MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

Siruseri IT park, OMR, Chennai - 603103

		LESSON	PLAN				
		Department o	f Physics				
Name of	f the Physics for Electronic Engineering		Name of t				
Subject Subject	Code PH8253		handling Year / Sei		Sem		
Acad Ye			Batch				
		Course Ob	jective				
	rstand the essential principles of Physics of semiconduces of materials and Nano-electronic devices.	ctor device and Elec	etron transpo	rt properties. Become	proficient in magne	etic and optic	al
At the e	nd of the course. the students will able to.	Course Ou	itcome				
	Bain knowledge on classical and quantum electron theor	ies and energy han	d structures				
	acquire knowledge on basics of semiconductor physics a			wices			
	Bet knowledge on magnetic and dielectric properties of i		in various at				
	lave the necessary understanding on the functioning of		r ontoelectro	nics			
	Inderstand the basics of quantum structures and their ap	<u> </u>	<u>^</u>				
205-0	inderstand the basics of quantum structures and then ap	Lesson F		bon electronics			
		T / R*				1	
Sl. No.	Topic(s)	Book	Periods Required	(BB / PPT / NPTEL / MOOC / etc)	Blooms Level (L1-L6)	со	РО
UNIT	I - ELECTRICAL PROPERTIES OF MAT	TERIALS		/1000/00/			
1	Classical free electron theory of metals	T1 / R1	1	BB	L1	CO1	PO1
2	Electrical and Thermal Conductivity of Metal, Wiedemann Franz law, Lorentz number	T1 / R4	1	BB	L2	CO1	PO1
3	Success and failures of classical theory	T1 / R1	1	BB	L2	CO1	PO12
4	Electrons in a metal and Particle in a 3D box and degenerate states	T1 / R4	1	BB	L3	CO1	PO3
5	Fermi Dirac Statistics and density of energy states	T1 / R1	1	BB	L3	CO1	PO1
6	Electrons in a periodic potential: Bloch theorem	T1 / R1	1	BB	L3	CO1	PO5
7	Energy band in a solids and Threshold approximation	T1 / R4	1	BB	L2	CO1	PO3
8	Electron effective mass, concept of hole	T1 / R4	1	BB	L2	CO1	PO7
9	Problems	T1 / R1		BB	L3		PO2
-						CO1	P02
suggest	ed Activity: Assignment / Case Studies / Tuorials/ (Assignment	Juiz / Mini Projec	ts / Model D	eveloped/others Pla	nned if any		
Evaluat	tion method						
	Marks out of 10						
UNIT	II - SEMICONDUCTOR PHYSICS		1	1	1		
10	Types of Semiconductors, direct & indirect semiconductors, carrier concentration in Intrinsic semiconductor	T2 / R4	1	РРТ	L2	CO2	PO1
11	Carrier concentration in Extrinsic semiconductor	T2 / R4	1	BB	L3	CO2	PO3
12	Carrier concentration in N-type Semiconductor	T2 / R4	1	BB	L3	CO2	PO1
13	Carrier concentration in P-type Semiconductor	T2 / R4	1	BB	L3	CO2	PO1
	Variation of carrier concentration with temperature	T2 / R4	1	BB	L3	CO2	PO1
14	Variation of Fermi level with temperature and	T1 / R4	1	РРТ	L3	CO2	PO1
14 15	impurity concentration						
		T1 / R4	1	PPT	L3	CO2	PO5
15	impurity concentration Carrier transport in Semiconductor : random motion,	T1 / R4 T1 / R4	1	PPT PPT	L3 L2	CO2 CO2	
15 16	impurity concentration Carrier transport in Semiconductor : random motion, drift, mobility and diffusion		-				PO5 PO7 PO2

