LESSON PLAN

Department of Science and Humanities

Name of the Subject	MATRICES AND CALCULUS	Name of the handling Faculty	Mrs.D.VIMALA

Course Objective

To develop the use of Matrix algebra techniques that are needed by engineers for practical applications.
To familiarize the students with diiferential calculus.
To familiarize the student with functions of several variables. This is needed in many branches of engineering.

To make the students understand various techniques of integration.
To accuaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

Course Outcome

Use the matrix algebra methods for solving practical problems.

Apply differential calculus tools in solving various application problems.

Able to use differential calculus ideas on several variable functions.

Apply different methods of integration in solving practical problems.
Apply multiple integral ideas in solving areas, volumes and other practical problems.

Lesson Plan

Sl. No.	Topic(s)	$\mathbf{T} / \mathbf{R}^{*}$ Book	Period s Requi red	Mode of Teaching (BB / PPT / NPTEL / MOOC / etc	Blooms Level (L1-L6)	CO	PO
UNIT I MATRICES							
1	Eigenvalue and Eigenvectors of real matrix	T1	1	PPT/BB	L1,L2	CO1	PO1,PO3
2	Find the characteristic equation and properties of eigenvalues and eigenvectors	T1	1	PPT/BB	L2,L4	CO1	PO1,PO3

3	Statement and applications of cayleyHamilton Theorem	T1	1	PPT/BB	L1,L4	CO1	PO1,PO3
4	Diagonalization of matrices by orthogonal transformation	T1	1	PPT/BB	L1,L2	CO1	PO1,PO3
5	Diagonalization of matrices by orthogonal transformation	T1	1	PPT/BB	L1,L2	CO1	PO1,PO3
6	Reduction of a quadratic form to canonical form by orthogonal transformation	T1	1	PPT/BB	L1,L2	CO1	PO1,PO3
7	Reduction of a quadratic form to canonical form by orthogonal transformation	T1	1	PPT/BB	L2,L4	CO1	PO1,PO3
8	Nature of quadratic forms	T1	1	PPT/BB	L1	CO1	PO1,PO3
9	Applications: stretching of an elastic membrance	T1	1	PPT/BB	L1,L2	CO1	PO1,PO3
10	Applications: stretching of an elastic membrance	R1	1	PPT/BB	L3	CO1	PO1,PO3
11	Tutorial	R1	1	PPT/BB	L3	CO1	PO1,PO3
12	Tutorial	R1	1	PPT/BB	L3	CO1	PO1,PO3

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any

Evaluation method :Assignment -1 given compare these topics with real time applications

UNIT II DIFFERENTIAL CALCULUS

13	Representation of functions	T1	1	PPT/BB	L1,L2	CO2	P01,PO3
14	Limit of a function	T1	1	PPT/BB	L2,L4	CO2	PO1,PO3
15	Continuity	T1	1	PPT/BB	L1,L4	CO2	PO1,PO3
16	Continuity	T1	1	PPT/BB	L1,L2	CO2	PO1,PO3
17	Derivatives-Problems	T1	1	PPT/BB	L1,L2	CO2	PO1,PO3
18	Differentiation rules-Sum, Product, Quotient, Chain rules	T1	1	PPT/BB	L1,L2	CO2	PO1,PO3
19	Implicit differentiation	T1	1	PPT/BB	L2,L4	CO 2	PO1,PO3

20	Logarithmic differentiation	T 1	1	PPT/BB	L1	CO2	PO1,PO3
21	Applications-Maxima and Minima of functions of one variable.	T 1	1	PPT/BB	L1,L2	CO2	P01,P03
22	Applications-Maxima and Minima of functions of one variable.	R 1	1	PPT/BB	L3	CO2	P01,P03
23	Tutorial	R1	1	PPT/BB	L3	CO2	P01,PO3
24	Tutorial	R1	1	PPT/BB	L3	CO2	P01,P03

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any

Evaluation method :Assignment -2 given compare these topics with real time applications

UNIT III		FUNCTIONS OF SEVERAL VARIABLES					
25	Partial differentiation	T1	1	PPT/BB	L1,L2	CO3	$\begin{array}{\|c} \text { PO1,PO2, } \\ \text { PO3 } \end{array}$
26	Homogeneous functions and Euler's theorem	T1	1	PPT/BB	L2,L4	CO3	$\begin{gathered} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{gathered}$
27	Total derivative	T1	1	PPT/BB	L2	CO3	$\begin{array}{\|c} \hline \mathbf{P O 1 , P O 2 ,} \\ \text { PO3 }, \end{array}$
28	Change of variables	T1	1	PPT/BB	L1,L2,L4	CO3	$\begin{array}{\|c} \mathrm{PO}, \mathrm{PO} 2, \\ \text { PO3 } \end{array}$
29	Jacobians	T1	1	PPT/BB	L1,L2,L4	CO3	$\begin{gathered} \hline \text { PO1,PO2, } \\ \text { PO3 } \end{gathered}$
30	Partial differentiation of implicit functions	T1	1	PPT/BB	L1,L4	CO3	$\begin{array}{\|c} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{array}$
31	Taylor's series for functions of two variables	T1	1	PPT/BB	L2,L4	CO3	$\begin{array}{\|c} \text { PO1,PO2, } \\ \text { PO3 } \end{array}$
32	Application of maxima and minima of functions of two variables	T1	1	PPT/BB	L1	CO3	$\begin{gathered} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{gathered}$
33	Lagrange's method of undetermined multipliers.	T1	1	PPT/BB	L1,L2,L4	CO3	$\begin{array}{\|c} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{array}$
34	Lagrange's method of undetermined multipliers.	R2	1	PPT/BB	L3	CO3	$\begin{array}{\|c} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{array}$
35	Tutorial	R2	1	PPT/BB	L3	CO3	$\begin{array}{\|c} \hline \mathrm{PO}, \mathrm{PO} 2, \\ \text { PO3 } \end{array}$
36	Tutorial	R2	1	PPT/BB	L3	CO3	$\begin{gathered} \text { PO1,PO2, } \\ \text { PO3 } \end{gathered}$

