve AB. 

 When the temperature is further increased to reach upto say room temperature, all 

donor atoms is ionized and hence the carrier concentration increases in the conduction band and 

reaches to a steady state. Since this range is obtained due to exhaustion of donor atoms, it is called 

exhaustion range shown by the curve BC. 

 When the temperature is still further increased, due to thermal ionization, the 

electron from the valence band is lifted up to go to the conduction band and hence there is an 

increase in the carrier concentration (ne). In this case the number of electrons in the donor energy 

level is almost exhausted, many number of electrons are shifted from valence band to conduction 

band and hence the carrier concentration increases rapidly, tracing the curve CD. Since the material 

practically becomes intrinsic in this range, this range is known as intrinsic range.  

The dotted curve indicates the hole concentration in an intrinsic range.  

Carrier transport in semiconductor 

Random motion and mobility 

In absence of an electrical field the free electrons move in all directions in an random manner. 

They collide with other free electrons and positive ion core during the motion. This collision is 

known as elastic collision. 

As the motion is random the resultant velocity in any particular direction is zero. When an 

electrical field is applied in a semiconducting material the free charge carriers such as free 
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electrons and holes attain drift velocity Vd.  The drift velocity attained by the carriers is 

proportional to the electric field 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝐸. 

Vd 𝛼 E                 Vd =  µ 𝐸 

 Where  µ is a proportionality constant and it is known as the mobility of the charge carrier. This 

velocity Vd is different for different semiconductors and for different type of charge carriers.  

If E = 1 V/m then µ = Vd. 

Thus mobility µ 𝒊𝒔 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒕𝒉𝒆 velocity of charge carrier per unit electrical field strength.  

µn and µp denote electron mobility and hole mobility respectively. Since the types of drift of 

electrons and of holes are different the mobility of an electron at any temperature is different from 

that of hole. 

The electrical conductivity 𝜎𝑖 of an intrinsic semiconductor having ni electron – hole pairs per unit 

volume is given by  

𝜎𝑖 = 𝑒 n𝑖 ( µ𝑛  + µ𝑝 ) 

Drift and diffusion Transport 

The net current flow across a semiconductor has two components:  

(i) Drift current  (ii) Diffusion current. 

Drift current 

Definition: The electric current produced due to the motion of charge carriers under the influence 

of an external electric field is known as drift current.  

 When electrical voltage is applied to a material, electric field is produced at every 

point within the material. The charge carriers are forced to move in a particular direction due to 

the electric field. This is known as the drift motion and the current is known as drift current.  

 
Drift current in a semiconductor due to electrons 𝐽𝑛(𝑑𝑟𝑖𝑓𝑡) = 𝑛𝜇𝑛𝑒𝐸 

Drift current in a semiconductor due to holes 𝐽𝑝(𝑑𝑟𝑖𝑓𝑡) = 𝑝𝜇𝑝𝑒𝐸 
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Where n and p are number of electrons and holes per unit volume. 𝜇𝑛 and 𝜇𝑝 are the nobilities of 

electrons and holes respectively, e is charge of electrons and E is electric field.   

So total drift current density J = 𝐽𝑛(𝑑𝑟𝑖𝑓𝑡) + 𝐽𝑝(𝑑𝑟𝑖𝑓𝑡)   

𝐽 =  𝑛𝜇𝑛𝑒𝐸 +  𝑝𝜇𝑝𝑒𝐸   

For Intrinsic semiconductor 

𝐽 =  𝑛𝑖𝑒(𝜇𝑛 + 𝜇𝑝)𝐸   

Diffusion current 

Definition: the non-uniform distribution of charge carriers creates the regions of uneven 

concentrations in the semiconductor.  

 The charge carriers move from the regions of higher concentration to the regions 

of lower concentration. This process is known as diffusion. The current is known as diffusion 

current. Consider a semiconductor having a concentration gradient of electrons 
𝑑𝑛

𝑑𝑥
 within the 

semiconductor. The electrons diffuse from high concentration to low concentration due to the 

concentration gradient.  

 

Rate of flow of electrons through unit area ∞ − (
𝑑𝑛

𝑑𝑥
) 

Here negative sign denotes that the electrons are diffusing from higher concentration to lower 

concentration region.  

Rate of flow of electrons through unit area = −𝐷𝑛  (
𝑑𝑛

𝑑𝑥
) 

Where 𝐷𝑛 is a proportionality constant and it is known as diffusion coefficient of electrons. 

 
 

Rate of flow of electrons through unit area = −𝑒 𝑋 − 𝐷𝑛  (
𝑑𝑛

𝑑𝑥
) 

Rate of flow of electrons through unit area is the diffusion current density of electrons 

𝐽𝑛(diffusion)  = 𝑒 𝐷𝑛  (
𝑑𝑛

𝑑𝑥
) 

Similarly, the diffusion current density of holes is given by  𝐽𝑝(diffusion)  = −𝑒 𝐷𝑝  (
𝑑𝑛

𝑑𝑥
) 

Where 𝐷𝑝 is diffusion constant of holes. 
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Hall Effect 

 Hall Effect is used to distinguish between the two types of charge carriers. It is also used to 

determine the charge carrier densities and the mobility of charge carriers. 

Statement:  When a conductor (metal or semiconductor) carrying a current (I) is placed in a 

perpendicular magnetic field (B) , a potential difference (electric field) is produced inside the 

conductor in a direction normal to the directions of both the current and the magnetic field. 

  

Hall effect in n-type semiconductor: 

           Let us consider a n-type semiconductor material in the form of rectangular slab. In such a 

material current flows in the X-direction, magnetic field B is applied in the Z direction. As a result 

Hall voltage is developed along Y-direction. The current flow is entirely due to the flow of 

electrons moving from right to left. When a magnetic field is applied, the electrons moving with 

velocity v will experience a downward force Bev. 

          Where   B  →  Applied magnetic field 

                        e  →  Charge of an electron 

        The downward force deflects the electrons in downward direction and therefore there is an 

accumulation of negatively charged electrons on the bottom face of the slab. 

∴  A potential difference is established between top and bottom of the specimen. This potential 

difference causes an electric field 𝐸𝐻 called Hall field.This field will give rise to a force e𝐸𝐻 

acting in the upward direction on each electron. 

           At equilibrium, downward force Bev will balance the upward force e𝐸𝐻. 

