MOHAMMED SATHAK A J COLLEGE OF ENGINEERING
 Siruseri IT park, OMR, Chennai - 603103

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{LESSON PLAN}

\hline \multicolumn{2}{|l|}{Department of} \& \multicolumn{8}{|l|}{COMPUTER SCIENCE ENGINEERING \& INFORMATION TECHNOLOGY}

\hline \multicolumn{2}{|l|}{Name of the Subject} \& \multicolumn{2}{|l|}{DISCRETE MATHEMATICS} \& Name
ha \& \& \multicolumn{4}{|c|}{S.SUDHA}

\hline Subject \& Code \& \multicolumn{2}{|l|}{MA8351} \& Year \& / Sem \& \multicolumn{4}{|c|}{II/III}

\hline Acad \& Year \& \multicolumn{2}{|l|}{2018-2019} \& \& Batch \& \multicolumn{4}{|c|}{2017-2021}

\hline \multicolumn{10}{|c|}{Course Objective}

\hline \multicolumn{10}{|l|}{To extend student's logical and mathematical maturity and ability to deal with abstraction.}

\hline \multicolumn{10}{|l|}{To identify most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.}

\hline \multicolumn{10}{|l|}{To Analyse the basic concepts of combinatorics and graph theory.}

\hline \multicolumn{10}{|l|}{To familiarize the applications of algebraic structures.}

\hline \multicolumn{10}{|l|}{To apply the concepts and significance of lattices and boolean algebra which are widely used in computer science and engineering.}

\hline \multicolumn{10}{|c|}{Course Outcome}

\hline \multicolumn{10}{|l|}{To Examine the concepts needed to test the logic of a program.}

\hline \multicolumn{10}{|l|}{To classify the structures on many levels.}

\hline \multicolumn{10}{|l|}{To associate the class of functions which transform a finite set into another finite set which relates to input and output functions in computer science.}

\hline \multicolumn{10}{|l|}{To indicate the concept of the counting principles.}

\hline \multicolumn{10}{|l|}{To express the concepts and properties of algebraic structures such as groups, rings and fields.}

\hline \multicolumn{10}{|c|}{Lesson Plan}

\hline Sl. No. \& \& Topic(s) \& T/R*

Book \& Period
s
Requi

red \& \& | of |
| :--- |
| ing |
| PPT / |
| L |
| / etc | \& Blooms

Level (L1-
L6) \& CO \& PO

\hline \multicolumn{10}{|c|}{UNIT I LOGIC AND PROOFS}

\hline 1 \& Intro logic \& iion Propositional \& T1 \& 1 \& PPT \& BB \& L1 \& CO1 \& P01,PO3

\hline 2 \& Propo \& nal equivalences \& T1 \& 1 \& PPT \& \& L1 \& CO1 \& PO1,PO3

\hline 3 \& Norm \& orms \& T1 \& 1 \& PPT \& BB \& L1 \& CO1 \& P01,PO3

\hline
\end{tabular}

4	Normal Forms	T1	1	PPT/BB	L1	CO1	P01,PO3
5	Predicates and quantifiers	T1	1	PPT/BB	L3	CO1	P01,PO3
6	Predicates and quantifiers	T1	1	PPT/BB	L3	CO1	P01,P03
7	Nested quantifiers	T1	1	PPT/BB	L3	CO1	P01,P03
$\mathbf{8}$	Nested quantifiers	T1	1	PPT/BB	L3	CO1	P01,P03
9	Rules of inference	T1	1	PPT/BB	L3	CO1	P01,P03
10	Rules of inference	R1	1	PPT/BB	L3	CO1	P01,P03
$\mathbf{1 1}$	Introduction to proofs	R1	1	PPT/BB	L3	CO1	P01,P03
12	Proof methods and strategy	R1	1	PPT/BB	L3	CO1	P01,P03

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any: Assignment Given in Rules of inference

