MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

Siruseri IT park, OMR, Chennai - 603103

		LESSON					
Name of	fthe	Department of	Name of t	he			
Subject	Physics for Information Science		handling Faculty				
Subject			Year / Ser	n I Year / II	Sem		
Acad Ye	car	Course Ob	Batch				
To unde	rstand the essential principles of Physics of semicono		5	rt properties. Become	proficient in magnet	ic and optic	al
	es of materials and Nano-electronic devices. To unde			•	tor device and Electr	ron transpor	t
roperti	es. Become proficient in magnetic and optical proper	Course Ou		ne devices.			
At the en	nd of the course, the students will able to,	Course ou					
CO1 - G	ain knowledge on classical and quantum electron the	ories, and energy ban	d structures				
	cquire knowledge on basics of semiconductor physic			evices,			
	et knowledge on magnetic properties of materials and						
CO4 - H	lave the necessary understanding on the functioning of	of optical materials for	optoelectror	nics and			
	Inderstand the basics of quantum structures and their	-	•				
		Lesson P					
		T / R*	Periods	Mode of Teaching			
Sl. No.	Topic(s)	Book	Required	(BB / PPT / NPTEL / MOOC / etc)	(L1-L6)	CO	PO
JNIT	I - ELECTRICAL PROPERTIES OF MA	ATERIALS	•			-	
1	Classical free electron theory of metals	T1 / R1	1	BB	L1	CO1	PO1
2	Electrical and Thermal Conductivity of Metal, Wiedemann Franz law, Lorentz number	T1 / R4	1	BB	L2	CO1	POI
3	Success and failures of classical theory	T1 / R1	1	BB	L2	CO1	PO1
4	Electrons in a metal and Particle in a 3D box and degenerate states	T1 / R4	1	BB	L3	CO1	PO3
5	Fermi Dirac Statistics and density of energy states	T1 / R1	1	BB	L5	CO1	PO1
6	Electrons in a periodic potential: Bloch theorem	T1 / R1	1	BB	L3	CO1	PO
7	Energy band in a solids and Threshold approximation	on T1 / R4	1	BB	L2	CO1	POS
8	Electron effective mass, concept of hole	T1 / R4	1	BB	L2	CO1	PO7
9	Problems	T1 / R1	1	BB	L5	CO1	PO2
Suggest	ed Activity: Assignment / Case Studies / Tuorials	/ Quiz / Mini Projec	ts / Model D	eveloped/others Plan	ned if any		
Assignn		- •		•			
	i on method ut of 10						
	II - SEMICONDUCTOR PHYSICS						
10	Types of Semiconductors, direct & indirect semiconductors, carrier concentration in Intrinsic	T2 / R4	1	PPT	L5	CO2	POI
11	semiconductor Carrier concentration in Extrinsic semiconductor	T2 / R4	1	BB	L5	CO2	POS
12	Carrier concentration in N-type Semiconductor	T2 / R4	1	BB	L5	CO2	PO
13	Carrier concentration in P-type Semiconductor	T2 / R4	1	BB	L5	CO2	POI
-							
14	Variation of carrier concentration with temperature Variation of Fermi level with temperature and	T2 / R4	1	BB	L4	CO2	POI
15	impurity concentration	T1 / R4	T1 / R4 1		L4	CO2	PO1
16	Carrier transport in Semiconductor : random motion drift, mobility and diffusion	' T1 / R4	1	РРТ	L2	CO2	POS
17	Hall effect and Devices	T1 / R4	1	1 PPT		CO2	POT
		T1 / D4		BB	1.2	602	PO2
18	Ohmic contacts, Schottky Diode and Problems	T1 / R4	1	ВВ	L3	CO2	rO ₄