∴ Bev  =   e𝐸𝐻 
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      𝐸𝐻 = Bv                                                ……..(1) 

         The current density 𝐽𝑥  =  nev 

       ∴  v = −
𝐽𝑥

𝑛𝑒
                                          ……..(2) 

Where  n  →  concentration of current carrier (electrons) 

Substitute equation (2) in (1) we have 

       𝐸𝐻 =−
B𝐽𝑥

𝑛𝑒
                                                …….(3) 

     𝐸𝐻 =  𝑅𝐻𝐽𝑥B                                          ……..(4) 

      ∴ 𝑅𝐻 =  
𝐸𝐻

𝐽𝑥B
 

                                Where 𝑅𝐻 =−
1

𝑛𝑒
                                                ….(5) 

   Where   𝑅𝐻  →  Hall coefficient or Hall constant. 
 

Hall effect in p type semiconductor:                                   

  

 Consider a rectangular slab of p-type semiconducting material and the current flow in this case is 

entirely due to the flow of positive holes from left to right. The current flow is along x- direction 

and the magnetic field is applied in the z- direction. Due to applied magnetic field, the holes are 

accumulated in the bottom of the slab and thus produce a potential difference. 

         Hall coefficient can be written as   𝑅𝐻 =+
1

𝑝𝑒
                                              …….(6) 

         Where  p →   Concentration of current carriers(holes) 

Hall coefficient in terms of Hall voltage: 

          If t is the thickness of the sample and  𝑉𝐻  is the Hall voltage, then  𝑉𝐻 =  𝐸𝐻𝑡   ….(7) 

Where EH is the Hall field 
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Substitute equation (4) in (7) we                           𝑉H =RH Jx Bt                   ……(8) 

If b is the breadth of the sample, then    Area of the sample (A) = Breadth (b) x Thickness (t) 

                                                                                                       = bt 

                  Current density    𝐽𝑥=
𝐼𝑥

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒(𝐴)
 𝐽𝑥=

𝐼𝑥

𝑏𝑡
      ……..(9) 

     Substituting equation (9) in (8) we have  𝑉𝐻  =
𝑅𝐻𝐼𝑥𝐵𝑡

𝑏𝑡
 

       ∴ 𝑉𝐻 =
𝑅𝐻𝐼𝑥𝐵

𝑏
 

              Hall coefficient,        𝑅𝐻 =
𝑉𝐻b

𝐼𝑥𝐵
                            ……….(10) 

Mobility of charge carriers: 

Electrical conductivity of a n-type semiconductor  σe = n e μe 

      ∴ 𝑅𝐻= 
−1

𝑛𝑒
                                          ………     (11) 

           Where  μe  → mobility of charge carriers (electrons) 

Electrical conductivity of a p-type semiconductor     σh = p e μh 

    ∴ 𝑅𝐻= 
−1

𝑝𝑒
                                                                ………    (12) 

Where   σh→  mobility of charge carriers(holes) 

Determination of Hall coefficient: 

        A semiconductor material is taken in the form 

of a rectangular slab of thickness t and breadth b. 

A suitable current 𝐼𝑥   ampere is allowed to pass 

through this sample along x- axis by connecting it 

to a battery.The sample is placed in between two 

poles of an electromagnet such that the applied 

magnetic field is along the z-axis ie, perpendicular 

to the plane of paper. 

         Hall voltage  𝑉𝐻  is developed in the sample 

is measured by fixing two probes at the centres of the bottom and top faces of the sample. By 
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measuring Hall voltage, hall coefficient is determined from the formula      

 𝑅𝐻 = 
𝑉𝐻b

𝐼𝑥𝐵
 

Applications of Hall Effect: 

(i) Determination of semiconductor type: the sign of the hall coefficient is used to find whether 

a given semiconductor is n-type or p-type.  

(ii)Calculation of carrier concentration: by measuring hall coefficientRH, carrier concentration 

is determined from the relation  n = 
1

𝑒𝑅𝐻
 

(iii) Determination  of mobility: we know that electrical conductivity  

𝜎𝑒 = 𝑛𝑒µe                            µe = 
𝜎𝑒

𝑛𝑒
           µe = 𝜎𝑒𝑅𝐻       

 (iv) Magnetic field meter:  Hall voltage 𝑉𝐻 for a given current is proportional to B. Hence 𝑉𝐻 

measures the magnetic field B. 

(v) Hall effect multiplier: It can give an output proportional to the product of two signals. If current 

I proportional to one input and if B proportional to the second input, then 𝑉𝐻 is proportional to 

the product of two inputs. 

Hall Devices 

The devices which uses the Hall Effect for its applications is known as hall device. There are 3 

types of hall devices. 

1. Gauss meter 

2. Electronic Multiplier 

3. Electronic Wattmeter 

 

a) Gauss meter 

The hall voltage  𝑉𝐻 = 
𝑅𝐻𝐵𝑍𝐼𝑥

𝑡
 . In this 𝑉𝐻  ∝  𝑩𝑍 for a given hall element; 𝑅𝐻 and t are constant. 

The current I through Hall element is also kept constant.  

This principle is used in Gauss meter. It is used for measuring magnetic field. The variation of Hall 

voltage with magnetic field is shown in fig. the voltmeter which is used to measure 𝑉𝐻 can be 
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directly calibrated in terms of gauss. The graph can also be used to measure any unknown magnetic 

fields. 

 

b) Electronic Multipliers 

From Hall Effect, we have     

𝑉𝐻 = 
𝑅𝐻𝐵𝑍𝐼1

𝑡
  

Since 𝑅𝐻 and t are constant for an element.   

𝑉𝐻 = 𝐵𝑍𝐼1 

But, the magnetic field 𝐵𝑍  is proportional to 

current (𝐼2) through the coil.  

i.e; 𝐵𝑍 ∝ 𝐼2  

∴  𝑉𝐻  ∝   𝐼1 𝐼2 

𝑉𝐻  is a measure of the product of two currents. 

This is the basic principle used in analog 

electronic multipliers.  

c) Electronic Wattmeter 

 Hall Effect is used to measure electrical power dissipated in a load. The instrument used to 

measure the power in a circuit using Hall Effect principle is known as Hall Effect – Watt meter.  S 
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is Hall Effect sample. It is placed in a magnetic field 𝐵𝑍 produced by the load current  𝐼𝐿 passing 

through the coils CC. 