Evaluation method

UNIT II			COMBINATORICS				$\begin{gathered} \hline \mathrm{PO1,PO2}, \\ \text { PO3 } \end{gathered}$
13	Mathematical induction	T1	1	PPT/BB	L2	CO2	
14	Strong induction and well ordering	T1	1	PPT/BB	L3	CO2	$\begin{gathered} \text { PO1,PO2, } \\ \text { PO3 } \end{gathered}$
15	The basics of counting	T1	1	PPT/BB	L2	CO2	$\begin{gathered} \hline \text { PO1,PO2, } \\ \text { PO3 } \\ \hline \end{gathered}$
16	The pigeonhole principle	T1	1	PPT/BB	L3	CO2	$\begin{array}{\|c\|} \hline \text { PO1,PO2, } \\ \text { PO3 } \end{array}$
17	Permutations and combinations	T1	1	PPT/BB	L2	CO2	$\begin{array}{\|c} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{array}$
18	Recurrence relations	T1	1	PPT/BB	L3	CO 2	$\begin{array}{\|c\|} \hline \mathbf{P O 1 , P O 2 ,} \\ \text { PO3 } \\ \hline \end{array}$
19	Solving linear recurrence relations	T1	1	PPT/BB	L3	CO2	$\begin{array}{\|c} \text { PO1,PO2, } \\ \text { PO3 } \end{array}$
20	Solving linear recurrence relations	T1	1	PPT/BB	L1	CO 2	$\begin{array}{\|c} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 3 \end{array}$
21	Generating functions	T1	1	PPT/BB	L3	CO2	$\begin{array}{\|c} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{array}$
22	Generating functions	R2	1	PPT/BB	L3	CO 2	$\begin{array}{\|c\|} \hline \mathbf{P O 1 , P O 2 ,} \\ \text { PO3 } \end{array}$
23	Inclusion and exclusion principle and its applications	R2	1	PPT/BB	L3	CO 2	$\begin{array}{\|c} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{array}$
24	Inclusion and exclusion principle and its applications	R2	1	PPT/BB	L3	CO 2	$\begin{gathered} \mathrm{PO1,PO2,} \\ \text { PO3 } \end{gathered}$

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model
Developed/others Planned if any. Assignment-2 given on generating functions.

Evaluation method							
UNIT III		GRAPH THEORY AND APPLICATIONS					
25	Introduction - Graph Terminologies	T1	1	PPT/BB	L1	CO3	PO1,PO2
26	Types of Graphs	T1	1	PPT/BB	L1	CO3	PO1,PO2
27	Sub Graph	T1	1	PPT/BB	L1	CO3	PO1,PO2
28	Matrix representation of graphs	T1	1	PPT/BB	L2	CO3	PO1,PO2
29	Regular Graph	T1	1	PPT/BB	L2	CO3	P01,PO2
30	Isomorphic Graphs	T1	1	PPT/BB	L3	CO3	PO1,PO2
31	Isomorphism- Sub Graph	T1	1	PPT/BB	L3	CO3	PO1,PO2
32	Isomorphism- Sub Graph	T1	1	PPT/BB	L3	CO3	P01,PO2
33	Euler graph	R1	1	PPT/BB	L3	CO3	PO1,PO2
34	Related Theorems	R1	1	PPT/BB	L3	CO3	PO1,PO2
35	Hamiltonian Graph	R1	1	PPT/BB	L3	CO3	PO1,PO2
36	Related Theorems	R1	1	PPT/BB	L3	CO 3	PO1,PO2

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any. Assignment-3 given based on maps: Draw a graph from college to their home.

Evaluation method

UNIT IV ALGEBRAIC STRUCTURES

37	Algebraic systems	T1	1	PPT/BB	L1	CO4	PO1
38	Semi groups and monoids	T 1	1	PPT/BB	L2	CO4	PO1
39	Groups	T 1	1	PPT/BB	L1	CO4	PO1
40	Subgroups	T 1	1	PPT/BB	L2	CO4	PO1
41	Homomorphism's	T1	$\mathbf{1}$	PPT/BB	L2	CO4	PO1
42	Normal subgroup	T1	$\mathbf{1}$	PPT/BB	L2	CO4	PO1
43	Cosets	T1	$\mathbf{1}$	PPT/BB	L2	CO4	PO1
44	Cosets	T1	$\mathbf{1}$	PPT/BB	L2	CO4	PO1

45	Lagrange's theorem	T 1	1	PPT/BB	L 2	CO 4	PO1
46	Lagrange's theorem	R 2	1	$\mathrm{PPT} / \mathrm{BB}$	L 2	CO 4	PO1
47	Definitions and examples of Rings	R 2	1	$\mathrm{PPT} / \mathrm{BB}$	L 2	CO 4	PO
48	Definitions and examples of Fields	R 2	1	PPT/BB	L 2	$\mathrm{CO4}$	PO