Evalua	tion method Marks out of 10						
UNIT	III - MAGNETIC AND DIELECTRIC PRO	OPERTIES OF	MATERI	ALS			
19	Magnetic dipole moment and Atomic magnetic moments and magnetic permeability and susceptibility	T2 / R4	T2 / R4 1 PPT		L2	CO3	PO1
20	Classification of Dia, Para, Ferro, Anti-ferro & Ferri magnetism	T2 / R4	1	PPT	L3	CO3	PO1
21	Ferromagnetism: Origin and exchange interaction, saturation magnetization and curie temperature	T2 / R4	1	BB	L2	CO3	PO3
22	Domain theory of Ferromagnetism	T2 / R4	1	BB	L2	CO3	PO3
23	Hysteresis of M Vs H behavior	T1 / R4	1	BB	L3	CO3	PO3
24	Dielectric materials, polarisation process	T1 / R4	1	BB	L3	CO3	PO1
25	internal field, Clausius -Mosotti relation	T1 / R4	1	BB	L3	CO3	PO7
26	dielectric breakdown, dielectric loss, dieletric strength	T2 / R4	1	PPT	L3	CO3	PO5
27	Problems	T2 / R4	1	BB	L3	CO3	PO2
Sugges	ted Activity: Assignment / Case Studies / Tuorials/ Q QUIZ)uiz / Mini Projects	s / Model Do	eveloped/others Plan	ned if any		
Evalua	tion method						
UNIT	Marks out of 10 IV - OPTICAL PROPERTIES OF MATER						
28	Classification of Optical Materials	T1 / R4	1	BB	L1	CO4	PO1
20	Carrier concentration and recombination process	T1 / R4	1	BB	L2	CO4	PO3
30	Absorption, emission and scattering of light in metals,	T1 / R4	1	PPT	L2 L2	CO4	PO1
31	Insulators and semiconductors (concepts only)	T1 / R4	1	РРТ	L2	CO4	PO1
32	Photo current in P-N diode, solar cell	T1 / R4	1	PPT	L3	CO4	PO5
33	Photo detectors – LED, organic LED	T1 / R4	1	PPT	L3	CO4	PO3
34	Laser diodes	T2 / R4	1	BB	L3	CO4	PO5
34	quantum dot laser	T2 / R4	1	PPT	L3	CO4	PO7
36	Problems	T1 / R4	1	BB	L3 L3	C04	PO2
	ted Activity: Assignment / Case Studies / Tuorials/ Q					004	FO2
	Assignment	- •		*			
Evalua	tion method Marks out of 10						
UNIT	V - NANOELECTRONIC DEVICES						
37	Introduction, Electron density in bulk materials	T3 / R3	1	РРТ	L1	CO5	PO1
38	Size dependence of Fermi energy, quantum confinement and structures	T3 / R3	1	PPT	L2	CO5	PO1
39	Density of states in quantum well, quantum wire and quantum dot structures	T3 / R3	1	BB	L3	CO5	PO2
40	Band gap of nano materials and Tunneling	T3 / R3	1	BB	L2	CO5	PO3
41	Single electron phenomena and transistor	T3 / R3	1	PPT	L2	CO5	PO3
42	Quantum dot laser	T3 / R3	1	PPT	L2	CO5	PO7
43	Conductivity of metallic nano wires,	T1 / R4	1	PPT	L3	CO5	PO12
44	Ballistic transport – Quantum resistance and conductance	T1 / R4	1	PPT	L3	CO5	PO5
45	Carbon nanotubes: Properties and Applications	T1 / R4	1	PPT	L3	CO5	PO5
Sugges	ted Activity: Assignment / Case Studies / Tuorials/ Q TUTORIAL	Quiz / Mini Projects	s / Model D	eveloped/others Plar	ned if any	1	I
Evalua	tion method						
Contor	Marks out of 10 t Beyond the Syllabus Planned						
1	Ferrites						