The voltage across the load 𝑉𝐿  drives the current 𝐼𝑦 = 
𝑉𝐿

𝑅
 through the sample. R is a series 

resistance which is >> than the resistance of the sample and that of the load. Also 𝐼𝑦 ≪ 𝐼𝐿 

  

If “t” thickness of the sample, then the measured hall voltage  

𝑉𝐻 = 
𝑅𝐻𝐵𝑍𝐼1

𝑡
 

         𝑉𝐻 ∝ 𝐵𝑍𝐼𝑦  (Since RH and t are constant). 

Since 𝐵𝑍 ∝ 𝐼𝐿 and 𝐼𝑦 ∝ 𝑉𝐿           𝑉𝐻 ∝ 𝑉𝐿𝐼𝐿   

This is the electric power dissipated by the load. The voltmeter that measures 𝑉𝐻 can be 

calibrated directly to read power.  

Metal – Semiconductor Contact 

Metal – semiconductor contact plays e very important role in the present day electronics devices 

and integrated circuit technology. 

When a metal and a semiconductor are brought into contact, there are 2 types of junctions formed 

depending on the work functions of the metal and semiconductor. 
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Types of Metal – Semiconductor junction 

(i)  Schottky junction - 𝜙𝑚 > 𝜙𝑠𝑒𝑚𝑖 

(ii)  Ohmic junction - 𝜙𝑚 < 𝜙𝑠𝑒𝑚𝑖 

Work function: energy required to raise the electron from the metal or the semiconductor to the 

vacuum level.  

Schottky Diode 

When the metal has high work function than that of  n-type semiconductor then the junction formed 

is called Schottky diode. 

Principle: Schottky diode is a unilateral device in which current flows from metal to semiconductor 

(n-type) in one direction. 

 

Consider a junction formed between a metal and n-type semiconductor. The Fermi level of the 

semiconductor is higher (since its work function is lower) than the metal. The electrons in the 

conduction level of the semiconductor move to the empty energy states above the Fermi level of 

the metal. This leave a positive charge on the semiconductor side and due to the excess electrons, 

a negative charge on the metal side, leading to a contact potential.  
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When a Schottky junction is formed between the metal and semiconductor, the Fermi level lines 

up and also a positive potential is formed on the semiconductor side. Because the depletion region 

extends within a certain depth in the semiconductor there is bending of the energy bands on the 

semiconductor side. Bands bend up in the direction of the electric field.  

 

The Schottky junction can be biased by application of an external potential.  

There are two types of bias  

1. Forward bias - metal is connected to positive terminal and n-type semiconductor connected 

to negative terminal  
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2. Reverse bias - metal is connected to negative terminal and n-type semiconductor connected 

to positive terminal  

The current flow depends on the type of bias and the amount of applied external potential.  

Forward bias:  

 In a forward biased Schottky junction the external potential is applied in such a way that it opposes 

the in-built potential. The electrons injected from the external circuit into the n-type semiconductor 

have a lower barrier to overcome before reaching the metal. This leads to a current in the circuit 

which increases with increasing external potential. 

Reverse bias: 

 In the case of a reverse bias the external potential 

is applied in the same direction as the junction 

potential.  This increases the width of depletion 

region further and hence there is no flow of 

electron from semiconductor to metal. So a 

Schottky junction acts as a rectifier i.e. it 

conducts in forward bias but not in reverse bias 

The I − V characteristics of the junction is shown 

in figure. There is an exponential increase in 

current in the forward bias (I quadrant) while 

there is a small current in reverse bias. 

Advantages of Schottky diode 

 In Schottky diode, stored charges or depletion region is negligible. So a Schottky diode has 

a very low capacitance. 

 The Schottky diode will immediately switch from ON state to OFF state since the depletion 

region is negligible. 

 A small voltage is enough to produce large current. 

 It has high efficiency. 

 It operates at high frequencies. 

 It produces less noise. 

Applications of Schottky diode 

 It can be used for rectification of signals of frequencies even exceeding 300 MHz. 
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 It is commonly used in switching device at frequencies of 20GHz. 

 It is used in radio frequency applications. 

 It is widely used in power supplies. 

 It is used in logic circuits. 

 Its low noise figure finds application in sensitive communication receivers like radars. 

 It is also used in clipping and clamping circuits and in computer grating. 

Ohmic Contacts 

When the semiconductor has a higher work function the junction formed is called the Ohmic 

junction. 

Principle: An Ohmic contact is an non-rectifying contact which obeys Ohm’s law (V=IR). The 

resistance of the Ohmic contact should always be low i.e., conductivity should be large.  

Here, the current is conducted equally in both directions and there is a very little voltage drop 

across the junction. Before contact, fermi level of the metal and semiconductor are at different 

positions.  

At equilibrium, electrons move from the metal to the empty states in the conduction band so that 

there is an accumulation region near the interface (on the semiconductor side) from the metal to 

the empty states in the conduction band so that there is an accumulation region near the interface 

(on the semiconductor side).  

 

Applications 

He use of Ohmic contacts is to connect one semiconductor device to another, an IC, or to connect 

an IC to its external terminals. 
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PROBLEMS 

1. Find the resistance of an intrinsic Ge rod 1 cm long, 1 mm wide and 0.5 mm thick at 

300 K. For Ge, 𝒏𝒊= 2.5 x 1019/m3, 0.39 m2V-1 s-1 and 0.19 m2V-1 s-1 at 300 K. 

Given: 

ni= 2.5 x 1019/m3, µe =0.39 m2V-1 s-1,µh =0.19 m2V-1 s-1, e = 1.6 × 10−19J 

𝑙 =1 cm = 1 × 10−2m, Width = 1 mm, thickness = 0.5 mm 

              Conductivity 𝜎 = 𝑛𝑖𝑒(𝜇𝑒 + 𝜇ℎ) 

𝜎 = 2.5 × 1019 × 1.6 × 10−19(0.39 + 0.19) 

                                         𝜎 = 2.32 Ω−1𝑚−1 

𝐴𝑟𝑒𝑎 = 𝑤𝑖𝑑𝑡ℎ × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  1 × 10−3 × 0.5 × 10−3 

 𝑅 =
𝑙

𝜎𝐴
= 

1×10−2

2.32 ×(1×10−3×0.5×10−3)
 

𝑅 = 8620.6 Ω 

 

2. The intrinsic carrier density is 1.5×1016/m3.If the mobility of electron and hole are 0.13 

and 0.05 m2V-1s-1calculate the conductivity. 

