		MOHAMMED SAT	HAK A J COI	LEGE	OF ENGI	NEE	RING		
		Siruser	i IT park, OMR, O	Chennai -	603103			.,	
		lll.	L ESSON D				ii		
			Department of I	Physics					
Name of Subject	f the	Engineering Physics		Name of t					
Subject	Code	PH3151	Year / Ser	m I Y	ear / I s	Sem			
Acad Y	ear		Batch						
		· · · · · · · · · · · · · · · · · · ·	Course Obje	ective					
To make	e the stude	nts effectively achieve an understanding of me	echanics.						
To enat	ble the stud	ents to gain knowledge of electromagnetic wa	ives and its application	ons.					
To intro	oduce the b	asics of oscillations, optics and lasers.							
Equippi	ng the stud	ents to successfully understand the importance	e of quantum physics	i.					
To moti	vate the stu	idents towards the applications of quantum me	echanics.						
			Course Out	come					
Upon co	ompletion of	of this course							
CO1 - U	Jnderstand	the importance of mechanics.							
CO2 - 1	Express the	ir knowledge in electromagnetic waves.							
СО3 - Е	Demonstrat	e a strong foundational knowledge in oscillation	ons, optics and lasers						
CO4 - U	Understand	the importance of quantum physics.							
CO5 - C	Comprehen	d and apply quantum mechanical principles to	wards the formation	of energy ba	ands.				
			Lesson Pla	in					
CL N		T • ()	T / R*	Periods	Mode of Teac	hing	Blooms Level		DO
SI. No.		l opic(s)	Book	Required	(BB / PPT / N / MOOC / e	PTEL tc)	(L1-L6)		PO
UNIT	I - MEC	HANICS					•		
1	Multi-par	ticle dynamics: Center of mass (CM) – CM	T1 / R3	1	РРТ		L1	CO1	PO1
	of continu Motion of	ious bodies f the CM – kinetic energy of the system of							
2	particles.	Rotation of rigid bodies	T1 / R4	1	PPT		L2	CO1	PO1
3	Rotationa moment c	l kinematics – rotational kinetic energy and f inertia - theorems of M .I	T1 / R3	1	BB		L5	CO1	PO12
4	Moment of diatomic	of inertia of continuous bodies – M.I of a molecule	T1 / R4	1	BB		L5	CO1	PO3
5	Torque – conservat	rotational dynamics of rigid bodies – ion of angular momentum	T1 / R3	1	BB		L2 & L5	CO1	PO1
6	Rotationa gyroscope	l energy state of a rigid diatomic molecule -	T1 / R3	1	BB		L5	CO1	PO5
7	Torsional	pendulum	T1 / R4	1	BB		L5	CO1	PO3
8	Double p	endulum	T1 / R4	1	PPT		L3	CO1	PO7

-							
9	Introduction to nonlinear oscillations, Problems	T1 / R3	1	BB	L5	CO1	PO2
Sugges Assignr	ted Activity: Assignment / Case Studies / Tuorials/ Q nent	uiz / Mini Projects /	Model De	veloped/others Planr	ned if any		4
Evalua	tion method						
Marks o	but of 10						
UNIT	II - ELECTROMAGNETIC WAVES						
10	The Maxwell's equations	T2 / R3	1	BB	L2	CO2	PO1
11	Wave equation	T2 / R4	1	BB	L5	CO2	PO3
12	Plane electromagnetic waves in vacuum,	T2 / R3	1	BB	L5	CO2	PO1
13	Conditions on the wave field	T2 / R3	1	РРТ	L3	CO2	PO12
14	Properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter	T2 / R3	1	РРТ	L4	CO2	PO5
15	Polarization - Producing electromagnetic waves	T1 / R4	1	BB	L2	CO2	PO1
16	Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure	T1 / R4	1	PPT	L3	CO2	PO5
17	Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium	T1 / R4	1	РРТ	L3	CO2	PO7
18	Vacuum interface for normal incidence, Problems	T1 / R3	1	BB	L5	CO2	PO2
Suggest Assignr	ted Activity: Assignment / Case Studies / Tuorials/ Q	uiz / Mini Projects /	Model De	veloped/others Planr	ied if any	-	
Evalua Marks o	tion method out of 10						
UNIT	III - OSCILLATIONS, OPTICS AND LASE	ERS					
19	Simple harmonic motion - resonance	T2 / R3	1	РРТ	L2	CO3	PO1
20	Waves on a string	T2 / R3	1	РРТ	L3	CO3	PO3
21	Standing waves	T2 / R3	1	РРТ	L2	CO3	PO5
22	Traveling waves, Energy transfer of a wave, sound waves - Doppler effect	T2 / R3	1	РРТ	L2	CO3	PO1
23	Reflection and refraction of light waves - total internal reflection - interference, Michelson interferometer	T1 / R3	1	BB	L3	CO3	PO3
24	Theory of air wedge and experiment	T1 / R4	1	BB	L5	CO3	PO3
25	Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients -	T1 / R4	1	BB	L5	CO3	PO3
26	Nd-YAG laser, CO2 laser	T2 / R3	1	РРТ	L4	CO3	PO7
27	Semiconductor laser –Basic applications of lasers in industry	T2 / R3	1	BB	L5	CO3	PO2