	tion method but of 10						
UNIT	III - MAGNETIC PROPERTIES OF MATI	ERIALS					
19	Magnetic dipole moment and Atomic magnetic moments and magnetic permeability and susceptibility	T2 / R4	1	PPT	L2	CO3	PO1
20	Classification of Dia, Para, Ferro, Anti-ferro & Ferri magnetism	T2 / R4	1	PPT	L3	CO3	PO1
21	Ferromagnetism: Origin and exchange interaction, saturation magnetization and curie temperature	T2 / R4	1	BB	L2	CO3	PO3
22	Domain theory of Ferromagnetism	T2 / R4	1	BB	L3	CO3	PO3
23	Hysteresis of M Vs H behavior	T1 / R4	1	BB	L3	CO3	PO3
24	Properties and Difference between Hard and Soft magnetic materials	T1 / R4	1	BB	L2	CO3	PO1
25	Examples of Hard and Soft magnetic materials	T1 / R4	1	BB	L1	CO3	PO7
26	Magnetic usage in Computer data storage devices and GMR Senor	T2 / R4	1	PPT	L3	CO3	PO5
27	Problems	T2 / R4	1	BB	L5	CO3	PO2
Sugges Assignt	ted Activity: Assignment / Case Studies / Tuorials/ Q	uiz / Mini Projects	s / Model Do	eveloped/others Plan	ned if any		
Evalua	tion method						
	but of 10						
	IV - OPTICAL PROPERTIES OF MATER			DD			Pot
28	Classification of Optical Materials	T1 / R4	1	BB	L1	CO4	PO1
29	Carrier concentration and recombination process	T1 / R4	1	BB	L3	CO4	PO3
30	Absorption, emission and scattering of light in metals,	T1 / R4	1	PPT	L3	CO4	PO1
31	Insulators and semiconductors (concepts only)	T1 / R4	1	PPT	L2	CO4	PO1
32	Photo current in P-N diode, solar cell	T1 / R4	1	PPT	L4	CO4	PO5
33	Photo detectors – LED, organic LED	T1 / R4	1	PPT	L4	CO4	PO3
34	Laser diodes	T2 / R4	1	BB	L2	CO4	PO5
35	Optical data storage techniques	T2 / R4	1	PPT	L4	CO4	PO7
36	Problems	T1 / R4	1	BB	L5	CO4	PO2
Sugges Assignt	ted Activity: Assignment / Case Studies / Tuorials/ Q nent	uiz / Mini Project	s / Model Do	eveloped/others Plan	ned if any		
	tion method but of 10						
	V - NANO DEVICES						
37	Introduction, Electron density in bulk materials	T3 / R3	1	РРТ	L1	CO5	PO1
38	Size dependence of Fermi energy, quantum confinement and structures	T3 / R3	1	РРТ	L2	CO5	PO1
39	Density of states in quantum well, quantum wire and	T3 / R3	1	BB	L5	CO5	PO2
40	quantum dot structures Band gap of nano materials and Tunneling	T3 / R3	1	BB	L4	CO5	PO3
41	Single electron phenomena and transistor	T3 / R3	1	PPT	L4	CO5	PO3
42	Quantum dot laser	T3 / R3	1	PPT	L4	CO5	PO7
43	Conductivity of metallic nano wires,	T1 / R4	1	PPT	L3	CO5	PO12
44	Ballistic transport – Quantum resistance and conductance	T1 / R4	1	PPT	L3	CO5	PO5
45	Carbon nanotubes: Properties and Applications	T1 / R4	1	PPT	L3	CO5	PO5
ugges Assignt	ted Activity: Assignment / Case Studies / Tuorials/ Q ment	uiz / Mini Projects	s / Model Do	eveloped/others Plan	ned if any	I	
Evalua	tion method						
	t Beyond the Syllabus Planned						
1	Ferrites						