Given: 𝑛𝑖 =1.5×1016/m3, 𝜇𝑒 =0.13m2V-1s-1,𝜇ℎ =0.05 m2V-1s-1 

𝜎 = 𝑛𝑖𝑒(𝜇𝑒 + 𝜇ℎ) 

𝜎 = 15 × 1016 × 1.6 × 10−19(0.13 + 0.05) 

𝜎 = 4.32 × 10−4Ω−1𝑚−1 

 

3. The donor density of an n-type germanium sample is 1021 /m3.The sample is arranged in 

a Hall experiment having magnetic field of 0.5 Tesla and the current density is 500 

ampere/m2. Find the Hall voltage if the sample is 3 mm wide. 

Given: ne =1021 /m3, B = 0.5 Tesla, t =3 mm =3 × 10−3m,  𝐽𝑥 =500 ampere/m2 

𝑅𝐻 =
1

𝑛𝑒𝑒
 

𝑅𝐻 =
1

1021 × 1.6 × 10−19
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𝑅𝐻 = 6.25 × 10−3 

𝑉𝐻 = 𝑅𝐻𝐽𝑥𝐵𝑡 

𝑉𝐻 = 6.25 × 10−3 × 500 × 0.5 × 3 × 10−3 

𝐻𝑎𝑙𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑉𝐻 = 4.6875 × 10−3𝑉𝑜𝑙𝑡𝑠 

 

4. In  a  p-type  germanium,  ni  =  2.1x  1019  m-3,  density  of  boron = 4.5 x 1023 atoms m-

3. The electrons and hole mobility are 0.4 and 0.2 m2/volt sec respectively. What is its 

conductivity before and after the addition of boron atoms?  

      Given:  ni = 2.1x 1019/m3; μe = 0.4m2/volt; μh = 0.2m2/volt.sec 

 (i) Before including boron atoms, the semiconductor is an intrinsic semiconductor. 

    Therefore, Conductivity (σ) = 𝑛𝑖𝑒(𝜇𝑒 + 𝜇ℎ) 

                                                 = 2.1x1019x1.6x10-19(0.4+0.2) 

                                             σ = 2.016 Ω-1 m-1 

 (ii) After the boron atoms are included, each boron atoms are ready to accept one electron. 

 Therefore, Conductivity of p type semiconductor after boron atoms are included. 

    σ´ = p𝑒𝜇ℎ 

    σ´ = 4.5x1023x1.6x10-19x0.2 

    σ´ = 1.44x104 Ω-1m-1 

 

5. A n-type semiconductor has Hall coefficient = 𝟒. 𝟏𝟔 × 𝟏𝟎−𝟒𝒎−𝟑𝒄−𝟏 .The conductivity is 

108 ohm-1m-1. Calculate its charge carrier density ne and electron mobility at room 

temperature.                                        

Given:𝑅𝐻 = 4.16 × 10−4𝑚−3𝑐−1 , σ   = 108 Ω-1m-1 

    For n-type the charge carrier density is 𝑛𝑒 = −
1

𝑒𝑅𝐻
      

                                     𝑛𝑒 =
3𝜋

8

1

𝑒𝑅𝐻
  

𝑛𝑒 =
3 × 3.14

8

1

1.6 × 10−19 × 4.16 × 10−4
 

                                                                    𝑛𝑒 = 1.7690 × 1022/m3. 
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i) Electron mobility µ𝑒 = 
𝜎𝑒

𝑛𝑒𝑒
                              µ𝑒 = 

108

1.769×1022×1.6×10−19
 

 

                                                              µ𝑒 = 0.03816 m2V-1s-1 

 

6. The   Hall   co-efficient  of  certain   silicon   was   found   to   be -7.35 x10-5 m3C-1 from 

100 to 400 K. Determine the nature of the semiconductor. If the conductivity was found 

to  be 200 m-1 Ω-1, calculate the density and mobility of the charge carriers.  

Since Hall coefficient is negative the given semiconductor is an ‘n’ type semiconductor. 

For an n-type semiconductor, Conductivity   σ = nee μe 

Mobilityµ𝑒 = 
𝜎

𝑛𝑒𝑒
 

Here 𝑛𝑒 = −
1

𝑒𝑅𝐻
 𝑛𝑒 = −

1

1.6×10−19 ×−7.35×10−5 

Charge density of electrons    𝑛𝑒 = 8.503x1022/m3 

     Thereforeµ𝑒= 
200

8.503×1022×1.6×10−19
 

   Mobility of charge carriers µ𝑒  = 0.0147m2V-1s-1. 

 

7. The energy gap of Si is 1.1 eV. Its electron and hole mobilities at room temperature 

are 0.48 and 0.013 m2V-1s-1.Evaluate its conductivity.                              

     

              𝜇𝑒 = 0.48 m2V-1s-1     𝜇ℎ = 0.013 m2V-1s-1 

      𝑛𝑖 = 2 [
2𝜋𝑚𝑒𝑘𝐵𝑇

ℎ2
] exp

− 𝐸𝑔

2𝑘𝐵𝑇
 

 

𝑛𝑖 = 2 [
2 × 3.14 × 9.11 × 10−31 × 1.38 × 10−23 × 300

(6.625 × 10−34)2
] exp

− 1.1 × 1.6 × 10−19

2(1.38 × 10−23 × 300)
 

𝑛𝑖 = 1.4707 × 1016 /𝑚3 

Conductivity 𝜎 = 𝑛𝑖𝑒(𝜇𝑒 + 𝜇ℎ) 

𝜎 =1.4707× 1016 × 1.6 × 10−19 × (0.48 + 0.013) 
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𝜎 = 1.160 × 10−3Ω-1m-1. 

 

8. A patient with a pacemaker is mistakenly being scanned for an MRI image. A 10 cm 

long section of pacemaker wire moves at a speed of 10 cm/s perpendicular to the MRI 

unit’s magnetic field and a 20mV Hall voltage is induced. What is the magnetic field 

strength?                                            

      Length of the path 𝑙 = 10 𝑐𝑚 = 0.1 𝑚, Velocity 𝑉 = 10𝑐𝑚/𝑠 = 0.1𝑚/𝑠 

            Induced voltage 𝑉 = 20 mV = 20 × 10−3V 

           Induced Hall voltage 𝑉 = 𝐵𝑣𝑙 

𝐵 =
𝑉

𝑣𝑙
 

𝐵 =
20 × 10−3

0.1 × 0.1
 

𝐵 = 2 𝑇𝑒𝑠𝑙𝑎 

9. The Hall Co-efficient of a specimen of doped silicon is found to be3.66 ×10-4 m-3/C. The 

resistivity of specimen is 8.93×10-3 Ωm. Find the mobility and density of charge 

carriers. 