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any Assignment

Evaluation method Marks out of 10

UNIT	IV - BASIC QUANTUM MECHANICS						
28	Photons and light waves - Electrons and matter waves	T1 / R3	1	BB	L5	CO4	PO3
29	Compton effect	T1 / R3	1	BB	L5	CO4	PO3
30	The Schrodinger equation - Time dependent form	T1 / R3	1	РРТ	L3	CO4	PO1
31	Time independent form	T1 / R3	1	РРТ	L2	CO4	PO1
32	Meaning of wave function - Normalization	T1 / R3	1	BB	L5	CO4	PO3
33	Free particle - particle in a infinite potential well: 1D	T1 / R3	1	BB	L5	CO4	PO3
34	Particle in a infinite potential well: 2D	T2 / R4	1	BB	L2	CO4	PO1
35	3D Boxes- Normalization	T2 / R4	1	РРТ	L4	CO4	PO7
36	Probabilities and the correspondence principle, Problems	T1 / R3	1	BB	L5	CO4	PO2
Suggest Assignn	ted Activity: Assignment / Case Studies / Tuorials/ Q nent	uiz / Mini Projects /	Model De	veloped/others Plann	ed if any		
Evaluat Marks o	t ion method but of 10						
UNIT	V - APPLIED QUANTUM MECHANICS						
37	The harmonic oscillator	T3 / R3	1	РРТ	L1	CO5	PO1
38	Barrier penetration	T3 / R3	1	РРТ	L2	CO5	PO1
39	Quantum tunnelling	T3 / R3	1	BB	L2	CO5	PO2
40	Tunneling microscope	T3 / R3	1	BB	L4	CO5	PO3
41	Resonant diode	T3 / R3	1	BB	L4	CO5	PO3
42	Finite potential wells	T3 / R3	1	BB	L4	CO5	PO7
43	Bloch's theorem for particles in a periodic potential	T1 / R4	1	РРТ	L3	CO5	PO12
44	Basics of Kronig-Penney model	T1 / R4	1	РРТ	L3	CO5	PO5
45	Origin of energy bands	T1 / R4	1	РРТ	L3	CO5	PO2
Suggest Assignn	ted Activity: Assignment / Case Studies / Tuorials/ Q nent	uiz / Mini Projects /	Model De	veloped/others Plann	ed if any		
Evaluat Marks o	t ion method out of 10						
Conten	t Beyond the Syllabus Planned						