2	2 CNT Fabrication													
	Text Books													
1	Jasprit Singh, —Semiconductor Devices: Basic Principlesl, Wiley 2012.													
2	Kasap, S.O	D. —Princi	ples of Ele	ctronic Ma	terials and I	Devicesl, M	lcGraw-Hil	ll Education	n, 2007					
3	Kittel, C. ·	-Introduc	tion to Soli	d State Phy	ysicsl. Wiley	, 2005.								
	n						erence B							
1			-		omputer Scie				2012.					
2	-				ectronicsl. Pe		-							
3	-				lanotechnolo		-			Press, 2014				
4	4 Senthil Kumar G. "Physics for Information Science", VRB Publications Pvt. Ltd, 2017													
	Website / URL References Hard disc drive - https://youtu.be/NtPc0jl21i0													
1			://youtu.k											
3			://youtu.l											
4					VvgEMhO	(fo								
-	carbonn	unotabe	11(0)(1)(1)	0414.5070			looms Le	vel						
Level 1	(L1):F	Remember	ring		Ŧ			L4) : Ana	lysing					
	. ,	nderstand	0		Lower Order	Fixed Hour		 L5) : Eva	• •				Higher Order	Projects / Mini
	(L3) : A				Thinking			L6) : Cre	0				Thinking	
Levers	(15). 11							,	0					
		Ма			vith Bloo					1.5	L	LOT	UOT	Tatal
Un	it No	FLECTRI	Unit CAL PRO	Name)F	L1	L2	L3	L4	L5	L6	LOT	HOT	Total
U	nit 1	MATERIA		EKTIES	51	1	4	2	0	2	0	7	2	9
U	nit 2		NDUCTOR			0	1	2	2	4	0	3	6	9
Unit 3 MAGNETIC PROPERTIES OF MATERIALS			7	1	3	4	0	1	0	8	1	9		
Unit 4 OPTICAL PROPERTIES OF MATERIALS Unit 5 NANO DEVICES Total				1	2	2	3	1	0	5	4	9		
			1	1	3	3	1	0	5	4	9			
			4	11	13	8	9	0	28	17	45			
Total Percentage				8.89	24.44	28.89	17.78	20.00	0.00	62.22	37.78	100.00		
				,		CO	PO Mapp	oing		1	1		1	I
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	2	-	1	-	-	-	-	2	-	-
CO2	3	3	3	-	2	-	2	-	-	-	-	2	-	-
CO3	3	3	3	-	1	-	2	-	-	-	-	1	-	-
CO4	3	3	2	-	2	-	-	-	-	-	-	2	-	-
CO5	3	3	2	-	2	-	1	-	-	-	-	1	-	-
Avg	3	3	3	-	2	-	2	-	-	-	-	2	-	-
					J	ustificatio	n for CO-l	PO mappir	ıg					
	Applying	the concep	ts of classic	cal and qua	intum electro					ngly (PO1)) helps to a	nalyze the	problems s	strongly
C01	(PO2). Th (PO7) give	is will help	in design	and develo	pment of so solutions in	lution to so	ome extent	(PO3). Thi	s may help	to know th	ne modern	tool usage	moderately	(PO5).
CO2	extent. Applying the fundamentals and applications of semiconductors in Engineering field strongly (PO1) helps in problem analysis to greater extent (PO2). This may help in design and development of solutions strongly (PO3). PO5 attributes to the usage of modern tools to some extent and to assess the health and safety of society as well as environment and sustainable development moderately (PO7). Semiconductors may be of some use to know the life-long technological changes in electronic devices (PO12).													
С03	Concepts of various magnetic materials, dielectric materials and its breakdown attribute to strong Engineering knowledge (PO1). This will help in problem solving (PO2) as well as design and development of solution (PO3) to a greater extent. Developing simple model helps to learn the techniques (PO5) weakly. PO7 helps to understand the impact of magnetic and dielectric materials to environment to some extent and PO12													
CO4	recognizes the need for life-long learning weakly. While understanding the nature, properties and application of optical materials for optoelectronics, strong Engineering knowledge (PO1) is developed. This will help in problem solving (PO2) strongly and design and development of solution (PO3) to some extent. Optical materials help in applying appropriate techniques and tools with an understanding of the limitations (PO5) moderately. Optical materials may be of some use to know the life- long technological changes in optoelectronics (PO12).													

CO5	Understand the basics of quantum structures and their applications and carbon electronics attributes to strong Engineering knowledge (PO1). This wi help in problem solving (PO2) as well as design and development of solution (PO3) to a greater extent. Selecting suitable algorithm helps in learning the commercial software (PO5) to some extent. PO7 gives the knowledge of engineering solutions in society and environment moderately. PO12 recognizes the need for life-long learning to some extent.										
	3	High level	2	Moderate level	1	Low level					
Name &	& Sign of I	Faculty Incharge :									
Name &	& Sign of S	Subject Expert :									
Head of	f the Depa	rtment :									

Format No :231