Charge carrier density  ne =
3π

8

1

eRH
 

                             ne =
3 X 3.14

8

1

1.6 X 10−19 X 3.66 X 10−4
 

 

ne = 2.0107 X 1022/m3 

Electron mobility  µe = 
σe

nee
µe = 

1

ρenee
 

µe = 
1

8.93 X 10−3X2.0107 X 1022 X 1.6 X 10−19
 

µe =  0.0348 m2/Vs. 

 

10. A silicon plate of thickness 1mm, breadth 10 mm and length 100 mm is placed in a 

magnetic field of 0.5 Wb/m2 acting perpendicular to its thickness. If 10-2 A current flows 
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along its length, calculate the Hall voltage developed, if the Hall coefficient is 3.66 × 104 

m3/coulomb.   

𝑉𝐻 =
𝑅𝐻𝐼𝐻𝐵

𝑡
 𝑉𝐻 =

3.66×10−4×10−2×0.5

1×10−3
     𝑉𝐻 = 1.83 × 10−3 Volts. 

 



 

 

 

 

  UNIT III -MAGNETIC  PROPERTIES OF MATERIALS 

 

1. INTRODUCTION 

 

Any materials that can be magnetized by an applied by an applied external magnetic field is 

called a magnetic materials. Magnetic materials can be easily magnetized because they have permanent 

or induced magnetic moment in the presence of applied magnetic field. Magnetism arise from the 
magnetic moment or magnetic dipole of the magnetic materials. Among the different eleven types of 

magnetic materials, only five magnetic materials are the most important for the practical application. They 

are: 

 Diamagnetic materials. 

 

 Paramagnetic materials. 

 

 Ferromagnetic materials. 

 

 Antiferromagnetic materials. 

 

 Ferrimagnetic materials or ferrites. 

 

 

2 TERMS AND DEFINITIONS 

 

Magnetic flux (φ) 

Total number of magnetic lines of force passing through a surface is known as magnetic flux. It is 

represented by the symbol ‘φ’ and its unit 

 

Magnetic flux density (or) Magnetic induction (B) 

 

Magnetic flux density at any point in a m passing normally through unit area of cross section 

(A) at that point. It is denoted by the symbol B and its unit is weber / metre2 or tesla. 

 

B = [φ / A] 

 

Intensity of magnetization (I) 

 

The term magnetization means the process of converting non-magnetic material on magnetic 

material. 

 

When some amount of external magnetic field is applied to the metals such as iron, steel and 

alloys etc., they are magnetized to different degrees. The intensity of magnetisation (I) is the measure of 

the magnetisation of a magnetized specimen. It is defined as the magnetic moment per unit volume. 

 

I = M / V weber / metre2 

 

Magnetic field intensity (or) strength (H) 

 

Magnetic field intensity at any point in a magnetic field is the force experienced by unit north 

pole placed at that point. It is denoted by H and its unit is Newton per weber or ampere turns per metre 

(A/m). 

Magnetic permeability (μ) 

 

Magnetic permeability of a substance measure the degree to which the magnetic field can 

penetrate through the substance. It is found that magnetic flux density (B) is directly proportional to the 

magnetic field strength (H) 

 

B α H 

 

B = μ H 



 

 

 

 

 

Where is a constant of proportionality and it is known as permeability or absolute permeability of the 

medium. 

 

μ = B / H 

Hence, the permeability of a substance is the ratio of the magnetic flux density (B) inside the 

substance to the magnetic field intensity (H). 

 

Absolute permeability 

 

Absolute permeability of a medium or material is defined as the product of permeability of free 

space (μ 0) and the relative permeability. of the medium (μ r) 

 

μ = μ0 x μr 

 

 

Relative permeability of medium (μ r ) 

Relative permeability of a medium is defined as the ratio between absolute permeability of a medium to 

the permeability of a free space 

μr = μ / μ0 

 

Magnetic susceptibility (χ) 

 

Magnetic susceptibility (χ) of a specimen magnetized in a magnetic field. 

 

It is the ratio of intensity of magnetisation (I) induced in it to the magnetizing field (H). 

χ = I /H 

Retentivity (or) Remanence 

 

When the external magnetic field is applied to a magnetic material is removed, the magnetic 

material will not loss its magnetic property immediately. There exits some residual intensity of 

magnetization in the specimen even when the magnetic field is cut off. This is called residual magnetism 
(or) retentivity. 

 

Coercivity 

 

The residual magnetism can be completely removed from the material by applying a reverse 

magnetic field. Hence coercivity of the magnetic material is the strength of reverse magnetic field (-Hc) 

which is used to completely demagnetize the material. 

 

3 ORIGIN OF MAGNETIC MOMENT AND BOHR MAGNETON 

 

 Origin of magnetic moment 

 
Any matter is basically made up of atoms. The property of magnetism exhibited by certain materials with 

the magnetic property of its constituent atoms. We know that electrons in an atom revolve around the 

nucleus in different orbits. 

 

Basically there are three contributions for the magnetic dipole moment of an atom. 

 

The orbital motions of electrons (the motion of electrons in the closed orbits around the nucleus) are 

called orbital magnetic moment. 

 

Spin motion of the electrons (due to electron spin angular momentum) is called spin magnetic moment. 

 

The contribution from the nuclear spin (due to nuclear spin angular momentum) is nearly 10 3 times 

smaller than that of electron spin; it is not taken into consideration. 

 

Bohr Magneton 

 
The magnetic moment contributed by an electron with angular momentum quantum number n = 



 

 

 

 

1 is known as Bohr Magneton. 

 

 

4 DIFFERENT TYPES OF MAGNETIC MATERIALS 

 

 DIAMAGNETIC MATERIALS 

 

Diamagnetism is exhibited by all the materials. The atoms in the diamagnetic materials do not 

possess permanent magnetic moment. 

 

However, when a material is placed in a magnetic field, the electrons in the atomic orbits tend to 

counteract the external magnetic field and the atoms acquire an induced magnetic moment. 

 

As a result, the material becomes magnetized. The direction of the induced dipole moment is 

opposite to that of externally applied magnetic field. Due to this effect, the material gets very weakly 

repelled, in the magnetic field. This phenomenon is known as diamagnetism. 

 

When a magnetic field Ho is applied in the direction shown in fig., the atoms acquire an induced 

magnetic moment in the opposite direction to that of the field. 