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others
Planned if any

Evaluation method :Assignment -3 given compare these topics with real time applications

UNIT IV I		INTEGRAL CALCULUS					
37	Definite and Indefinite integrals	T1	1	PPT/BB	L1	CO4	PO1,PO2
38	Substitution rule	T1	1	PPT/BB	L1,L4	CO4	PO1,PO2
39	Techniques of Integration	T1	1	PPT/BB	L1	CO4	PO1,PO2
40	Integration by parts	T1	1	PPT/BB	L1,L2	CO4	PO1,PO2
41	Trigonometric integrals	T1	1	PPT/BB	L2,L4	CO4	PO1,PO2
42	Trigonometric substitutions	T1	1	PPT/BB	L2,L4	CO4	PO1, PO 2
43	Integration of rational functions by partial fraction	T1	1	PPT/BB	L2,L4	CO4	PO1,PO2
44	Integration of irrational functions	T1	1	PPT/BB	L2,L4	CO4	PO1,PO2
45	Improper integrals.	R1	1	PPT/BB	L1	CO4	PO1,PO2
46	Application of hydrostatic force and pressure, moments and centres of mass	R1	1	PPT/BB	L3	CO4	P01,PO2
47	Tutorial	R1	1	PPT/BB	L3	CO4	PO1,PO2
48	Tutorial	R1	1	PPT/BB	L3	CO4	P01,PO2

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any

Evaluation method :Assignment -4 given compare these topics with real time applications

UNIT V		MULTIPLE INTEGRALS					
49	Double integrals	T 1	1	PPT/BB	L1,L2	CO5	PO1
50	Change of order of integration	T1	1	PPT/BB	L1,L2,L4	CO5	PO1
51	Double integrals in polar coordinates	T1	1	PPT/BB	L1,L4	CO5	PO1
52	Area enclosed by plane curves	T1	1	PPT/BB	L1,L4	CO5	PO1

53	Triple integrals	T1	1	PPT/BB	L1,L2	CO5	PO1
54	Volume of solids	T1	1	PPT/BB	L1,L2	$\mathrm{CO5}$	PO1
55	Change of variables in double and triple integrals.	T1	1	PPT/BB	L1,L2	CO5	PO1
56	Change of variables in double and triple integrals.	T1	1	PPT/BB	L1,L2,L4	CO5	PO1
57	Application of moments and centres of mass, moment of inertia.	T1	1	PPT/BB	L1,L2	CO5	PO1
58	Application of moments and centres of mass, moment of inertia.	R2	1	PPT/BB	L3	CO5	PO1
59	Tutorial	R2	1	PPT/BB	L3	CO5	PO1
60	Tutorial	R2	1	PPT/BB	L3	CO5	PO1
Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any							
Evaluation method :Assignment -5 given compare these topics with real time applications							
Content Beyond the Syllabus Planned							
1	Go to nearest village collect the required data frame the problem use F-distribution and solve it.						
2							
Text Books							
1	Kreyszig.E, "Advanced Engineering Mathematics", John wiley and Sons, 10th Edition, New Delhi, 2016.						
2	Grewal.B.s., " Higher Engineering Mathematics", Khanna Publisheres, New Delhi, 44th Edition, 2018.						
3	James Stewart, "Calculus: Early Trans Delhi, 2015. [For Units II \& IV - Section 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area pr theorem), 5.5, 7.1 - 7.4 and 7.8].			ge Learni . 7 (Tange .3, 5.4 (ex	h Edition, roblems on ng net cha		
Reference Books							
1	Anton. H, Bivens. I and Davis. S, "Calculus", Wiley, 10th Edition, 2016						
2	Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.						
3	Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 5th Edition, 2016.						

4														
5														
6														
7	2018													
Website / URL References														
1	https://onlinecourses.nptel.ac.in													
2														
3														
Blooms Level														
Level 1 (L1) : Remembering Level 2 (L2) : Understanding Level 3 (L3) : Applying					Lower Order Thinki ng	Fixed Hour Exams	Level 4 (L4) : Analysing					Higher Order Thinki ng	Projects Mini Projects	
					Level 5 (L5) : Evaluating									
					Level 6 (L6) : Creating									
Mapping syllabus with Bloom's Taxonomy LOT and HOT														
Unit No		Unit Name				L1	L3	L4	L5	L6	LOT	HOT	Total	
Unit 1		MATRICES				7	3	3	0	0	20	0	20	
Unit 2		DIFFERENTIAL CALCULUS				6	3	6	0	0	22	0	22	
Unit 3		FUNCTIONS OF SEVERAL VARIA				5	3	4	0	0	17	0	17	
Unit 4		INTEGRAL CALCULUS				9	3	4	0	0	23	0	23	
Un		MULTIPLE INTEGRALS				8	3	8	0	0	23	0	23	
Total						35	15	25	0	0	105	0	105	
Total Percentage						33.333	14.29	23.81	0	0	100	0	100	
CO PO Mapping														
	PO1	PO2	PO3	PO4		PO5	PO6	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	1	-		-	-	-	-	-	-	-	2	-
CO2	3	1	2	-	-	-	-	-	-	-	-	2	-	
	2	2	1	-	-	-	-	-	-	-	-	2	-	
	3	2	1	-	-	-	-	-	-	-	-	2	-	
Avg	3	2	-	-	-	-	-	-	-	-	-	2	-	

Format No :231