2	CNT Fabr	iantian												
2	CINT Fabr	Ication					Text Boo	ks						
1	Kasap, S.O. —Principles of Electronic Materials and Devicesl, McGraw-Hill Education, 2007													
2	Umesh K Mishra & Jasprit Singh — Semiconductor Device Physics and Design, Springer, 2008													
3	Wahab, M.A. —Solid State Physics: Structure and Properties of Materials. Narosa Publishing House, 2009.													
	Reference Books													
1	Garcia, N. & Damask, A. —Physics for Computer Science Studentsl. Springer-Verlag, 2012.													
2	Hanson, G.W. —Fundamentals of Nanoelectronicsl. Pearson Education, 2009.													
3	Rogers, B., Adams, J. & Pennathur, S. — Nanotechnology: Understanding Small Systemsl. CRC Press, 2014. Senthil Kumar G. " Physics for Electronic Engineering", VRB Publications Pvt. Ltd, 2017													
4	Senthil Ku	ımar G. " F	Physics for	Electronic	Engineering									
1	Website / URL References													
1 2	classical free electron theory of metals - https://www.youtube.com/watch?v=ttdtdLfn9HU Photodiode - https://youtu.be/8k9UIIwo7W4													
3			s://youtu.l											
4					VvgEMhO	/fo								
5	magnetic	propertie	es of solids	s - https://	/www.yout	ube.com,	/watch?v=	5A3vh84e	q04					
						B	looms Le	vel						
Level 1	(L1): H	Remembe	ring		Lower	Fixed	Level 4	(L4) : Ana	alysing				Higher	Projects
Level 2	(L2) : U	nderstand	ling		Order	Hour	Level 5	(L5) : Eva	luating				Order	/ Mini
Level 3	(L3) : Aj	oplying			Thinking	Exams	Level 6	(L6) : Cre	ating				Thinking	Projects
		Ma	pping sy	llabus v	with Bloo	m's Tax	onomy	LOT and	НОТ					
Un	it No		Unit	Name		L1	L2	L3	L4	L5	L6	LOT	HOT	Total
	nit 1	ELECTRI MATERI/	CAL PRO	PERTIES	OF	1	4	4	0	0	0	9	0	9
Unit 2 SEMICONDUCTOR PHYSICS			S	0	2	7	0	0	0	9	0	9		
Unit 3 MAGNETIC AND DIELECTRIC PROPERTIES OF MATERIALS			0	3	6	0	0	0	9	0	9			
Unit 4 OPTICAL PROPERTIES OF MATERIALS			1	3	5	0	0	0	9	0	9			
U	nit 5	NANOEL	ECTRONI	C DEVICI	ES	1	4	4	0	0	0	9	0	9
		Т	otal			3	16	26	0	0	0	45	0	45
		Total P	ercenta	ge		6.67	35.56	57.78	0.00	0.00	0.00	100.00	0.00	100.00
						CC) PO Map	ping						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	2	-	1	-	-	-	-	2	-	-
CO2	3	3	3	-	2	-	2	-	-	-	-	2	-	-
CO3	3	3	3	-	1	-	2	-	-	-	-	1	-	-
CO4	3	3	2	-	2	-	-	-	-	-	-	2	-	-
CO5	3	3	2	-	2	-	1	-	-	-	-	1	-	-
Avg	3	3	3	-	2	-	2	-	-	-	-	2	-	-
	·			·	J	ustificatio	on for CO-	PO mappir	ng				<u>،</u>	
					antum electro	on theories	s, and energ	gy band stru	ictures stro					
CO1	(PO7) giv	-	-		opment of sol solutions in							-	-	
CO2	extent. Applying the fundamentals and applications of semiconductors in Engineering field strongly (PO1) helps in problem analysis to greater extent (PO2). This may help in design and development of solutions strongly (PO3). PO5 attributes to the usage of modern tools to some extent and to assess the health and safety of society as well as environment and sustainable development moderately (PO7). Semiconductors may be of some use to know the													
CO3	life-long technological changes in electronic devices (PO12). Concepts of various magnetic materials, dielectric materials and its breakdown attribute to strong Engineering knowledge (PO1). This will help in problem solving (PO2) as well as design and development of solution (PO3) to a greater extent. Developing simple model helps to learn the techniques (PO5) weakly. PO7 helps to understand the impact of magnetic and dielectric materials to environment to some extent and PO12 recommendations the need for life long learn in weakly.													
CO4	recognizes the need for life-long learning weakly. While understanding the nature, properties and application of optical materials for optoelectronics, strong Engineering knowledge (PO1) is developed. This will help in problem solving (PO2) strongly and design and development of solution (PO3) to some extent. Optical materials help in applying appropriate techniques and tools with an understanding of the limitations (PO5) moderately. Optical materials may be of some use to know the life-long technological changes in optoelectronics (PO12).													

С	5 will help learning t	in problem solving (PO2) as we	ell as design and develop to some extent. PO7 give	as and carbon electronics attribut oment of solution (PO3) to a grea es the knowledge of engineering	ter extent. Selecting sui	itable algorithm helps in
	3	High level	2	2 Moderate level		Low level
		-		•		
Nar	ne & Sign of	Faculty Incharge :				
Nar	ne & Sign of	Subject Expert :				
Hea	d of the Depa	artment :				

Format No :231