 

The strength of the induced magnetic moment is proportional to the applied field and hence magnetization 

of the material varies directly with the strength of the magnetic field. 

 

The induced dipoles and magnetization vanish as soon as the applied field is removed. 

 

 

Properties of diamagnetic material 

 

Diamagnetic magnetic material repels the magnetic lines of force. The behaviour of diamagnetic material 

in the presence of magnetic field. 

 

There is no permanent dipole moment. Therefore, the magnetic effects are very small. 

The magnetic susceptibility is negative and it is independent of temperature and applied magnetic field 

strength. 

 

 

 

PARAMAGNETIC MATERIALS 

 

In certain materials, each atom or molecule possesses a net permanent magnetic moment (due to 

orbital and spin magnetic moment) even in the absence of an external magnetic field. 

 

The magnetic moments are randomly oriented in the absence of external magnetic field. 

Therefore the net magnetic moment is zero, and hence the magnetization of the material is zero. 

 

But, when an external magnetic field is applied, the magnetic dipoles tend to align themselves in 

the direction of the magnetic field and the material becomes magnetized. As shown in fig. This effect is 



 

 

 

 

known as paramagnetism. 

 

Thermal  agitation     disturbs  the  alignment  of  the  magnetic  moments.  W ith an increase in 

temperature, the increase in thermal agitation tends to randomize the dipole direction thus leading to a 

decrease in magnetization. 

 

This indicates that the paramagnetic susceptibility decreases with increases in temperature. It is noted that 

the paramagnetic susceptibility varies inversely with temperature. 

χ α 1 / T 

χ=C / T 

This is known as Curie law of paramagnetism and C is a constant called Curie constant 

Properties of paramagnetic materials 

Paramagnetic materials attract magnetic lines of force. They possess permanent dipole moment. 

The susceptibility is positive and depend on temperature is given by 

χ = –Cθ / T 

 

The spin alignment is shown in fig. 

 

Example- Manganous sulphate, ferric oxide, ferrous sulphate, nickel sulphate, etc. 

 

 FERROMAGNETIC MATERIALS 

 

Certain materials like iron, cobalt, nickel and certain alloys exhibit high degree of 

magnetization. These materials show spontaneous magnetization. (i.e) they have small amount of 

magnetization even in the absence of external magnetic field. 

 

This indicates that there is strong internal field within the material which makes atomic 

magnetic moments with each other. This phenomenon is known as ferromagnetism. 

 

Properties of ferromagnetic materials: 

All the dipoles are aligned parallel to each other due to the magnetic interaction between the two dipoles. 

They have permanent dipole moment. They are strongly attracted by the magnetic field. 

 

They exhibit magnetization even in the absence of magnetic field. This property of ferromagnetic 

material is called as spontaneous magnetization. 

 

They exhibit hysteresis curve. 

 

On heating, they lose their magnetization slowly. The dipole alignment is shown in fig. 

 

 

The susceptibility is very high and depends on the temperature. It is given by 

 

χ = C /T –θ 



 

 

 

 

 

[ for T>θ; paramagnetic behaviour; 

for T<θ; ferromagnetic behaviour] 

Where C is the Curie constant and θ is the paramagnetic Curie temperature. 

 

 

 ANTIFERROMAGNETIC MATERIALS 

Antiferromagnetic materials are magnetic materials which exhibit a small positive susceptibility of the 

order of 10 -3 to 10-5. 

 

In antiferromagnetic materials, the susceptibility increases with increasing temperature and it reaches 

maximum at a certain temperature called Neel Temperature, TN. 

With further increase in temperature, the material reaches the paramagnetic state. The material is 

antiferromagnetic below TN. 

 

Properties of antiferromagnetic materials 

The electron spin of neighboring atoms are aligned antiparallel. (i.e) the spin alignment is antiparallel. 

 

 

Antiferromagnetic susceptibility is mainly depends on temperature. 

 

The susceptibility of the antiferromagneitc material is small and positive. It is given by 

 

The susceptibility initially increases slightly with the temperature and beyond Neel temperature, the 

susceptibility decreases with temperature. 

 

 FERRIMAGNETIC MATERIALS 

 

Properties of ferrites 

Ferrites have net magnetic moment. 

 

Above  Curie temperature, it becomes paramagnetic, while it behaves ferromagnetic material blow Curie 

temperature. 

 

The susceptibility of ferrite is very large and positive. It is temperature dependent and is given by 

 

Spin alignment is antiparallel of different magnitudes as shown fig. 

Mechanically it has pure iron character. They have high permeability and resistivity. 

They have low eddy current losses and low hysteresis losses. 
 

 

 

 

 

 

5 FERROMAGNETISM 

 



 

 

 

 

The materials which have finite value of magnetization even if the external magnetic field is absent are 

called ferromagnetic materials. This phenomenon is called ferromagnetism. The ferromagnetic materials 

exhibit high degree of magnetization. 

 

Explanation 

 

In a ferromagnetic material, the magnetic interactions between any two dipoles align themselves 

parallel to each other. Ferromagnetism arises due to the special form of interaction called exchange 

coupling between adjacent atoms. This exchange coupling is favourable for spin alighnment and they 

coupling their magnetic moments together in rigid parallelism. 

 

A ferromagnetic materials exibits ferromagnetic property below a particular temperature called 

ferromagnetic. Curie  temperature  (fƟ).  Above fƟ they behaves as paramagnetic material. 

6. DOMAIN THEORY OF FERROMAGNETISM 

 
We can observe that ferromagnetic materials such as iron does not have magnetization unless 

they have been previously placed in an external magnetic field. But according to Weiss theory, the 

molecular magnets in the ferromagnetic material are said to be aligned in such way that, they exhibit 

magnetization even in the absence of external magnetic field. This is called spontaneous magnetization. 

(i.e) it should have some internal magnetization due to quantum exchange energy. 

 

According to Weiss hypothesis, a single crystal of ferromagnetic material is divided into large 

number of small regions called domains. These domains have spontaneous magnetization due to the 

parallel alignment of spin magnetic moments in each atom. But the direction of spontaneous 

magnetization varies from domain to domain and is oriented in such way that the net magnetization of the 

specimen is zero 

 
The boundaries separating the domains are called domain walls. These domain walls are analogous to the 

grain boundaries in a polycrystalline material. 