Sugge Develo	d Activity: Assignment / Case d/others Planned if any. Assig	$\begin{aligned} & \text { es } / \mathrm{I} \\ & 1 \mathrm{t}-4 \mathrm{~g} \end{aligned}$		/ Mini P ubgroup.			
Evalua	ion method						
	UNIT V	CES	BO	EAN ALG			
49	Partial ordering	T1	1	PPT/BB	L1	CO5	PO1,PO3
50	Posets	T1	1	PPT/BB	L1	CO5	P01,PO3
51	Lattices as posets	T1	1	PPT/BB	L1	CO5	PO1,PO3
52	Lattices as posets-Theorems	T1	1	PPT/BB	L2	CO5	PO1,PO3
53	Properties of lattices	T1	1	PPT/BB	L2	CO5	PO1,PO3
54	Lattices as algebraic systems	T1	1	PPT/BB	L2	CO5	PO1,PO3
55	Lattices as algebraic systems	T1	1	PPT/BB	L2	CO5	P01,PO3
56	Sub lattices	T1	1	PPT/BB	L2	CO5	PO1, PO3
57	Sub lattices-Theorems	T1	1	PPT/BB	L2	CO5	PO1,PO3
58	Direct product and homomorphism	R1	1	PPT/BB	L2	CO5	PO1,PO3
59	Some special lattices	R1	1	PPT/BB	L2	CO5	PO1,PO3
60	Some special lattices	R1	1	PPT/BB	L2	CO5	PO1,PO3

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any: Assignment-5 given Lattices			
Evaluation method			
Content Beyond the Syllabus Planned			
1			
2			

1	Rosen, K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2011.															
2	Tremblay, J.P. and Manohar.R, " Discrete Mathematical Structures with Applications to															
3																
Reference Books																
1	Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2007.															
2	Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.															
3	Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.															
Website / URL References																
1	https://onlinecourses.nptel.ac.in															
2																
3																
Blooms Level																
Level 1 (L1) : Remembering Level 2 (L2) : Understanding Level 3 (L3) : Applying					Lowe Fixed r Hour Order Exam Think s ing s		Level 4 (L4) : Analysing									
					Level 5 (L5) : Evaluating		Order									
					Level 6 (L6) : Creating		$\begin{array}{\|c} \text { Thinki } \\ \text { ng } \end{array}$									
Mapping syllabus with Bloom's Taxonomy LOT and HOT																
Unit No		Unit Name				L1	L2	L3	L4	L5	L6	LOT	HOT	Total		
Unit 1	LOGIC AND PROOFS					4	8	0	0	0	0	12	0	12		
Unit 2	COMBINATORICS					2	3	7	0	0	0	12	0	12		
Unit 3	GRAPHS					2	3	7	0	0	0	12	0	12		
Unit 4	ALGEBRAIC STRUCTURES					2	10	0	0	0	0	12	0	12		
Unit	LATTICES AND BOOLEAN ALGEBRA					3	9	0	0	0	0	12	0	12		
Total						13	33	14	0	0	0	60	0	60		
Total Percentage						21.67	55	23.33	0	0	0	100	0	100		
CO PO Mapping																
	PO1	PO2	PO3	PO 4			PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	0			0	0	0	0	0	0	0	1	0	0
CO2	3	3	2	0	0	0	0	0	0	0	0	1	0	0		
CO3	3	3	2	0	0	0	0	0	0	0	0	1	0	0		
CO4	3	3	2	0	0	0	0	0	0	0	0	1	0	0		
CO5	3	3	2	0	0	0	0	0	0	0	0	1	0	0		

Avg	3	3	2	0	0	0	0	0	0	0	0	1	0	0
Justification for CO-PO mapping														
CO1	Summarize the concept of elementary mathematical logical arguments.													
CO2	Apply basic counting techniques to solve combinatorial problems.													
$\mathbf{C O 3}$	Associate the applications of Graph theory models and data structures.													
CO4	Describe the concepts and properties of algebraic structures such as groups, rings and fields.													
CO5	Extend the concepts of Boolean algebra in the area of lattices and apply the knowledge of argumental deiscrete mathematical problems													
3	High level	$\mathbf{2}$	Moderate level											

Format No :231