1	Particle in a 3-D box-Degeneracy and Hydrogen Atom													
2	Medical application of LASER													
	Text Books													
1	D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.													
2	E.M.Purc	ell and D.J.	Morin, Ele	etricity and	l Magnetism,	Cambridg	e Univ.Pre	ss, 2013.						
3	Arthur Be	iser, Shobh	nit Mahajar	n, S. Rai Ch	oudhury, Co	ncepts of N	Modern Phy	ysics, McG	raw- Hill (I	Indian Edit	ion), 2017.			
						Ref	erence Bo	ooks						
1	R.Wolfso	n. Essential	University	y Physics. V	Volume 1 & 2	2. Pearson	Education	(Indian Edi	tion), 2009).				
2	Paul A. Tipler, Physic – Volume 1 & 2, CBS, (Indian Edition), 2004.													
3	K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.													
4	D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.													
5	N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer- Verlag, 2012.													
	Website / URL References													
1	Gyroscope: https://www.youtube.com/watch?v=cquvA_IpEsA													
2	Cell Phor	ne receptio	on: https:/	/youtu.be	/kxLcwIMYr	<u>nr0</u>								
3	Nd-YAG laser: https://youtu.be/XI18Is5Lp9I													
4	CO2 Lase	er: https://	youtu.be/	/dhV_jGVe	eiG8									
	(I	B	looms Lev	vel					1	
Level I	(LI): H	Remember	ring		Lower	Fixed	Fixed Level 4 (L4) : Analysing						Higher	Projects /
Level 2	(L2): Ui	nderstand	ing		Order	Hour	Hour Level 5 (L5) : Evaluating Orde							Mini Projects
Level 3	(L3) : Aj	pplying			Ininking	Exams	Exams Level 6 (L6) : Creating							Tiojeets
		Ma	pping s	yllabus	with Bloo	m's Taxe	onomy L	OT and	нот					
Un	it No		Unit	Name		L1	L2	L3	L4	L5	L6	LOT	НОТ	Total
U	nit 1	MECHAN	VICS			1	2	1	0	6	0	4	6	10
U	nit 2	ELECTRO	OMAGNE'	TIC WAVI	ES	0	2	3	1	3	0	5	4	9
U	nit 3	OSCILLA	TIONS, O	PTICS AN	D LASERS	0	3	2	1	3	0	5	4	9
U	nit 4	BASIC Q	UANTUM	MECHAN	IICS	0	2	1	1	5	0	3	6	9
U	nit 5	APPLIED	QUANTU	JM MECH	ANICS	1	2	3	3	0	0	6	3	9
		<u>।</u> Т	'otal			2	11	10	6	17	0	23	23	46
Total Descentage						4.35	23.91	21.74	13.04	36.96	0	50	50	100
							PO Mapp	L ing	1	1	I	1	1	L
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	2	-	2	-	1	-	-	-	-	1	-	-
CO2	3	3	2	-	2	-	1	-	-	-	-	1	-	-
CO3	3	2	2	-	1	-	1	-	-	-	-	-	-	-
			-	-							-	-		-

CO4	3	2	2	-	2	-	1	-	-	-	-	1	-	-		
CO5	3	3	2	-	2	-	1	-	-	-	-	1	-	-		
Avg	3	3	2	-	2	-	1	-	-	-	-	1	-	-		
	Justification for CO-PO mapping															
	Applying the knowledge of elastic nature of materials help to choose the suitable materials in the industries (PO1). This will help in problem solving												olving			
C01	(PO2) strongly, design and development of solution to some extent (PO3). This may help to know the modern tool usage to some extent(PO5). (PO7)															
	gives the knowledge of engineering solutions in society and environment weakly and (PO12) recognizes the need for life-long learning weakly.															
CON	Concepts of waves, optical devices and its application to fibre optics attribute to strong Engineering knowledge (POI). This will help in problem															
	2 solving strongly (PO2), design and development of solution (PO3) and developing simple model helps in learning the techniques (PO5) to some extent.															
	(PO7) weakly helps to understand the impact of optical devices and fibre optics to environment and (PO12) weakly helps in life-long learning process.															
CO3	developm	ent of solut	tion to som	e extent (P	O3) This ma	v weakly h	eln to know	v the mode	rn tools us	age (PO5) :	and engine	ering soluti	ons in soci	ety and		
	environme	ent (PO7).	lion to som	e extent (1	<i>(()))))))))))))</i>	y weakly h	cip to know	v uie moue	111 10015 45	uge (1 05) (and engine	ering soluti		ety und		
	While und	erstanding	the import	ance and a	pplication of	Quantum I	Physics, str	ong engine	ering know	ledge (PO	1) is developed, this will help in problem					
CO4	solving (PO2), design and development of solution (PO3) and in applying appropriate techniques and tools with an understanding of the limitations															
	(PO5) to some extent. Application of quantum mechanics may be of slight use to know the life-long technological changes (PO12) in devices like quantum tunneling microscope.															
	Understan	ding of var	rious crysta	l structures	and crystal	growth tech	nniques attr	ibutes to st	rong Engir	neering kno	wledge (P	O1). This v	vill help in	problem		
CO5	solving (P	O2) strong	ly, design a	and develop	pment of solu	tion (PO3)	moderatel	y. Selecting	g suitable a	lgorithm h	elps in lear	ning the co	mmercial s	software		
	(PO5) to s	ome extent	t. (PO7) gr	ves the kno	wledge of en	gineering s	olutions in	society and	d environm	ent weakly	7. (PO12) r	ecognizes t	he need for	life-long		
	3	Cakiy.	High level		2		м	oderate lev	vel				Low level			
					2											
Name &	& Sign of l	Faculty In	charge :													
Name &	& Sign of S	Subject Ex	xpert :													
Head o	f the Depa	rtment	:													
Format	No :231		_													