 

 

 

 

 

 

 

 

DOMAIN MAGNETIZATION 

 

Now when the magnetic field is applied, then the magnetization occurs in the specimen by two ways 

By moment of domain walls By rotation of domain walls moment of domain walls 

The moment of domain walls takes place in weak magnetic fields. Due to this weak field applied 

to the specimen the magnetic moment increases and hence the boundary of domains displaced, so that the 

volume of the domains changes as shown in fig. 
 

By rotation of domain walls 

 

The rotation of domain walls takes place in strong magnetic fields. When the external field is 

high then the magnetization changes by means of rotation of the direction of magnetization towards the 

direction of the applied field as shown fig. 



 

 

 

 

ENERGIES INVOLVED IN DOMAIN GROWTH 

 

To study the domain structure clearly, we must know four types of energy involved in the process of domain 

growth. They are 

 Exchange energy  

 Anisotropy energy  

 Domain wall energy  

 Magneto- strictive energy 

Exchange energy (or) magnetic field energy (or) magneto-static energy 

 

The interacting energy which makes the  adjacent  dipoles  to  align  themsel  ves is known exchange energy (or) 

magnetic field energy. The exchange energy has established a single domain in a specimen of ferromagnetic and 

it is shown in fig. 

 

It is the energy required in assembling the atomic magnets in a single domain and this work done is  

stored as potential energy. 

 

 

 

 

 
 

 

 

 

 

Anisotropy energy 

 

In ferromagnetic crystals there are two direction of magnetization. Easy direction 

 

Hard direction 

In easy direction of magnetization, weak field can be applied and in hard direction of magnetization, strong 

field should be applied. For producing the same saturation magnetization along both hard and easy direction, 
strong fields are required in the hard direction than the easy direction. 

 

 

For example in iron easy direction is [100], medium direction is [110] and the hard direction is [111] and it is 

shown in fig. From the fig we can see that very strong field is required to produce magnetic saturation in hard 

direction [111] compared to the easy direction [100]. 

Therefore the excess of energy required to magnetize the specimen along hard direction over that required to 

magnetize the specimen along easy direction is called crystalline anisotropy energy. 



 

 

 

 

Domain wall energy (or) Bloch wall energy 

 

Domain wall is a transition layer which separates the adjacent 

domains, magnetized in different directions. The energy of domain wall is due to both exchange energy and 

anisotropy energy. 

 

Based on the spin alignment, two types of domain walls may arise, namely  

Thick wall 

Thin wall 

 

 

(i) Thick wall 

 

When the spin at the boundary are misaligned if the direction of the spin changes gradually as shown in 

fig, it leads to a thick domain wall. Here the misalignments of spins are associated with exchange energy. 

 

(ii) Thin wall 

 

When the spin at the boundaries changes abruptly, then the anisotropy energy becomes very less. Since 

the anisotropy energy is directly proportional to the thickness if the wall, this leads to a thin Bloch wall. 

 

Magetostrictive energy 

 

When the domains are magnetized in different directions, they will either expand (or) shrink. 

 

Therefore there exits a deformations (i.e) change in dimension of the material, when it is magnetized. 

 

This phenomenon is known as magnetosriction and the energy produced in this effect is known as 

 

magnetostriction energy. 

 

The deformation is  different  along  different  crystal  directions  and  th e change dimension 

 

depends upon the nature of the material. 

 

EXPLANATION OF HYSTERESIS BASED ON DOMAIN THEORY Hysteresis 

When a ferromagnetic material is made to undergo through a cycle of magnetization, the variation of 

magnetic induction (B) with respect to applied field (H) can be represented by a closed hysteresis loop (or) 

curve. (i.e) it refers to the lagging of magnetization behind the magnetizing field. 

 

If magnetizing field (H) is applied to a ferromagnetic material and if H is increases to Hmax the 

material acquires magnetism. So the magnetic induction also increases, represented by oa in the fig. 

Now if the magnetic field is decreased from Hmax to zero, the magnetic induction will not fall rabidly 

to zero, but falls to ‘b’ rather than removed, the material still acquire some magnetic induction (ob) which is so 

called residual magnetism or retentivity. 

 

Now, to remove the residual magnetism, the magnetic field strength is reversed and increased to –



 

 

 

 

Hmax represented as ‘oc’ so called coercivity-H) is reduced to zero and the corresponding curve ‘de’ is obtai 

curve ‘efa’ is obtained. 

 

 

We know when the ferromagnetic material is subjected to external field, there is an increase in the 

value of the magnetic moment due to two process. 

The moment of domain walls Rotation of domain walls. 

When small external field is applied, the domains walls displaced slightly in the easy direction of 

magnetization. This gives rise to small magnetization corresponding to the initial portion of the hysteresis curve 

(OA) as shown in fig. 

 

Now of the field is removed, then the domains returns to the original state, and is known as reversible 

domains. 

 

When the field is increased, large numbers of domains contribute to the magnetization and thus the 

magnetization increases rabidly with H. 

 

Now, even when the field is removed, because of the displacement of domain wall to a very large 

distance, the domain boundaries do not come back to their original position. This process is indicating as AB in 

fig and these domains are called irreversible domains. 

 

 
Now, when the field is further increased, the domains starts rotating along the field direction and the 

anisotropic energy stored in the hard direction, represented as BC in the fig. 

 

Thus the specimen is said to attain the maximum magnetization. At this position, even when the field is 

removed the material posses maximum magnetization, called residual magnetism or retntivity, represented by 

OD in fig. 

 

Actually after the removal of external field, the specimen will try to attain the original configuration by 

the moment of domain wall. But this moment is stopped due to presence of impurities, lattice imperfections etc. 

therefore to overcome this; a large amount of reverse magnetic field is applied to the specimen. The amount of 

energy spend to reduce the magnetization to zero is called coercivity represented by OE in the fig. 

 

 

 
 
 

It is the loss of the energy in taking a ferromagnetic specimen through a complete cycle of 

magnetization and the area enclosed is called hysteresis loop. 

 

 

7 SOFT AND HARD MAGNETIC MATERIALS 

 

Depending upon the direction of magnetization by external field, and the area of hysteresis, magnetic 

can be classified into two types as, 

 



 

 

 

 

 

TYPES OF MAGNETIC MATERIALS 

 

Magnetic materials are classified onto two types.  

Soft magnetic materials . 

Hard magnetic material 

 

Soft magnetic materials: 

 

Materials which are easy to magnetize and demagnetize are called soft magnetic materials. 

 

Example –pure iron, cast iron, carbon steel, silicon steel, mumetal. 

 

Hard magnetic materials: 

 

Materials which retain their magnetism and are difficult to demagnetize are called hard magnetic 

materials. 

 

Example –tungsten steel, cobalt steel, alini, alnico, hypernic  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s.no Soft magnetic materials 

 

1. The magnetic materials can be easily magnetize and demagnetize. 

2. The have high permeability. 

3. Magnetic energy stored is not high. 

4. Low hysteresis loss due to small hysteresis loop area. 

5. Coercivity and retentivity are small. 

6. The eddy current loss is small due to its high resistivity. 



 

 

 

 

7. The domain walls are easy to move. 

8. They  are  used  in  electric  motor, generators, transformers, relays, telephone receivers, radar. 

 

Hard magnetic materials 

1. The magnetic materials can not be easily magnetize and demagnetize. 

2. The have low permeability. 

3. Magnetic energy stored is high. 

4. Large hysteresis loss due to large hysteresis loop area. 

5. Coercivity and retentivity are large. 

6. The eddy current loss is high due to its low resistivity. 

7. The movement of domain wall must be prevented. 

8. They are used in loud speakers and electrical measuring instruments. 

 

 

8. ENERGY PRODUCT 

Definition 

The product of residual magnetic induction (Br) and coercivity(Hc) is called energy product or BH 

product. It is the important quantity to design powerful permanent magnets. It gives the maximum amount of 

energy stored in the specimen. 

 

Explanation 

The energy required to demagnetize a permanent magnet is given by the area of the hystersis loop 

between Br and Hc. The maximum value of this area Br Hc is called the energyproduct. 

 

At C and D the energy product is zero because at C,H value is zero and D,B value is zero. The area 

occupied by the largest rectangle in demagnetizing curve gives the maximum (BH) value. 

 

The energy product is large for permanent magnets. This value is very much useful to analyze whether 

the material can be used for magnetic recording. 

 

9. FERRIMAGNETIC MATERIALS - FERRITES Ferrites 

Ferrites are components of iron oxide with oxides of other components. 

The general chemical formula is X2+ Fe23+ O42- , where (X2+) is a divalent metal ion such as Fe2+, 

Mg2+, Ni2+, Co2+, Mn2+ 

 

STRUCTURE OF FERRITES 

Generally there are two types of structures present in the ferrites. They are Regular spinal 

Inverse spinal 

 

Regular spinal 

 

In regular spinal structure, each divalent metal  ion  is  surrounded  by four O2- ions in a tetrahedral 

fashion. 
 

For example in Mg2+ Fe23+ O42-, the structure of Mg2+ is given in the fig (a) and it is called A site. 

 

Each Fe3+ (trivalent metal ion) is surrounded by six O2- ions and forms an octahedral fashion as shown 

in fig (a). Totally there will be 16 such octahedral sites in the unit cell. This is indicated by B site. 

 

Thus in regular spinal, each divalent metal ion (Mg2+) exits in tetrahedral form (A site) and each 

trivalent metal ion (Fe3+) exits in an octahedral form (B site). Hence the sites A and B combine together to form 

a regular spinal ferrite structure as shown in fig (b). 



 

 

 

 

 

 
 

Inverse spinal 

In this type, we consider the arrangement of ions of a single ferrous ferrite molecule Fe3+ [Fe2+ Fe3+] O42-. A 

Fe3+ ion (trivalent) occupies all A sites (tetrahedral) and half of the B sites (octahedral) also. 

 

Thus the left out B sites will be occupied by the divalent (Fe2+). The inverse spinal structure is shown in fig (c). 

 

 
 

PREPARATION 

 

They have the general chemical composition A2+ Fe23+ O42- where A2+ represent a divalent metal 

ion like Zn2+, Mg2+, etc. Ferrities are prepared by sintering a mixture of various metallic oxides as follows. 

 

 

 

1.  Suitable of A2+ and Fe23+ O42- in proper proportions are mixed using water or kerosene. 

2. The mixing is done in a blender for several hours. It is filtered. 

3. The filtered material is dried in a hot oven and is then crushed. 

 

4.  Next mixture, is pre-sintered in a furnace at 9000c to 11000c for a period of three to fifteen hours, in 

an air atmosphere or nitrogen atmosphere. 



 

 

 

 

 

5.  The pre-sintered material is then ground into a fine powder and mixed with a binder such as paraffin 

wax and a solvent such as water. 

 

6. The mixture is then pressed into the desired shapes by using dies. 

 

7.  The last step in the process is to place the ferrite in proper vessel in a furnace and heat it to about 

1100to 14000c. The binder then evaporates. It is cooled in a controlled manner. 

 

 PROPERTIES OF FERRITES 

 

Ferrites have net magnetic moment. 

Above Curie temperature, it becomes paramagnetic, while it behaves 

ferromagnetic material blow Curie temperature. 

The susceptibility of ferrite is very large and positive. It is temperature dependent and is given by 

 

 

Spin alignment is antiparallel of different magnitudes as shown fig. 

 

Mechanically it has pure iron character. They have high 

permeability and resistivity. 

They have low eddy current losses and low hysteresis losses. 

 

 

 ADVANTAGES 

 

1. Efficiency is high and cost is low. 

2. They have low eddy current losses and low hysteresis losses. 

3. Easy to manufacture with great uniformity. 

4. They occupies low volume. 

 

 Disadvantages 

 

1.  The main disadvantage of bubble memory is the requirement of a high recording time for storing 

and retrieving the data than the charge coupled device (CCD). 

 

2. It requires the interface circuits. 

 

3.  When compared with charge coupled device (CCD) memory the magnetic bubble memory has slow 

access speed. 

 Applications 

They are used to produce ultrasonic waves by magnetostriction principle. Ferrites are used in audio and video 

transforms. 

Ferrite rods are used in radio receivers to increase the sensitivity. They are also used in power limiting and 

harmonic generation. They are used in computers and data processing circuits. 

 

Ferrites are used in paramagnetic amplifiers so that the input can be amplified with low noise figures. 


	10. Magnetic field Intensity of a paramagnetic material is 104 A/m. At room temperature, its susceptibility is 3.7 x 10-3. Calculate the magnetization in the material.
	11. A magnetic field of 1800 ampere/meter produces a magnetic flux of 3 x 10-5 weber in an iron bar of cross sectional area 0.2 cm2. Calculate permeability.
	13. The magnetic susceptibility of a medium is 940 x 10-4. Calculate its absolute and relative permeability.
	14. Iron has relative permeability of 5000. Calculate its magnetic susceptibility.
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